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ABSTRACT

Network traffic load in an IEEE802.11 infrastructure arises
from the superposition of traffic accessed by wireless clients
associated with access points (APs). An accurate character-
ization of these data can be beneficial in modelling network
traffic and addressing a variety of problems including cover-
age planning, resource reservation and network monitoring
for anomaly detection. This study focuses on the statisti-
cal analysis of the traffic load measured in a campus-wide
IEEER02.11 infrastructure at each AP.

Using the Singular Spectrum Analysis approach, we found
that the time-series of traffic load at a given AP has a small
intrinsic dimension. In particular, these time-series can be
accurately modelled using a small number of leading (prin-
cipal) components. This proved to be critical for under-
standing the main features of the components forming the
network traffic.

The statistical analysis of leading components has demon-
strated that even a few first components form the main part
of the information. The residual components capture the
small irregular variations, which do not fit in the basic part
of the network traffic and can be interpreted as a stochastic
noise. Based on these properties, we also studied contribu-
tions of the various components to the overall structure of
the traffic load of an AP and its variation over time.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network

operations; 1.6.6 [Model Development]: Modelling method-

ologies
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1. INTRODUCTION

Wireless networks are increasingly being deployed to pro-
vide Internet access in airports, universities, corporations,
hospitals, residential, and other public areas. Furthermore,
there is a growth in peer-to-peer, streaming, and VoIP traf-
fic over the wireless infrastructures [1, 2]. At the same time,
empirical studies and performance analysis indicate dramat-
ically low performance of real-time constrained applications
over Wireless Local Area Networks (WLANSs) [3]. WLANSs
have more vulnerabilities and bandwidth/latency constrains
than their wired counterparts. The bandwidth utilization at
an AP can impact the performance of the wireless clients in
terms of throughput, delay, and energy consumption. For
quality of service provision, capacity planning, load balanc-
ing, and network monitoring, it is critical to understand the
traffic characteristics. For this purpose, the design of accu-
rate models of the network and client activity are critical. In
addition, the traffic models can assist in detecting abnormal
traffic patterns (e.g., due to malicious attacks, AP or client
misconfigurations and failures).

One of the most intriguing aspects of the traffic demand
modelling in WLANS is its intrinsic multi-level, spatio-tempo-
ral nature, namely, the different spatial scales (e.g., infrastru-
cture-wide, AP-level or client-level) and time granularities,
such as packet-level, flow-level and session-level. While there
is a rich literature characterizing traffic in wired networks [4,
5, 6], there are only a few studies available examining wire-
less traffic load. In a recent work [7, 8], two key structures
in a WLAN, namely, the session of a client and the traf-
fic flows generated within that session by that client, were
modelled in both spatial and temporal dimensions, and their
dependencies and interrelations were examined. In [9, 10],
the traffic load at APs was modelled using variants of the
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modelling of the wireless traffic load at the AP-level, from
a spatial scale point of view, and using packet-level time
granularity. To the best of our knowledge, this is the first



study in characterizing statistically wireless traffic load at
this spatio-temporal scale using non-linear time-series anal-
ysis techniques.

Here, we study a large-scale wireless infrastructure [11]
using a lightweight data acquisition methodology. Our data
was collected using the Simple Network Management Pro-
tocol (SNMP), the most widely-available monitoring service
in wireless platforms. Any AP in the market supports mon-
itoring using SNMP, so it is important to understand how
much operators and researchers can learn from SNMP data.
Furthermore, this type of data is the most appropriate one
to understand daily and long-term trends in the usage of
wireless networks. This paper makes use of SNMP data for
analyzing traffic characteristics, such as total load and peri-
odicities.

To achieve a deeper understanding of the main features
of traffic measurements, we employ a non-linear time-series
analysis [12]. At the same time, due to the complicated
structure of a traffic series, traditional algorithms of non-
linear analysis may not estimate reliably the analyzed time-
series. However, after filtering out a high-frequency compo-
nent, which can be considered as a noisy part, we expect
to obtain a more accurate estimation of the embedding di-
mension of the underlying process. Motivated by this ob-
servation, in this study, we analyze traffic series by decom-
posing them in two components, namely, a low-frequency
and a high-frequency one, using Singular Spectrum Analy-
sis (SSA).

