

SIS - Entry Form User’s Manual

Version 2.3

Institute of Computer Science

Foundation for Research and Technology - Hellas

SIS-Entry Form User’s Manual

TABLE OF CONTENTS

1. INTRODUCTION 5

2. GETTING STARTED 7

3. TASK FORM 9

4. NODE AND OPERATION FORM 11

5. UPDATE FORMS 12

5.1 Create Node 13

5.2 Delete Node 14

5.3 Rename Node 15

5.4 Classify Node 15

5.5 Generalize Node 16

5.6 Update Node Attributes 17
5.6.1 Create Attribute 20
5.6.2 Delete Attribute 23
5.6.3 Rename Attribute 24
5.6.4 Classify Attribute 25
5.6.5 Generalize Attribute 26
5.6.6 Update Attribute Attributes 27
5.6.7 Update Attribute Value (to-obiect) 28

5.7 User Defined Operations 28

6. FURTHER FEATURES 28

6.1 Complex object update 28
6.1.1 Creation of dependent objects 29
6.1.2 Deletion of dependent objects 30

6.2 Attribute-like classes update 30

6.3 Primitive value editing 30

6.4 Free text editing 31

7. REFERENCES 33

8. INDEX 34

9. APPENDIX A -CHANGES FROM PREVIOUS VERSIONS 36

September 1999/v2.3 -3- ICS-FORTH

 SIS-Entry Form User’s Manual

September 1999/v2.3 -4- ICS-FORTH

SIS-Entry Form User’s Manual

1. Introduction
Entry Form (EF) is a tool used for the interactive update of the Semantic Index
System (SIS) [CD]. SIS is a semantic network information management system. It
employs an object-oriented data model based on the Telos knowledge representation
language [MBJK90]. A brief introduction of the features of the Τelos language as
implemented in the SIS information bases follows.

The objects in a SIS information base are distinguished into nodes (or individuals)
and attributes. The nodes represent entities that can exist independently. The
attributes represent binary relationships between objects and their existence depends
on the objects they connect. Attributes are directed links from the from-object to the
to-object. Both nodes and attributes can (under appropriate conditions) participate in
instantiation and specialization relations. There are objects that cannot have instances;
these are called Tokens. The objects that can have instances are called classes. The
Tokens can be classified to classes, the classes to meta-classes, the meta-classes to
meta-meta-classes etc.

Every object of the information base may have an external name. The name of a node
is mandatory and should be unique in the information base. This means that the user
cannot re-use a name given to a node of the information base. The name of an
attribute is optional and should be unique in the scope of the from-object. This means
that the user cannot re-use a name given to an attribute, which is already assigned to
the from-object. In the rest of this manual, an attribute will be indicated by its full
name, i.e. the name of the attribute and the name of the from-object in brackets (e.g.
wheel (Car) is the full name of the attribute wheel which is assigned to the node Car).

The update of the information base can be achieved with operations on objects. The
available operations are creation, deletion, renaming, classification (assignment to a
class), generalization (assignment to a superclass) and attribute assignment. EF
provides the user with the capability to perform the whole set of the prementioned
operations.

The user updates the information base through EF in a task-oriented way. This means
that the user can update the information base through tasks, which have been assigned
to him/her. A task is defined by the objects that are allowed to be updated and the
operations that can be performed on these objects. In this way, parts of the
information base can be isolated and updated independently from others, using
predefined operations.

EF is based on a three-activity process model [DT95], [Das96a], whose flow chart is
shown in Figure 1.

September 1999/v2.3 -5- ICS-FORTH

 SIS-Entry Form User’s Manual

Oper

(3)

return

re-execute selected
operation

Database update

NO

YES
Next
ation Call

Next operation specified in the
process model?

Input data

(2)

Node and Operation Selection

node and operation selection

(1)

return

Task Selection

task selection

exit
Exit

Start EF

Figure 1 Three-activity process model

The activities (task selection, node and operation selection, update of the information base)
are shown in the frames of the flowchart, with labels (1), (2) and (3).

September 1999/v2.3 -6- ICS-FORTH

SIS-Entry Form User’s Manual

The first activity is the task selection: the user selects the task through which (s)he
wants to update the information base.

• The second activity is the node and operation selection: the user selects nodes
1and operations available in the selected task.

