
IN PROC. OF IEEE PIMRC 2002, LISBON, PORTUGAL, SEP. 15-18, 2002

ECONOMIC MODELS FOR RESOURCE CONTROL IN WIRELESS NETWORKS

Vasilios A. Siris
�
, Bob Briscoe

�
, and Dave Songhurst

��
Institute of Computer Science, FORTH, P.O. Box 1385, Heraklion, GR 71 110, Crete, Greece, vsiris@ics.forth.gr�
BT Research, B54/130, Adastral Park, Ipswich, IP5 3RE, UK, bob.briscoe@bt.com, dsonghurst@jungle.bt.co.uk

Abstract - We present a model based on congestion pric-
ing for resource control in wireless CDMA networks carry-
ing traffic streams that have fixed-rate requirements, but can
adapt their signal quality. Our model considers the resource
usage constraint in the uplink of CDMA networks, and does
not differentiate users based on their distance from the base
station. We compare our model with other economic models
that have appeared in the literature, identifying their similar-
ities and differences. Our investigations include the effects
of a mobile’s distance and the wireless network’s load on the
target signal quality, the transmission power, and the user ben-
efit.
Keywords - resource usage, utility, congestion pricing, sig-
nal quality adaptation

I. INTRODUCTION

The widespread use and limited capacity of mobile wireless
networks is making the efficient utilization and control of lim-
ited resources in such networks increasingly important. In ad-
dition to simplicity and efficient implementation, procedures
for resource control should have a theoretically sound un-
derlying model, which induces the efficient use of resources
based on the actual requirements of mobile users. The goal of
this paper is to propose and investigate such a model, which
is based on economic modelling, and compare it with other
models that have appeared in the literature.

Economic models, based on the notions of utility func-
tions and congestion pricing, have been successfully applied
to fixed wired networks, e.g., see [5], [6], [1]. Economic
models have also been proposed for wireless networks, e.g.,
see [3], [8], [10]. Such models can guide the development
of flexible and robust procedures for efficient utilization of
network resources, based on actually user requirements and
preferences. Common features of the above models is that
a user’s requirements are expressed in the form of a utility
function, which gives the level of user satisfaction for a given
level of service, and “prices” are used as a control mechanism
to affect user behavior. Note that although economic models
use the notion of prices, these can be seen solely as an inter-
nal control mechanism, and need not reflect the actual charges
that end-users pay.

We consider CDMA wireless networks carrying traffic
streams with fixed-rate requirements, that can adjust their sig-
nal quality, the latter determined by the bit-energy-to-noise-
density ratio at the receiver. Examples include streaming ap-
plications with fixed-rate requirements, that can adapt their

picture quality, which is determined by the percentage of lost
data over the wireless channel. Our model considers the re-
source usage constraint in the uplink of CDMA networks, and
has the important property that it does not differentiate users
based on their distance from the base station. Moreover, re-
source allocation based on our model depends on the load of
the wireless network, which can be estimated from aggregate
measurements of the interference.

Although our model is presented in the context of CDMA
networks, it can potentially be applied to other wireless tech-
nologies, where a single transmission produces interference
to other transmissions; such is the case of multiple WLANs
in geographic proximity. Moreover, we are currently investi-
gating the application of economic models to other problems
in wireless networks, such as determining the cell coverage,
power control, and service differentiation.

The rest of this paper is organized as follows. In Section II
we discuss resource usage in the uplink direction of CDMA,
and propose a model for resource control based on congestion
pricing. In Section III we discuss two models based on eco-
nomics that have been proposed in the literature, and in Sec-
tion IV we present numerical investigations comparing these
models with the one proposed in Section II. Finally, Section V
concludes the paper.

II. RESOURCE CONTROL BASED ON CONGESTION

PRICING

In this section we first discuss resource usage in CDMA
networks. Then, based on the results for resource usage, we
propose a model for resource control based on congestion
pricing, in the case of fixed-rate traffic streams that can ad-
just their signal quality.

Consider the uplink of a single CDMA cell. Let
�

be the
chip rate. The bit-energy-to-noise-density ratio at the base
station is given by [2], [11]������
	����� � �  � ���������  � � � �����! (1)

where

� 
is the transmission rate,

�"
is the transmission power,�  is the path gain between the base station and mobile # , and�

is the power of the background noise at the base station.
The ratio

��$ � 
is the spreading factor or processing gain for

mobile # .
The value of the bit-energy-to-noise-density ratio% � � $&� 	�' 

corresponds to the signal quality, since it de-
termines the bit error rate, BER [2], [11]. Under the realistic



assumption of additive white Gaussian noise, BER is a
non-decreasing function of

��� $(�
	
, that depends on the

multipath characteristics, and the modulation and forward
error correction (FEC) algorithms. Let )  be the target
bit-energy-to-noise-density ratio required to achieve a target
BER. This target is given to closed-loop power control, which
adjusts the transmission power in order to achieve it.