The Principal Component Analysis (PCA) [13] consists in
applying a linear transformation of the original data space
into a feature space, where the data set may be represented
by a reduced number of “effective” features, while retaining
most of the information content of the data. The SSA [14]
belongs to the general category of PCA methods and is very
efficient for the analysis of time-series corresponding to an
arbitrary process. In a recent work [15], the SSA was used to
analyze the dynamics of traffic obtained at an intermediate-
scale wired LAN. To the best of our knowledge, this is the
first study that applies SSA on the analysis of traffic from a
WLAN.

This paper employs SSA to explore the intrinsic dimen-
sionality and structure of the time-series corresponding to
the traffic load at a given AP, using data collected from a
campus-wide WLAN infrastructure. To explore the nature
of this dimensionality, we introduce the notion of eigenloads.
Derived from the implementation of SSA on a given traffic
load series, an eigenload is a time-series that captures a par-
ticular source of temporal variability. Each traffic load series
can be expressed as a weighted sum of eigenloads, where the
weights are proportional to the extend to which each eigen-
load is present in the given traffic load series.

We show that traffic eigenloads in a WLAN fall into two
natural classes; namely, deterministic eigenloads, which cap-
ture the slow-varying trends in the traffic load series, and
noise eigenloads, which account for traffic fluctuations ap-
pearing to have relatively time-invariant properties. By cat-
egorizing eigenloads in this manner, we obtain a significant
insight into the intrinsic properties of the traffic load se-
ries. In particular, we find that each time-series can be
well approximated by only a small number of eigenloads,
which constitute its “feature set”. Furthermore, these fea-
tures vary in a predictable way as a function of the amount
of traffic carried in the time-series. We show that the largest

traffic load series, i.e., the series with the highest mean traf-
fic load, are primarily deterministic. On the other hand,
traffic load series of moderate size are generally comprised
of noisy features.

The paper is organized as follows: Section 2, describes the
wireless infrastructure at the University of North Carolina
at Chapel Hill (UNC) and the data acquisition process. In
Section 3, we present the basic concept of the SSA approach.
We apply this method on our traffic measurements and an-
alyze the leading components, which are responsible for the
main part of the network’s traffic, and the residual compo-
nents, which can be represented as irregular variations of the
data. Section 4, provides a statistical modelling for a set of
traffic load series, and then applies SSA to these time-series
and presents the low-dimensionality property. Section 5,
presents the classification of the eigenloads in two classes,
and focuses on the characteristics of the decomposition of
traffic load series into their constituent eigenloads. Finally,
in Section 6, we summarize our main results and discuss
future work plans.

2. BACKGROUND

The IEEE802.11 infrastructure at UNC provides coverage
for the 729-acre campus and a number of off-campus admin-
istrative offices. The university has 26.000 students, 3.000
faculty members and 9.000 staff members. Undergraduate
students (16.000) are required to own laptops, which are
generally able to communicate using the campus wireless
network. A total of 488 APs were part of the campus net-
work at the start of our study. These APs belong to three
different series of the Cisco Aironet platform: the state-of-
the-art 1210 Series (269 APs), the widely deployed 350 Series
(188 APs) and the older 340 Series (31 APs).

The data was collected using SNMP for polling every AP
on campus every five minutes. First, the system was imple-
mented using a nonblocking SNMP library for polling each
AP precisely every five minutes in an independent manner.
This eliminates any extra delays due to the slow processing
of SNMP polls by some of the slower APs. The system ran
in a multiprocessor system and the CPU utilization in each
of the three processors we employed never exceeded 70%.
Second, our characterization of the workload of the APs is
derived only from those clients associated with the AP at
polling time.

The data collection took place between 9:09 a.m. Septem-
ber 29th, 2004 and 12:00 a.m. November 30th, 2004. The
total number of polling operations during the 63 days was
8.247.479. The data collection system ran flawlessly for the
entire period, but APs were sometimes unresponsive. This is
generally due to maintenance down-times, reboots, or over-
loads. If an AP did not respond to a poll, the data collection
system tried again 5 sec later (and if necessary, again after
10 sec and 15 sec). It is therefore unlikely that datagram
losses created holes in our dataset.