• The third activity is the actual update of the information base: having selected the
update operation, the user inputs data, which update the selected node.
Depending on the specifications given in the process model for the selected
operation, a sequence of operations that follow the selected one may be created.
The operations are performed on the selected node, while the last operation of the
sequence causes the update of the information base with all the changes of the
operations.

EF provides the user with a set of forms through which each activity is performed.
There is the task selection for the first activity, the node and operation form for the
second activity and six update forms for the third activity: forms that implement
operations for creation, deletion, renaming, classification, generalization and
attribution for nodes and attributes. Each of these forms can be customized by the
process model, in order to meet the application's requirements.

Task assignment and operation specification is governed by the process model of the
EF [Das96a]. Additionally the tool has the ability to preserve a set of integrity
constraints not imposed by the semantics of the Telos language [DKT95]. This is
accomplished by the use of a constraint model, which has been developed.
Furthermore EF provides acceleration facilities and guiding mechanisms during the
interactive update.

By using the process and the constraint model, graphical interface elements of EF
such as buttons, labels, list elements can be easily customized. An emphatic large
font, in the rest of this manual indicates these elements. The fixed graphical interface
elements of the tool (i.e. these that cannot be customized through the process and the
constraint model) are indicated by a bold font.

We also have to note that clicking the left mouse button on them does the selection of
the graphical interface elements, unless explicitly stated otherwise. For example,
whenever we mention that the user has to "select” or "press" a button of EF, we mean
that the user has to click the left mouse button on it. However there are cases the user
has to click the right mouse button on a graphical interface element. In these cases,
we state it explicitly.

2. Getting started
The user can start the tool by typing:

 <ef_bin_name> <ModelName> [<UserPermissions>] [<ThesaurusName>] [<-Uuser
name>]

1 The attributes can be selected starting from the node to which they have been assigned.

September 1999/v2.3 -7- ICS-FORTH

 SIS-Entry Form User’s Manual

(e.g. $SIS/bin/ef CLIO or $SIS/bin/ef CLIO ExpertUser TMS -Usomeone)

The parameter <ModelName> is mandatory. It denotes the information base model
name under update. The parameter <UserPermissions> is optional. It is used in case
more than one user is specified in the process model [Das96a]. The parameter
<ThesaurusName> is optional. It denotes a specific thesaurus name under update.
The parameter <-Uuser name> is optional. It denotes that any data base change (e.g.
creation, renaming, (de)classifying, moving to Hierarchy, creating/deleting an
attribute of a HierarchyTerm) is marked with appropriate links pointing from target
HierarchyTerm to given user (as Editor). In case this parameter is passed as “-U?”,
the application uses as user name, the name of the user currently logged onto the
system.

EF can also be called as an external tool by GAIN ExternalTools [The95]. The latter
is the tool used for navigating through the information base. The user has to select the
appropriate choice on GAIN's Admin menu [DKP95]. In this case the parameters for
the EF start up are specified in the setup model of the SIS external tools [The95].

After setting the appropriate parameters, EF presents its first form, the one for task
selection.

September 1999/v2.3 -8- ICS-FORTH

SIS-Entry Form User’s Manual

3. Task form
EF allows to update the information base through predefined tasks. The user select is
done by clicking the left mouse button on the TaskList button, located at the top of the
task form (see figure 2).

Figure 2: Task selection
The tasks are offered as choices of a pulldown menu, which appears whenever the user
presses the TaskList button. In the example shown there are four tasks, namely
DescribeClass, DescribeObject, DescribeUnclassified, and DefineRootClass.

A pulldown menu appears with the available tasks. Depending on the
<UserPermissions> given as parameter on startup and the specifications given in the
process model, there may exist much different set of tasks for the same information
base. The user can select the task through which (s)he wants to update the information
base. The selected one appears as the Current Task below the TaskList button. (See
figure 3).

There are three cases with regard to the nodes that a task can update (called hereafter
object set of the task):

• the object set is the entire information base

• the object set is a predefined part of the information base, which cannot be
modified by the user

• the object set is a partially predefined part of the information base, whose
complete definition depends on a user-given parameter.