If we assume perfect power control, in which case% ��� $&�*	 '  �+)  , and solve the set of equations given by (1)
for each mobile # , we get [11], [7]

� ��� � �-,
UL
.0/ ��� ,

UL
�  (2)

where the load factor
,

UL


is given by,
UL
 � .1!235476&4 � .98;:

The power levels given by the set of equations (2) for #=<?> ,
where > is the set of mobiles, are the minimum such that the
target bit-energy-to-noise-density ratios @A) 5B are met. Since
the power

� 
can take only positive values, from (2) we getC  ,

UL
ED . : (3)

The last equation illustrates that the uplink is interference-
limited: Even when they have no power constraints, mobiles
cannot increase their power with no bound, due to the in-
creased interference they would cause to the other mobiles.
If (3) is violated, then the target @A)  B cannot be met for all
mobiles.

When there is a large number of mobile users, each using
a small portion of the available resources, we have

2354F6&4HG.
, hence

,
UL
JI 3 4 6 42 and the resource constraint (3) can be

approximated by C  �  )  D � : (4)

The above analysis can be extended to take into account cases
where there are constraints on the maximum power a mobile
can transmit, and to take into account the interference from
neighboring cells and imperfect power control. These exten-
sions involve multiplying the right-hand side of equations (3)
and (4) with a factor that is smaller than 1.

Next we discuss a model for resource control, based on
the notions of utility and congestion pricing. We consider
rate-inelastic traffic, which has fixed-rate requirements, but
can adapt its target bit-energy-to-noise-density ratio. Such
applications include, e.g., streaming video/audio, which can
have a fixed transmission rate, but whose quality, as perceived
by users, depends on the frame error rate; the latter depends
on the signal quality, which is expressed by the target bit-
energy-to-noise-density ratio. A possible expression for the
utility of rate-inelastic traffic isK ML % �  ) ' � K 3 % � ' K�N % ) '  

where
K 3 % � ' , due to the inelasticity in terms of the rate, is a

step function, and
K N % ) ' can be an increasing concave or a

sigmoid function. A utility with a sigmoid shape is able to
capture minimum requirements in terms of ) .

Recall that in the case of a large number of mobile hosts,
the wireless resource constraint is given by (4). In order to
provide the right incentives for efficient use of network re-
sources, user # should face a congestion charge that is pro-
portion to his resource usage, which based on (4) is given by
the product

�  )  . Facing such a charge, a user will seek to
maximize his benefit (net utility), hence performs the follow-
ing optimization (without loss of generality, we assume thatK 3 % �9O ML ' � .

): PRQTS6&4VU 	 K NXW  % )  ' /?Y �ZO [L W  )   (5)

where
Y

is the shadow price for wireless resources in the up-
link direction. If the net utility objective function in (5) is
negative for all values of the signal quality )  , then the net
utility is maximized, and equals zero, if

�  �]\ , i.e., the cor-
responding user does not use the wireless network.

The optimal )_^ for achieving the maximum in (5) satisfiesKa`N(W b% ) ^ ' � Y � O ML W  :
If
K NXW  % )  ' is an increasing and strictly concave function of )  ,

then an optimal )c^ exists and is unique. Moreover, under the
above assumptions on the utility, one can prove that there ex-
ists a shadow price

Y
such that the resulting allocations from

the above net utility maximization also maximize the aggre-
gate utility (social welfare) of the system [9]. Hence, the opti-
mal allocation of resources can be achieved in a decentralized
and distributed fashion by having the base station communi-
cate the price

Y
to all mobiles, which react by adjusting their

signal quality based on (5).
The shadow price

Y
should be an increasing function of the

network load. One such function, which we will consider in
our numerical investigations, is the followingY � d-egf.0/ih  
where

h � �  , 
is the total load. Note that the latter can be

estimated from measurements of the total interference >AjgkljgmXn
(which includes the noise), and the noise power

�
using [4]C  ,  � > jgkljgmXn / �>(jgkljgmXn : (6)

The above model has assumed traffic streams with fixed-rate
requirements, that can adapt their signal quality. Investigation
of models for the case of elastic (best-effort) traffic streams,
that value only their average data throughput, and can vary
both the signal quality and the transmission rate is contained
in [9].
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III. ECONOMIC MODELS FOR RESOURCE CONTROL

In this section we discuss two economic models that have
been proposed for resource control in wireless networks: non-
cooperative power control game with pricing [3], [8], and
utility-based power control [10]. Note that our objective and
focus is to compare these models with the one based on con-
gestion pricing presented in the previous section. The mech-
anisms built from the models can differ. For example, both
the models in [3], [8] and [10] are targeted at developing pro-
cedures for closed-loop power control. One the other hand,
our model based on congestion pricing is geared to selecting
the signal quality that maximizes a user’s benefit; this selec-
tion of signal quality is the role of open-loop power control.
The optimal signal quality selected through open-loop power
control is given to closed-loop power control, which adjusts a
mobile’s transmission power to achieve it.