Based on the SNMP trace for each AP, we produced a
time series of its traffic load at hourly intervals. This traf-
fic is the total amount of bytes received and sent from all
clients that were associated with the AP at that time inter-
val. In the rest of the paper, depending on the mathematical
expression, we will use two notations for these time series.
Specifically, the traffic of the AP i during the h-th hour of
day d (h € {1,...,24}, d € {1,...,63}), that corresponds
to time ¢, is T;(h, d) = X;(t).



3. SINGULAR SPECTRUM ANALYSIS OF
A TIME-SERIES

Singular Spectrum analysis (SSA) is a method suitable for
extracting information from short and noisy time series. It
unravels the information embedded in the delay-coordinate
phase space by decomposing the sequence into elementary
patterns of behavior in time and spectral domains, that help
separating the time series into statistically independent com-
ponents, which can be classified as trends and deterministic
oscillations (or noise). SSA looks for structures in a time se-
ries by doing an eigendecomposition of the so-called lagged
covariance matrix. This approach is useful in non-linear
system analysis, because, as opposed to other time-series
analysis techniques, we do not have to choose the structure
functions a priori, but instead, the data lets themselves to
choose the temporal structures.

Time-series corresponding to wireless traffic load are of-
ten short and contain typically peaks on top of a more reg-
ular background. Besides, these series often have both reg-
ular (periodic) and irregular (noisy) aspects, which may be
present in different spatial and temporal scales. Thus, the
need for combining a deterministic with a stochastic mod-
elling approach is necessary, motivating the use of the SSA
approach. In the following, we describe the modelling pro-
cess step by step, and apply it on randomly selected time-
series corresponding to several hotspot APs of our dataset.

3.1 Introduction to SSA

The SSA is applied to the analysis of time-series corre-
sponding to an arbitrary signal x(t), with ¢ > 0. The stan-
dard SSA consists of four main steps:

1. Transformation of the one-dimensional time-series into
a trajectory (Hankel) matrix;

2. Singular Value Decomposition (SVD) of the Hankel
matrix;

3. PCA and selection of the dominant features by group-
ing the SVD components;

4. Reconstruction of the original time-series using the se-
lected features (inverse Hankelization by diagonal av-
eraging).

Let X = {z;}}_, denote the samples of the time-series
and L (1 < L < N) be an integer, indicating the (caterpillar)
window length. The transformation step forms K = N—L+
1 lagged vectors X = {zx, .. .,mk+L,1}T, 1 <k<K. The
trajectory Hankel matrix of the time-series X is of dimension
L x K and has the following form:

H=[X X, - Xkl . (1)

The trajectory space is defined as the linear space spanned
by the columns of H.

After the above Hankelization process, the SSA method
performs an SVD of the matrix C = HH”. Let \; >

. > AL be the eigenvalues of C, which give the energy
attributable to the respective principal component, and r =
max{i : \; > 0}. Let Ui,...,U, denote the corresponding
eigenvectors (principal components) and V; = H* U;/ \/)TJ ,
j=1,...,r, the set of factor vectors, which capture the tem-
poral variation common to all lagged vectors along the j-th

principal axis. We refer to the set {V;}}_; as the set of eigen-
loads of X. Since the principal axes are in order of contribu-
tion to the overall energy, V1 captures the strongest tempo-
ral trend common to all lagged vectors, Va2 captures the next
strongest trend and so on. If we denote H; = ﬁUj\GT,
the trajectory matrix H can be written as

H=H,+ ---+H,. (2)

By applying the inverse Hankelization process on each ma-
trix H;, we obtain an approximation X7 of the original series
X.