September 1999/v2.3 -9- ICS-FORTH

 SIS-Entry Form User’s Manual

DescribeObject is the
argument's type is Roo
button, the available ar
Artificial Object is sel
task with the selected
available argument app

All of these cases are speci

In the last case, after the ta
define the task's object set
task. The user has to type
press the RETURN key o
process model and it is ind
(see figure 3). Alternative
possible arguments and s
searching mechanism, activ
of the list.

September 1999/v2.3
Figure 3: Argument Selection
current task. It needs an argument to be fully defined. The
tClass, as indicated by the RootClass button. By pressing this
guments appear in a list. In the example shown, the argument
ected. By pressing the APPLY button the user provides the
 argument. The same can be done by double-clicking on an
ears in the list
fied in the process model.

sk selection, the user has to supply the parameter that will
. This parameter is an argument that the user gives to the
the argument in the text field provided for this reason and
n the keyboard. The argument's type is specified in the
icated by the name of the pushbutton next to the text field
ly, the user can press the pushbutton to get a list of the
elect one from this list (see figure 3). A pattern match
ated by pressing the FIND button can search the contents

-10- ICS-FORTH

SIS-Entry Form User’s Manual

4. Node and operation form
After the task selection, the node and operation form appears (see figure 4).

Figure 4: Node and operation selection
The task Describe Object has as argument the RootClass ArtificialObject. The node
spatha5691 is selected from the List of Objects and is displayed in the Selected
Object text field. The pattern search mechanism, activated by using the FIND button,
helps the user to find a node in the scrolling list. After the node selection the user can
select an operation. The available operations for the task DescribeObject are AddNew,
Rename, Delete, Classify, ClassifyinCluster, EditAttributes and EditComment, found in
the Available operations area.

The task appears as the name of the form's window, while the argument of the task (if
any) is displayed at the top of the form. The user can select the node that (s)he wants
to update from the object set of the task. The contents of this set are displayed in a
scrolling list, at the right part of the form. This list is appeared on demand, when the
button List of Objects is pressed. By pressing the button Selected Objects the scrolling
list displays the most recently selected nodes for updating. The user can select a node
from this list. The selected node is displayed in the text field with the label Selected
Object, below the scrolling list. When the object set is large (over 1000 elements), its
contents are displayed in fixed size pages. In this case the NEXT button is enabled
and is used to display the next page. There also exists a pattern match searching
mechanism, activated by using the FIND button. This mechanism is applied on the
whole list - not only on the currently displayed page.

On rare occasions the task may have an extremely large object set (over 100000
elements). In this case, it makes no sense to display the whole object set in the
scrolling list. The user has to type the node that (s)he wants to update in the Selected

September 1999/v2.3 -11- ICS-FORTH

 SIS-Entry Form User’s Manual

Object text field, and the system checks if the typed node exists in the object set. The
same actions should be followed in case the task is programmed to update every
object of the information base. Once again, it makes no sense to display the entire
information base in the scrolling list. The user has to type the node that (s)he wants to
update in the Selected Object text field, and the system checks if the typed node
exists in the information base.

The node selection is followed by the operation selection 2. The available operations
in each task are provided to the user as a set of pushbuttons. The user can press an
operation button in order to update the selected object, via the operation's update
form. After pressing an operation button, an update form appears.

5. Update forms
There exist seven types of update forms corresponding to the update operation types:
creation, deletion, renaming, instantiation, generalization attribute assignment and
user defined operations. Each operation of the selected task has a specific update
type, so it is implemented through the respective update form. The forms for node
updating can be called implicitly from the node and operation form. The update of
attributes can be done by means of the update attributes form (see section 5.6) of the
object to which these attributes are assigned.

Although each type of update form is different from the others, as far as the graphical
and the functional point of view are concerned, there are some common parts in all of
them:

The form's window has the name of the operation, which it implements. See for
example the forms for the operations AddNew and Delete of figure 4, in figures 5 and
6 respectively.

At the top of the form there is a label indicating the task to which the operation
belongs and the argument of the task, if it exists. For example, the operations Add
New in figure 5 and Delete in figure 6 belong to the DescribeObject task with
argument the RootClass ArtificialObject, while the operation Rename in figure 7
belongs to the DescribeClass task with argument the RootClass Action.

Each form also has an object called target; it is the object that is going to be updated.
The target is displayed below the task indication label. Its appearance is indicated by
a label which depends on the form's type (see for example in sections 5.1, 5.2, 5.3,
5.4, 5.5, 5.6).