A. Non-cooperative power control game with pricing
(NPGP)

The authors of [3], [8] propose a procedure for power con-
trol, using the notions of utilities and pricing. The utility func-
tion considered has the formo � qp�r % ) 's � 
where

o
is the number of information bits transmitted in pack-

ets of length
s

. The above utility can be interpreted as the
number of information bits transmitted per unit of energy,
and has the property that it initially increases with increas-
ing power, equivalently with increasing bit-energy-to-noise-
density ratio, but after some value decreases with increasing
power.

To increase the efficiency of power allocations, the authors
introduce prices that are proportional to the power. Accord-
ing to the scheme, called non-cooperative power control game
with pricing (NPGP), each mobile user # adjusts his trans-
mission power

�t
, or equivalently his target bit-energy-to-

interference-density ratio )  , to achieve the following opti-
mization (for simplicity we assume that

o � s
):PuQvS6 4 U 	

� wp�r % )  '�  /?Y L f&xbf ��  (7)

where
pyr % )  ' is the packet success rate. The price per unit

of power
Y L f(xbf is independent of the load in the wireless net-

work. In [3], [8], a function slightly different from the packet
success rate is used; this is done to avoid the degenerate case
where the first term in (7) becomes infinite, since

pzr % \ '�{ \ ,
i.e., the percentage of successful bits is greater than zero, even
when ) , hence the power

�
, are zero.

B. Utility-based power control (UBPC)

The authors of [10] also investigate the problem of dis-
tributed power control. They propose a procedure, called

utility-based power control (UBPC), for power control in the
downlink direction; here we consider its application to the
uplink. According to the approach, each mobile adjusts its
transmission power

�
, equivalently the target bit-energy-to-

interference-density ratio ) , to achieve the following maxi-
mization:

PuQvS6&4VU 	 K  % )  ' /?Y | � f9e �  : (8)

The authors prove, for fixed
Y | � f9e , that a distributed power

control algorithm based on the above model converges. The
price per unit of power

Y | � f9e can be taken to reflect the con-
gestion experienced by a user, in which case the following
formula is proposedY | � fAe � d | � f9e % >  �?� '  
where d | � f9e is a constant and >  is the interference experi-
enced by the signal from mobile # at the base station, due to
the signals from the other mobiles. From the above, note that
the price per unit of bandwidth can be different for different
mobile users.

In our investigations we consider the case of a large number
of mobiles, hence >  I > , for all # , where > is the sum of the
power of all signals received at the base station. If

h � �  , 
is the total load, then > ��� �E>&jgkljgmXn combined with (6) gives>  ��� I > jgkljgmXn � �.0/}h :

IV. NUMERICAL INVESTIGATIONS

The three schemes presented in the previous sections have
different objectives. Hence, rather than comparing them in
terms of aggregate measures such as the sum of utilities, we
will compare them in terms of the target

�=� $(�
	
, the utility,

and the power in the steady state, and how these depend on
the mobile’s distance from the base station and the total load
of the wireless network.

For the numerical comparisons, the price d~egf ( � . : �����
Kbps � � ) was selected so that in the equilibrium the load ish ��\ : � \ , when there are

� ����\ mobiles, all with the same
utility

K % ) ' � .=/�� � 	9� � 6 and rate

� � . \ Kbps; moreover,
the constant d | � f9e ( � . : \ �T��� . \ �l� Watt � � ) was selected so
that at distance � 	 ��\ :�� Km, the UBPC scheme gives the
same target ) as the congestion pricing (CP) scheme. Finally,
we set

Y L f&xbf � m(�&�M�X�V�� �t� � �-:������ Watt � � , for
h ��\ : � \ and� � . \ � �l� Watt. The price per unit of power in both the

NPGP and the UBPC schemes, for load
h �E\ : � \ , is the same;

note, however, that the price in the UBPC scheme depends on
the load, whereas in the NPGP scheme it is independent.

The propagation model we consider is the Okumara-Hata
model [4], which for an urban environment giveso % � ' � . ����: � � ���-:��y�[��� � 	 % � '  (9)

where

o % � ' is the path loss in dB and � the distance from the
base station in Km.
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Fig. 1. For CP, ¡ is independent of the distance, since charges are
independent of the distance. On the other hand, for UBPC, charges
depend on the transmitted power, and ¡ decreases with the distance.
For NPGP, ¡ decreases only slightly with the distance, and at some
point falls abruptly to zero. ( ¢ is factor that appears in the exponent
of the utility)

Fig. 1 shows that for the congestion pricing (CP) scheme,
the target bit-energy-to-noise-density ratio ) is independent
of the mobile’s distance from the base station, since the
charge does not depend on the distance. On the other hand,
for UBPC, charges depend on the transmitted power; as a re-
sult, ) decreases with the distance. Indeed, the dependence
of signal quality with the distance is termed near-far unfair-
ness in [10]. Finally, for the NPGP we find that the signal
quality decreases only slightly with the distance, and at some
distance falls abruptly to zero; at the distance where this sud-
den decrease occurs, sending even with a small power results
in a negative net utility, hence it is preferable not to send at
all.