Once the expansion given by (2) has been completed, the
third step of the SSA method consists of partitioning the
set of indices Z = {1,...,r} into s disjoint subsets, where
the value of s depends on the specific application. Let Z; =
{i1,...,%m} be the first subset of indices, and H = H; +
---+H;,, to be the approximation of the trajectory matrix H
based on the indices of Z;. Similarly, we have an analogous
decomposition corresponding to each subset Zy, k = 2, ..., s.
Thus, we obtain the final decomposition of the initial Hankel
matrix H:

H=H"+...+H" . (3)

The last step of the SSA is the application of an in-
verse Hankelization process on the approximation matrix
HZx k = 1,...,s, to approximate the initial time-series.
This process is simply performed by averaging the elements
of H%* | which are placed on the same anti-diagonal, that
is, the elements hizj’“ with ¢ + j = constant. Let XT* de-
note the time-series reconstructed using the matrix HZ¥.
Then, the j-th component of X%+, sz", is given by: sz’“ =
mean{elements of H** which are placed on the j-th anti-
diagonal}l. Thus, the result of SSA is an expansion of the
original time-series into a sum of s series,

X=X" 4 4 X", (4)

where XZ* is the time-series reconstructed using the matrix
HZ*. For instance, the case s = 2 can be interpreted as a
problem of separating a signal from a noise component. The
performance of the method mainly depends on two param-
eters, namely, the selection of the window length L and the
partitioning of the positive eigenvalues. In the following, we
describe procedures for the specification of these parameters,
when using SSA for WLAN traffic workload analysis.

3.2 Estimation of the window lengthz

The selection of a suitable window length, L, is crucial
for an increased accuracy of the SSA. The value of L is
computed, such that the points of different lagged vectors,
Xk, X; (k # 1), can be considered as linearly independent.
In our context, for an arbitrary AP, the window length L is
chosen to be equal to the correlation length (time lag), i.e.,
when the sample auto-correlation function

S (@i — @) (x; — T)
S (g —®)?

crosses for the first time the confidence interval correspond-
ing to the white Gaussian noise. In this case, the lagged
vectors of length L can be considered to be independent,
which enables each vector to be analyzed separately. In (5),
Z denotes the arithmetic mean of the time-series X.

oL) =

; (5)

IThe first anti-diagonal is simply the element hﬂ‘
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Figure 1: Traffic load series and sample auto-

correlation function for Xo(t).

Fig. 1 presents the traffic load series and the values of
the sample auto-correlation function as a function of the
window length L (time lag), together with the confidence
interval corresponding to the white Gaussian noise, for an
AP of our dataset. As shown, the auto-correlation function
first crosses the confidence interval for L = 7, that is, the
selected window length should be equal to 7.

In the following two subsections, we describe the proce-

dure for partitioning the set of the r eigentriples {\;, Uy, V;}j_;

into s disjoint subsets. For convenience, we focus on the case
s = 2, that is, the eigentriples are divided in two classes,
namely, the principal and the residual eigentriples.

3.3 Analysis of leading components

As it was mentioned before, the eigenvalues given by ap-
plying an SVD on the trajectory matrix H can be used to
select a set of feature components for the reconstruction of
the original time-series. In particular, the ratio

Ai
Ri=—— (6)
Z j=1 Aj

is used to estimate the energy contribution (in decreasing
order) of the i-th principal component in the analyzed time-
series, which can be represented as the fraction of the infor-
mation content related to that (single) component.

Fig. 2 shows the contribution of the eigenvalues corre-
sponding to the traffic series of the 9-th AP in our dataset,
for two different window lengths, namely, the window length
Ly = 7 given by the auto-correlation function (5), and
Lo = 14. This information permits the estimation of the
number of principal components which effectively contribute
to the information content of the time-series. As it can be
seen, only the first few principal components are responsible
for the main part of the traffic information, that is, the part
that maintains a high energy content.

For simplicity, we are interested in grouping the principal
components in two subsets, namely, a subset Z;, containing
the eigenvalues which are responsible for the reconstruction
of a slow varying (trend) component of the original time-
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Figure 2: Percentage contribution of the eigenvalues
for Xy(t): (a) L=7, (b) L =14.

series, and a subset Z2, which is related to its “noisy” part.
In the standard SSA approach, this partition is performed
based on a signal processing point of view. In particular, the
subset Z; consists of the eigenvalues A; whose corresponding
eigenvectors U; have slow varying sequences of elements,
that is, the contribution of harmonics with low frequencies
into their Fourier expansion is high. Similarly, the subset Z
consists of those eigenvalues, for which the contribution of
harmonics with high frequencies into the Fourier expansion
of their corresponding eigenvectors is high. In both cases,
the contribution can be measured using the periodogram [16]
of each eigenvector.