At the bottom of each form there is a message area and above it a COMMIT and a
RETURN button. By pressing the RETURN button, the user can return to the
previous form (the one that caused the appearance of the current form). By pressing
the COMMIT button, the user demands the update of the information base.

In some cases, defined in the process model, a CONTINUE button appears in the
place of the COMMIT button. This indicates that another one should follow the
current form. By pressing the CONTINUE button, an update form that follows the

2 Whenever the user wants to create a new node in the information base, the node selection is omitted.

September 1999/v2.3 -12- ICS-FORTH

SIS-Entry Form User’s Manual

current one appears. In this way a chain of update forms is created. The last form of
the chain has a COMMIT button. By pressing this button the information base is
updated with all the changes of the chain's forms in one transaction.

If no error occurs during the update, a message is displayed in the message area of
each form, denoting successful termination. If an error occurs, EF informs the user
with a message in an error message dialog box. Simple warnings, whenever needed,
appear in a warning message dialog box.

Form customization Each update form is the implementation of an operation,
defined in the EF process model. The operation may have a constraint set, whose
semantics are given by the operation's update type [DT95], [Das96a]. This set is
defined in the EF process model and it is a basic factor for the operation's
functionality. In general, the constraint set is used to specialize the functionality of the
operation in order to meet the needs of the task. At the same time it imposes
constraints on the operation preventing undesirable updates.

The constraint set is not directly visible to the user. However, its existence affects the
user's interaction with the system, while it is used to customize the operation's
functionality hence the corresponding form's operability.

The absence of the constraint set denotes that the operation has no constraints. Such
operations allow the user to execute all the primitive updates available for the
operation's update type, provided that the Telos constraints [DTK95] are satisfied.

After these remarks, we present the forms, which are used by the system for the
information base update.

5.1 Create Node
Nodes can be created using the form for node creation (see figure 5)

Figure 5: Create Node
Add New implements an operation for node creation. The node Object5678 is
created, when the COMMIT button is pressed.

The user has to type the name of the node that (s)he wants to create; this should be
unique in the information base. A text field with the label Create Node is offered for
this reason. The typed node is the target of the operation. The target will become
member of the classes that exist in the constraint set of the operation. The COMMIT
button causes the insertion of the new node in the information base.

September 1999/v2.3 -13- ICS-FORTH

 SIS-Entry Form User’s Manual

If there is no constraint set defined in the process model, the user has to type the class
or just the instantiation level 3 of the node that is going to be created. A dialog box
with a text field is provided for this reason. After the specification of the node's class,
the new node is inserted in the information base.

5.2 Delete Node
Nodes can be deleted using the form for node deletion (see figure 6)

Figure 6: Delete Node
Delete Node implements an operation for node deletion. The node clock8287 is deleted
from the information base, when the COMMIT button is pressed.

The target node is indicated by the label Delete Node. By pressing the COMMIT
button the user demands the deletion of the target. If the constraint set is defined in
the process model, it is used to check whether the target can be deleted. If the deletion
is allowed by the constraint set and the telos constraints, then it actually takes place;
otherwise a message dialog box informs the user about the error which has occurred.

Deletion may lead to other indirect operations in order to preserve integrity
constraints that may hold in the information base:

• If the target has subclasses and superclasses, the generalization links are preserved
among these. This means that the target's subclasses become subclasses of the
target's superclasses.

• If the target has attributes pointing to primitive values, these are deleted too.

• If the target has necessary attributes (see [Das96a]), these are deleted too.

• If the target has attributes with generalization properties (see [Das96a]), these are
preserved after the deletion.

3 Token, S_Class, M1_Class, M2_Class, M3_Class, M4_Class

September 1999/v2.3 -14- ICS-FORTH

SIS-Entry Form User’s Manual

5.3 Rename Node
Nodes can be renamed using the form for node renaming (see figure 7)

Figure 7: Rename Node
Rename Node implements an operation for node renaming. The node Transformation
(Current Name) is renamed to Modification (New Name), when the COMMIT
button is pressed.