Fig. 1 also shows that, for UBPC, with a less steep utility
(
.£/}� � 	A� ¤ 6 is less steep compared to

.0/}� � 	9� � 6 ), the depen-
dence of ) with the distance is steeper. For CP, a less steep
utility results in a larger value for ) .

Fig. 2 shows that the utility of a user in the CP approach
is independent of the distance, which is expected since ) is
also independent of the distance, Fig. 1. On the other hand,
for UBPC, the utility is a decreasing and concave function of
the distance. Finally, for NPGP the utility is a decreasing and
convex function of the distance.

Fig. 3 shows that under the CP approach, a mobile’s trans-
mission power increases fast with the distance; this occurs
because in order to achieve a constant ) , the power must in-
crease with the distance to balance the increased path loss.
With the UBPC approach, the power initially increases with
the distance. This is due to the initial convex dependence of )
on the distance, Fig. 1. For example, assume )¦¥ � � � . From
(1), with

% � � $(� 	9'  �§)  and assuming that there is a large
number of mobiles, we get (for simplicity, we have dropped
the subscripts) � I % > ��� ' �� ) � :
since � ¥E� � � � ¨ � , see (9), from the last equation we have that
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Fig. 2. For CP, the utility is independent of the distance, which is
expected since ¡ is also independent of the distance. On the other
hand, for UBPC, the utility is a concave function of the distance,
whereas for NPGP the utility is a convex function of the distance.
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Fig. 3. The power for UBPC initially increases, but then starts to
decrease; this is due to the combination of two effects: ¡ decreases
with the distance, as shown in Fig. 1, but also the path loss increases.� ¥©� � � ¨ � ; hence, for small distances, the power increases
with the distance.

After some distance, the dependence of ) on the distance
becomes approximately linear, Fig. 1, and as a result the
power decreases with the distance. For example, if )ª¥ .-/ d �(where d { \ ), then using the last equation we have that� ¥«� � � ¨ � / d � ¤9� ¨ � ; hence, after some distance, the power
decreases with the distance.

For NPGP, the power initially increases fast with the dis-
tance. The behavior of the power is similar in the CP scheme,
only that the rate of increase in the CP scheme is slightly
higher than in the NPGP scheme; this is because in the NPGP
scheme ) decreases slightly with the distance. At some dis-
tance, for NPGP, the signal quality ) falls to zero, hence so
does the power.

Up to now, we have assumed a fixed load. Next we inves-
tigate the behavior of the three algorithms when the network
load changes.

Fig. 4 shows that ) depends more on the load for UBPC
than for CP. Nevertheless, with UBPC the dependence of the
signal quality on the load is higher compared to the depen-
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Fig. 4. For NPGP, ¡ is independent of the load, whereas for UBPC
and CP it decreases with the load. Indeed, for UBPC the dependence
is greater, and ¡ hits zero before the utilization reaches 1.
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Fig. 5. For NPGP and CP, the power increases with the load. For
UBPC, it initially increases slightly, but then drops to zero; this is
due to the behavior of ¡ shown in Fig. 4.

dence with CP, and the signal quality decreases to zero before
the utilization reaches 1. Hence, the UBPC scheme can result
in a lower utilization compared to CP. On the other hand, )
for NPGP is independent of the load, since the price is inde-
pendent of the load.

Finally, Fig. 5 shows the dependence of the transmission
power on the load. For both the NPGP and CP schemes the
power increases with the load. Indeed, the power for the CP
scheme is higher compared to the NPGP scheme, since the
signal quality for the former is higher, Fig. 4. For UBPC, it
initially increases slightly, but then drops to zero; this is due
to the behavior of ) shown in Fig. 4.

V. CONCLUSIONS

We have investigated models for resource control in wire-
less networks based on economics, in the case of traffic which
has fixed-rate requirements but which can adapt it’s signal
quality. The model proposed in this paper is based on con-
gestion pricing, and differs from other models proposed in the
literature in that it considers the resource usage constraint in
the uplink direction, and it does not differentiate users based
on their distance from the base station.

Ongoing work considers the application of economic mod-
els for joint rate and signal quality control, congestion-
sensitive downlink power control schemes, integration of con-
gestion control mechanisms in wireless and wired networks,
and resource control and service differentiation for wireless
LANs based on 802.11.
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