In our study, instead of following this procedure, the par-
tition of the eigenvalues is based on a statistical criterion,
in order to take into account the uncertainty of the under-
lying statistical model. In particular, the subset Z; of prin-
cipal components will consist of those eigenvalues for which
the reconstructed time-series has a statistical distribution of
the traffic measurements similar to the distribution of the
original time-series. Let p(z) denote the probability den-
sity function (PDF), which best fits the traffic load series
of a given AP. Then, a leading component belongs to Z;, if
the PDF of the corresponding reconstructed series, p(x), is
close to p(z), where the “closeness” is measured using the
x? test [17]. In this case, the null hypothesis tested by the
x? test is that the distribution of the series which is recon-
structed using the first [ (1 <[ < L) principal components,
is modelled with p(z).

As an illustration, Fig. 3 shows the value of the x? test
as a function of the number [ of the first principal compo-
nents, for the series Xo(t), whose distribution is best fitted
by a Weibull PDF, as it will be described in more detail in
Section 4. We used a window size (L = 14), which is larger
than the “optimal” (L = 7), in order to better visualize the
variability of the x? test. The two parallel lines correspond
to the significance levels?’ a = 0.1 (top line) and a = 0.9
(bottom line). For instance, the distribution of the recon-
structed series does not pass the null hypothesis (that is,

2The significance level indicates the probability that the es-

timated x? value will exceed the theoretical x? value by
chance even for a correct model.
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Figure 3: The value of x? as a function of the number
[ of leading components for Xo(t) analyzed with L =
14.

it cannot be modeled as a Weibull PDF), when the recon-
struction is based only on the first leading component, since
the corresponding x? value is out of the confidence inter-
val (parallel lines). On the other hand, as [ increases the
value of x? decreases, and for | = 5, there is already a quite
good level of correspondence of the distribution of the re-
constructed series, using the first 5 leading components, to
the null hypothesis. This is important, since only the first
5 components contain the main part of the original time-
series. Notice that the statistical criterion is consistent with
an energy-based rule, i.e., the first five components satisfying
the x? test, also contain a high portion (= 80% = ?:1 R;)
of the total energy of the original series.

3.4 Analysis of residual components

As it was mentioned before, the influence of the residual
components, corresponding to the smallest eigenvalues of
the trajectory matrix is related to small irregular variations
that do not fit in the basic model of the traffic load and
can be interpreted as stochastic noise. As an illustration,
Fig. 4 presents the time-series reconstructed on the basis of
the smallest residual component of the original series Xo(¢),
using the window length (L = 7) given by the sample auto-
correlation function. This time-series has a significantly dif-
ferent structure compared to its original version. Its distri-
bution approximates a Gaussian density, as the qg-plot test
in Fig. 5 shows. Notice that this reconstructed series does
not represent physical traffic load, since it takes negative
values.

However, when increasing the number of residual com-
ponents, their distribution starts losing its initial form, to-
gether with an increase of the correlations between the series
samples. Fig. 6 shows the value of the x? test as a function
of the number of residual components ! (1 <1 < L), that is,
the first [ residual components corresponding to the first [
smallest eigenvalues, together with the two significance lev-
els (o = 0.1-top line, a = 0.9-bottom line).

To select the residual components (elements of the Z, sub-
set), we employ the instance where the symmetry of the
distribution of the reconstructed time-series using the first
[ residual components (smallest eigenvalues) is violated. It
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Figure 4: The series Xy(¢) reconstructed using the
smallest residual component, for a window length
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structed series Xy(¢) using the smallest residual com-
ponent, for a window length L = 7.

can be seen that x? exceeds the 10% (a = 0.1) significance
level when the number of residual components is equal to
Il = 6. Thus, the subset Z> contains the first [ — 1 = 5
smallest (non-zero) eigenvalues.

Following the analysis described in previous sections, we
constructed two subsets of eigenvalues, namely, subset Z;
containing the leading components, and subset Z2 containing
the residual components of the trajectory matrix H for a
given time-series X (¢). Notice that in general (Z; UZ;) C Z,
that is, the analysis of the leading and residual components
may not result in an exact partitioning of the initial set
of eigenvalues, Z, since there are eigenvalues that may not
belong in any of the two subsets. Thus, we should replace
the equation in (3) (for s = 2) by an approximation

H~H" +H" . (7)

The application of diagonal averaging (inverse Hankeliza-
tion) on both sides of (7) results in the following approxi-
mation of the original time-series:

X(t) ~ XT(t) + X™2(1) , (8)
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where X7 (t) is the time-series reconstructed using the sub-
set of leading components, which can be interpreted as the
trend of X(t), and X72(t) is the time-series reconstructed
using the subset of residual components, which can be in-
terpreted as the “noisy” (high-frequency) part of X (¢).