The target node is indicated by the label Current Name. The user has to type the new
name of the target in the text field with the label New Name. The new name should
be unique in the information base. By pressing the COMMIT button the user
demands the renaming of the target. If the constraint set is defined in the process
model, it is used to check whether the target can be renamed. If renaming is allowed
by the constraint set and the telos constraints, then it actually takes place; otherwise a
message dialog box informs the user about the error which has occurred.

5.4 Classify Node
Classification links from the target node to the classes that the operation allows can be
created or deleted using the form for node classification (see figure 8). The target
node is indicated by the label Target. The classes of the target are displayed in a list,
as shown in figure 8.

The links to the classes that are allowed to be deleted are displayed in <existing>
state. The user demands the deletion of a classification link by pressing the toggle
button <existing>, switching it to <to be deleted>. The states <existing> and <to be
deleted> are complementary and can be interchanged on demand.

Whenever a classification link is going to be added to the target node, it is displayed
in <to be added> state. The user can cancel the addition of a to be added
classification link, by pressing the toggle button <to be added>, switching it to
<cancel addition>. The states <to be added> and <cancel addition> are
complementary and can be interchanged on demand.

• If there exists a constraint set (set of classes), then only the links to the classes of
the target found in this set, can be deleted. The links to the classes of the target not
found in this set are displayed in readonly state and they cannot be deleted. The
target is allowed to be classified in the classes found in the constraint set of the
operation. The user can press a pushbutton, named in the example of figure 8,

September 1999/v2.3 -15- ICS-FORTH

 SIS-Entry Form User’s Manual

located above the COMMIT button. In this way (s)he gets the contents of the
constraint set and (s)he can select the desired from this list (see figure8). A
pattern match searching mechanism can search the contents of the list.
Alternatively the user can type the node, which is going to be the class of the
target, in the text field found next to the pushbutton. Once again the typed class
should exist in the constraint set.

Classify implements an ope
spatha5691 is classified in
(read-only state). There is al
going to delete the classificat
is also going to add a classif
list of the nodes that can be
The actual update of the info

• If there is no constraint set
deleted. Also, there is no r
Every class can be assign
allows this update (see [D
possible classes; no button
to type the desired class in

All changes (links in state <
information base when the use

5.5 Generalize Node
Generalization links from the t
can be created or deleted usin
same mechanisms with node cl

September 1999/v2.3
Figure 8: Classify Node
ration for node classification. The target of the operation
the class MuseumObject from which it cannot be deleted
so a link to the class spatha (<existing> State). The user is
ion link to the class oriental knife (to be deleted state). (S)he
ication link to the class combat knife (to be added state). A
classes of the target appears by pressing the <class> button.
rmation base is done when pressing the COMMIT button.
 defined, all the links to the classes of the target can be
estriction to the classes that may be added to the target.
ed, provided that the semantics of the telos language
KT95]). In this case the system cannot propose a list of
 is offered for this reason. The user only has the ability
the text field.

to be added>, <to be deleted>) are saved in the
r presses the COMMIT button.

arget node to the superclasses that the operation allows
g the form for node generalization (see figure 9). The
assification form are offered (see section 5.4).

-16- ICS-FORTH

SIS-Entry Form User’s Manual

5.6 Update Node Attributes
Attributes assigned to the target node can be updated using the update attributes form.
This form can be alternatively opened by double-clicking on the desired node which
appears in the list of the node and operation form, in case an operation of type
attribute assignment is define for the current task. Attributes connect the target with
nodes or primitive values (integer, real, string, time expression). The node or the
primitive value that the attribute points to be called value of the attribute, although in
case of node the term to-object is used too. Attributes appear, as links, which can be
added or deleted just, like the classification and generalization links. The difference is
that the attributes can have names, they can be classified and generalized in attribute
classes and attribute superclasses respectively, they can have attributes of their own,
and finally their value (to-object) can be changed. Thus, although the functionality of
this form is very much like the functionality of the forms for classification and
generalization of a node, there are also some additional features.

Figure 9: Generalize Node
Relocate implements an operation for node generalization. The target of the operation
(stiletto) is generalized in the classcombat knife (<existing> State). The user is going to
add superclass cutting instrument (to be added state). A list of the nodes that can be
superclasses of the target appears by pressing the smallsuperclass button. Pressing the
COMMIT button does the actual update of the information base.