4. SSA-BASED TRAFFIC LOAD SERIES
MODELLING AND DECOMPOSITION

As discussed in Section 3, we aim in applying the SSA
to decompose the traffic load series of a given AP into its
constituent set of eigenloads. Besides, Section 3.3 main-
tained that the determination of the most important (lead-
ing) eigenloads is based on the selection of a suitable sta-
tistical model, which accurately fits the distribution of the
original traffic load series, to be used in the x? test. Thus,
a statistical analysis for the selection of the best model is
necessary.

This section first shows that traffic load series correspond-
ing to different APs can be modelled using PDF's belonging
to different families. Then, we use the corresponding best
models to show that only a small set of eigenloads can recon-
struct the original time-series accurately, while preserving its
characteristic features, such as its spikes.

4.1 Statistical modelling of traffic load series

The first step in our statistical analysis is based on accu-
rate modelling of the mode and tails of the distribution of a
given traffic load series. Since the time-series in our dataset
are in general bursty, we expect that their distributions will
be modelled using non-Gaussian PDFs. Before proceeding,
we assess whether the data deviate from the normal distri-
bution using qg-plots. Then, we determine the model that
best fits the empirical distribution of the time-series by em-
ploying the so-called amplitude probability density (APD)
curves, which represent the probability P(|X| > z). The
APD curves give a good indication of whether or not a par-
ticular PDF p(x) matches our data near the mode and on
the tails of the empirical distribution.

Table 1 indicates the candidate statistical models used
in our analysis. The statistical fitting of each one of the 19
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Figure 7: APD curves for the time-series corre-
sponding to the APs: (a) Xa(t), (b) X5(t).

time-series constituting our dataset showed that the Gamma
is the dominant distribution followed by the GGD. Fig. 7
shows the APD curves for the traffic load series X2(t) and
X5(t), whose empirical distribution is best approximated
using the GGD and Gamma distribution, respectively.

4.2 Normalization of the traffic measurements

Due to the nature of wireless traffic, the traffic load of a
particular AP ¢ within hour ¢, X;(¢), exhibits spikes that
are very hard to predict. Fig. 8 shows the traffic load se-
ries and its normal probability plot for the third hotspot AP
in our dataset, X3(t). Its bursty behavior is clear, and the
marginal distribution is non-Gaussian. Thus, before pro-
ceeding to handle the data more efficiently, we normalize
them (i.e., resemble a normal distribution), by employing a
suitable transformation. Such distributions can be handled
more effectively. Besides, such a transformation can reduce
the effect of those high local spikes on the forecasting per-



Table 1: The models used in the traffic load series analysis.
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Figure 8: Traffic load series and normal probability
plot for X3(¢).

formance. Unfortunately, in general, the choice of the best
transformation is not obvious.

There is a family of power transformations to make the
marginal distributions resemble a Gaussian-like density, na-
mely the Box-Cox power transformations, defined only for
positive data values. The existence of zero values in the trace
does not pose any problem, since a constant can always be
added. The Box-Cox power transformation is given by [18]:

zP—1

"0 ={ iy

Given the time-series X = {z;}}_,, one way to select the
optimal power p is to maximize the log-likelihood function

M]Hp—l)zln(%@)) :

p#0
020 9)

N

(10)
where

Figure 9: Box-Cox transformation of X3(¢) (upper
figure) and the patterns of the mean and standard
deviation per hour-of-day of the original traffic load.

Let Y;(t) = Xi(t; popt) denote the transformed version of
the original time-series X;(t) using the optimal value of p,
popt. Fig. 9 shows the Box-Cox transformed version (Y3(t))
of the original series X3(t), as well as, the mean and standard
deviation per hour-of-day ( h(t) € {1,...,24}) of the original
series X3(t). It is apparent that the effect of the large spikes,
present in X3(t), has been degraded in Y3(t). Besides, notice
that X3(t) exhibits strong non-stationarity in both the mean
and the standard deviation (see the two bottom plots in
Fig. 9).