The target of the form is indicated by the label Target (see figure 10)

September 1999/v2.3 -17- ICS-FORTH

 SIS-Entry Form User’s Manual

The form displays the attributes of the target, which belong to the updatable attribute
classes 4. Each updatable attribute class appears as the header of a list (for example
the attribute class method (MeasureType) in figure 10). The list contains the attributes
that belong to this attribute class. The user can see the attributes and their values,

separated by a colon (e.g. for the attribute class method (MeasureType), there are the
attributes time_method, volume_method, area_methodwith values TimeMethod,
VolumeMethod, AreaMethod respectively). The object to which the attribute class is
assigned appears in brackets, next to the attribute class name (for example the
attribute class method is assigned to the object MeasureType). Buttons for the creation
of the attributes is displayed at the right part of the header (the buttons NEW, OLD
for the attribute class method (MeasureType) - see also section 5.6.1). The user can
create attributes 5 for the updatable attribute classes. (S)he can also perform all the

Figure 10: Update Node Attributes
EditAttributes implements an operation for attribute update. The attributes of the target node
(Acquisition) are updated. The attribute area_method pointing to AreaMethodis going to be deleted,
while the attribute measure pointing to SingleMeasureis going to be added. Also the user can
perform other operations on attributes, such as these that are indicated by the attribute’s operation
menu: Edit attribute classes, Edit attribute superclasses, Edit attribute attributes, Edit
attribute name and Edit attribute to value

4 attribute classes whose instances are allowed to be updated
5 In the current version, attribute creation cannot be performed for the telos system class Telos_Object

September 1999/v2.3 -18- ICS-FORTH

SIS-Entry Form User’s Manual

available operations on the attributes appearing in the form; (s)he can delete, rename,
classify, generalize them, assign attributes to them or change their values (to-objects)

Form states The form has two states, which tune the displayed information: the
attribute name visibility state and the attribute class selection state. The user sets
these with buttons found next to the COMMIT button.

• Attribute name visibility state: A toggle button, which is found next to the
COMMIT button, allows hiding or showing the labels (names) of the attributes (it
is the VISIBLE LABEL button in the example shown). It can have two values:

• VISIBLE LABEL denotes visible names of attributes (as shown in figure
10). The user can see the attributes and their values, separated by a colon. It
is useful whenever the names of the attributes are important (e.g. at schema
level). This state allows all the available operations on attributes.

• HIDDEN LABEL denotes hidden names of attributes. The user can only see
the attribute values; not the attribute names. This is useful whenever the
names of the attributes are of no importance (usually at data level). This state
does not allow operations on attributes other than creation and deletion.

The default value is HIDDEN LABEL whenever the target is at data level, and
VISIBLE LABEL whenever the target is at schema level.

• Attribute class selection state: This state is selectable whenever the updateable
attribute classes are not (or cannot be) defined in the constraint set of the operation.
A cascade button (INHERITED INCLUDED in figure 10), which is located next
to the attribute name visibility state button, allows three possible values:

• INHERITED NOT INCLUDED denotes that the updatable attribute
classes are the ones that come from the direct classes of the target.

• INHERITED INCLUDED denotes that the updatable attribute classes are
the ones that come from the direct and the indirect classes of the target.

• SYSTEM INCLUDED denotes that the updatable attribute classes are the
ones that come from the direct, the indirect and the system classes of the
target. The default value is INHERITED INCLUDED whenever there are
updateable attribute classes coming from the direct and the indirect classes
of the target; otherwise the default value is SYSTEM INCLUDED. We
have to note that in order to retrieve the updateable attribute classes, EF
reads the information base. This means that the changes that are not saved
in the information base (attributes in state <to be added>, <to be deleted>)
will be discarded for every state transition.

Attribute operation menu There exists a menu, through which the user can select
operations for the attributes, other than creation and deletion. It is a pop-up menu and
it is visible and selectable only when the attribute name visibility state of the form is
VISIBLE LABEL. It is the menu displayed in figure 10 below the target's list of
attributes. The menu has five choices, namely Edit attribute classes, Edit attribute
superclasses, Edit attribute attributes, Edit attribute name, Edit attribute to
value. There exists a current choice in the menu (the last one selected by the user -
default namely Edit attribute classes) It denotes the operation that is going to be

September 1999/v2.3 -19- ICS-FORTH

 SIS-Entry Form User’s Manual

performed whenever an attribute is selected by the user. The attribute selection is
achieved by clicking the right mouse button on it. The attribute state should be
<existing>. Then a form corresponding to the current attribute operation appears, as
shown in sections 5.6.3, 5.6.4, 5.6.5 and 5.6.6.

5.6.1 Create Attribute
Using the update attributes form, attributes can be assigned to the target. First the
class of the attribute has to be chosen. Then, the user has to press the button(s)
located at the right of the attribute class header, in order to define the attribute that is
going to be created.

The attribute is defined by its value (the node or the primitive value to which it
points) and, optionally, its name define the attribute. If the attribute name visibility
state is VISIBLE LABEL, then the user can type the name of the attribute in a text
field provided for this reason. As far as it concerns the attribute's value, EF provides
choices, depending on the attribute class itself, the attribute class to-object and the
settings done in the constraint model (see [Das96a]).

There are nine different buttons, which help the user to specify the value of the
attribute that is going to be created. Three buttons deal with nodes (NEW, OLD,
NEW/EXISTING), five buttons deal with primitive values (INTEGER, STRING,
REAL, TIME, CURRENT), and while a button named EDIT COMMENT deals
with free text.

• The NEW button denotes that the attribute is going to be created as well as the
node this attribute points to (the attribute's to-object). This means that not only an
attribute but also a node is going to be created in the information base. First, the
class of the node is selected from the -possibly existing- subclasses of the attribute
class to-object. By pressing the NEW button, the subclasses of the attribute class
to-object (except them which are defined in the information base as System
Controlled classes (see [DT95])) are displayed in an alphabetically sorted scrolling
list, and the user can select a subclass from this list. The selected subclass is going
to be the class of the attribute's to-object (see figure 11). By clicking the right
mouse button on NEW, the subclass selection is omitted; the attribute class to-
object is going to be the class of the attribute's to-object, no matter if there are
subclasses for the attribute class to-object. The attribute class to-object is the
default class for the attribute's to-object. In some cases, the default class for the
attribute's to-object can be set to a class other than the attribute class to-object. In
this case the default class has been preselected in the EF constraint model. Once
again, by clicking the right mouse button on NEW, the preselected class appears
by default. If more than one default classes are defined in the constraint model,
then a scrolling list with these classes appears and the user can select one of them.
If there are no subclasses for the attribute class to-object, then the left and the right
mouse button on NEW has the same effect, as long as the attribute's to-object class
selection is ommited. After the class selection (which may be ommited as already
explained) the user has to specify the attribute's to-object (see figure 11). This node
is going to be created in the information base, so its name should be unique. The
NEW button appears alone or together with the OLD button.

September 1999/v2.3 -20- ICS-FORTH

SIS-Entry Form User’s Manual

Figure 10: Create Attributes
EditAttributes is an instance of update attributes form. By using this form, the user can create attributes
as well as the nodes these attributes point to. See the creation of an attribute for the attribute class width
(PhysicalObject). The user presses the NEW button in the width (PhysicalObject) header. The
subclasses of the attribute class to-object appear in a list (see the Selection List card). The user selects
the subclass MetricDistance, which will become the class of the attribute to-object. After pressing the
APPLY button, an Input Card appears. The user types the new node (pala5756'widthin the example
shown) and presses the APPLY button. The unnamed attribute pointing from pala5756 to
pala5756’width under attribute class width (PhysicalObject) is going to be created as well as the node
this attribute points to.
The user can also create attributes pointing to already available nodes. See the creation of an attribute
for the memberIn (MuseumObject) attribute class. The user clicks the right mouse button on the OLD
button in the memberIn (MuseumObject) header. The attribute class to-object is the MuseumCollection.
There is no need to select the subclasses of the attribute class to-object in this case. The user selects the
Gun collection from the list of MuseumCollection's instances and presses the APPLY button. The
unnamed attribute pointing from pala5756 to Gun collection under attribute class memberIn
(MuseumObject) is going to be created.