This analysis motivates us to further normalize the trans-
formed time-series, Y;(¢), in the following way:

Yi(t) — pinee)
Oi,h(t) ’

Gi(t) = (11)
where h(t) is the corresponding hour-of-day for time ¢, while
tinety and o; ) are the mean and standard deviation of
Y;(t) during those time periods with the hour-of-day being
h(t), respectively. Notice that the computation of p; p1)
and o; (1) depends on the periodicity of the measurements
of the particular AP. In particular, when the AP has a diur-



nal periodicity (24 hours), p; n(:) is the mean of the traffic
measurements obtained at the same hour-of-day h(t). As-
sume, for instance, that we want to normalize the measure-
ments obtained at 11:00 a.m. for each day. Then, p; () is
the mean of all the traffic measurements corresponding only
to 11:00 a.m., where the mean is taken over all the days in
our trace. On the other hand, we must be careful when the
periodicity of an AP is not diurnal. For instance, assume
that we want to normalize the measurements of an AP with
a periodicity of 22 hours, obtained at 11:00 a.m. for each
day. Then, ji; (1) is the mean of all the traffic measurements
corresponding to hours-of-day, whose difference is equal to
22 hours between adjacent days. The computation of the
standard deviation, o; 1), is performed in the same way.

It is also important to notice that after the above transfor-
mations, the model that best fits the empirical distribution
of Gi(t) and the optimal window length L, given by the
sample auto-correlation function, may change.

4.3 Low-dimensionality of traffic load series

As described in Section 3.3, the energy contributed by
each eigenload to the actual traffic load is concentrated in
the first few leading components. Fig. 10 shows the per-
centage contribution of the eigenvalues for the normalized
series Gg(t), for the optimal window length L = 33, as well
as the x? test, where the null hypothesis is that the Weibull
PDF is closer to the empirical distribution. According to
the x? test, only the first 6 principal components (out of the
33) are adequate to capture the vast majority of traffic vari-
ability, and thus, accurately approximate the original series
Xo(t). The first 6 principal components contribute in the
72.42% of the total energy of Go(t). Thus, the time-series
Go(t) has a structure with effective dimension equal to 6,
much lower than the total number of principal components
(33). The x? test is consistent with an energy-based rule, in
the sense that, the few first principal components for which
the x? value falls inside the confidence interval, are exactly
those components containing the highest portion of the total
energy.

As a further illustration of this low-dimensionality prop-
erty of the traffic load series, we plot the time-series Gy (t),
which is reconstructed using the first 6 leading eigenloads.
The results are shown in Fig. 11(a), while in Fig. 11(b) we
plot the original series Xo(t) and its approximation Xo(t),
obtained after applying the inverse transforms of Egs. (9), (11)
(in this order). Notice that even though we omitted 27 prin-
cipal components, we can still capture most of the important
characteristics of the original series Xg(¢), such as the loca-
tions of its spikes. We do not expect to capture accurately
the exact height of a spike, using only such a small num-
ber of eigenloads. Our goal is to illustrate that the main
information content of a traffic load series in our dataset is
mainly due to the contribution of a small number of features
(eigenloads). Thus, we can understand better the intrinsic
behavior of actual traffic by studying the behavior of a small
set of eigenloads, which appear to have a better structure
compared with the original traffic load series, as described
in the next section.
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Figure 10: (a) Percentage contribution of the eigen-
values and (b) x? test values for Go(t) (L = 33).

5. STRUCTURE OF THE EIGENLOADS

The statistical analysis of the traffic load series presented
in the previous section underscores the central role of the
eigenloads in understanding the intrinsic properties of a traf-
fic load series obtained in a large-scale WLAN, such as the
network considered in our study. Thus, we are interested in
describing the two types of eigenloads, namely, the deter-
ministic (slow-varying) and the noisy one.

5.1 Categorization of eigenloads

In Section 3.1, we defined the set of eigenloads {V;};_; as
a function of the set of eigenpairs {);, U;}7—;. The value of
A; is proportional to the extend to which its corresponding
principal component U; contributes to the j-th eigenload
of the time-series X (¢t). Thus, before the categorization of
the eigenloads, we start by inspecting the set of principal
components {U;}7_;.

The principal components of the traffic load series in our
dataset for each one of the 19 hotspot APs appear to have
the same behavior. In particular, we found that a princi-
pal component whose corresponding eigenvalue is of high
magnitude is slow-varying, whereas as the magnitude of an
eigenvalue decreases, its corresponding eigenvector oscillates
more and more. As an illustration of this behavior, Fig. 12
shows a subset of the principal components for the normal-
ized series G (t) and G1s(t), where the principal components
are ordered in decreasing order with respect to their corre-
sponding eigenvalue.

The categorization of the set of eigenloads is performed in
a heuristic way. In particular, we expect that the eigenloads
will present a similar behavior as the principal components,
since they are obtained as projections of the trajectory ma-
trix H on them. Thus, we divide the eigenloads in two
classes: (i) the deterministic, slow-varying eigenloads, which
are simply the projections of H on slow-varying principal
components, and (ii) the noisy eigenloads, which result by
projecting H on the high-frequency principal components.
As an example, Fig. 13 shows the eigenloads given by the
projection of the trajectory matrix of the normalized time-
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Figure 11: SSA approximation using the first 6 lead-
ing components for: (a) the normalized series Gy(t),
(b) the original series Xy (t).

series Gg(t) on the principal components 1, 5, 22 and 33.
It is clear that the eigenloads 1 and 5 can be considered as
deterministic, while the eigenloads 22 and 33 belong to the
noisy class.

5.2 Decomposition of the traffic load series

A benefit of the above eigenload-based categorization is
that it results in a decomposition of any given traffic load
series (normalized or not) into its principal features. That
is, we can reconstruct each time-series in terms of two con-
stituents: the contributions made by the deterministic and
the noisy eigenloads. Doing so, each constituent is respon-
sible to capture a distinct feature of the traffic load series,
namely, its deterministic mean and its (stationary) random
variation, respectively. An example of this decomposition
is shown in Fig. 14. The figure shows the original normal-
ized traffic series Go(t) along with its four approximations
based on the features captured by the first four eigenloads
(i-e., the eigenloads corresponding to the first four leading
components).

This decomposition may be very useful for the future de-
sign of a forecasting system, since the eigenloads which carry
most of the information content of the original time-series
are exactly the first few deterministic ones, which can be
predicted more accurately because of their slow-varying be-
havior.

6. CONCLUSIONS

In this paper, we provided an SSA-based statistical analy-
sis of the structure of traffic load series measured in a large-
scale campus-wide WLAN. First, we fitted the distribution
of a given traffic load series, obtained at the AP level, using
an appropriate model selected from a set of pre-determined
candidate PDFs. Then, we applied the SSA approach in
order to partition the set of principal components in two
subsets, namely, the subset of leading components and the
subset of residual components.
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Figure 12: Principal components of the normalized
time-series: (a) Go(t), (b) Gis(t).

We showed that the subset of leading components is re-
sponsible for the preservation of the main information con-
tent of the original series and thus, the intrinsic dimension-
ality of the traffic is highly restricted by using only the first
few leading components. Besides, we found that the eigen-
loads, defined using the set of leading components, present
a similar behavior across the different traffic load series. In
particular, we showed that they can be categorized in two
classes: (i) the deterministic, slow-varying eigenloads carry-
ing the major information content and (ii) the noisy eigen-
loads, which are related with the irregular variations of the
traffic.

Based on this categorization, we decomposed the original
traffic series by projecting it on each eigenload. This yielded
a considerable understanding of the structure of the traffic
load series, which is analyzed in multiple frequency scales,
since the projections on the first eigenloads give the slow-
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Figure 13: Eigenloads of the traffic load series Gy(t).

varying trend components, while the projections on the last
eigenloads give the high-frequency content.

As a future work, we will use the statistical analysis and
the SSA-based decomposition to design a forecasting al-
gorithm, by exploiting efficiently the characteristics of the
eigenloads. Besides, to encourage further experimentation,
we have made our datasets available to the research com-
munity [19].
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