• The OLD button denotes that the attribute, which is going to be created, will point

to an already existing node. After the class selection (which is done as in the
NEW case, but with the middle mouse button here, or with double click for 2-

September 1999/v2.3 -21- ICS-FORTH

 SIS-Entry Form User’s Manual

button mouses), the node that the attribute will point to is selected from the set of
nodes, which belong to the selected class. The selection is done, once again, from
an alphabetically sorted scrolling list (see figure 11) which is opened when the
user clicks the right mouse button on the OLD button. In case of a a DAG
(Directed Acyclic Graph, see [DT95]) attribute class, the system proposes only the
object set of current task for the selection of the node that the attribute will point
to. The user can insert (by typing or copy-pasting) the node that the attribute will
point to directly, in the text dialog which is opened by clicking the left mouse
button on the OLD button. The OLD button appears alone or together with the
NEW button. The system allows the new attribute to be added, after checking the
case of a DAG (Directed Acyclic Graph, see [DT95]) attribute class which means
that no cycles of this kind of attributes are allowed.

• The NEW/EXISTING button denotes that the attribute which is going to be
created, will point to a node (existing one or not) of any type, so the system cannot
produce a list of available nodes. The user has to type a node as the value of the
attribute. If the typed node does not exist in the information base, then it is going to
be created together with the corresponding attribute. In this case the user also has
to type the class this node will be member of.

• The INTEGER button denotes that the value of the attribute must be an integer.
This has to be supplied by the user.

• The STRING button denotes that the value of the attribute must be a string. This
has to be supplied by the user.

• The REAL button denotes that the value of the attribute must be a real. This has to
be supplied by the user.

• The TIME and the CURRENT buttons denote that the value of the attribute must
be a time expression. By pressing the TIME button, the user has to be supplying
the time expression. By pressing the CURRENT button the system provides the
current time. The buttons appear together.

• The EDIT COMMENT button denotes that the attribute should point to free text.
By pressing this button, a text editor appears and the user can write a text. After
saving the text, an attribute with value this text is displayed in to be added state.

Whenever an attribute is going to be assigned to the target, it is displayed in to be
added state. The user can cancel the addition of a to be added attribute by pressing the
toggle button <to be added>, switching it to <cancel addition>, just like in the
classification and generalization forms.

There may exist some attribute classes, for which it is necessary to have at least one
attribute. These are called necessary attribute classes. The system informs the user,
whenever the latter neglects to set a necessary attribute while updating an object. The
necessary attribute classes are displayed at the top of the list of the updatable attribute
classes, below the attribute-like classes (see section 6.2). The necessary attribute
classes may also be distinguished from the others by the “!!” image which appears in
the button(s) which help the user to specify the attribute that is going to be created.

Furthermore, there may exist some attribute classes, for which it is not allowed to
create directed cycles. These are called Directed Acyclic Graph (DAG) (see [DT95])

September 1999/v2.3 -22- ICS-FORTH

SIS-Entry Form User’s Manual

attribute classes. Whenever the addition of an attribute of this kind creates a directed
cycle, the user is informed with a warning message and the addition is aborted.

5.6.2 Delete Attribute
Using the update attributes form the user can delete attributes from the target. The
attributes that can be deleted are displayed in <existing> state. The user demands the
deletion of an attribute by pressing the toggle button <existing>, switching it to <to
be deleted> (see figure 10).

In some cases, the deletion of an attribute may cause the deletion of the value of the
attribute. In case of primitive attribute values (integer, string, real, time expression)
the deletion of the value is done automatically. The deletion of the node which is the
value of a <to be deleted> attribute is allowed only in the following two conditions:

1. the attribute class of the attribute belongs to the attribute metaclass
non_shared(Individual) (defined in the constraint model). This means that the
attribute's value must not be shared with another attribute, and

2. the attribute's value is a node with no attributes, instances, or subclasses of its own
and it is not the value of any other attribute in the information base.

There may exist attributes that are not allowed to be deleted; these are displayed in
read-only state and they are attributes, which have been assigned to superclasses of
the target. They can only be deleted through the forms having those classes as
targets.

Furthermore, there may exist some attribute classes, for which their deletion causes
the automatic deletion of their to-values by the system. These are called Garbage
Collected (see [DT95]) attribute classes.

Finally, the system demands the existence of at least one attribute for the necessary
attribute classes (see [DT95]). This means that if the user tries to delete all the
attributes of a necessary attribute class, EF will prevent the update. In this case, a
message dialog box appears, displaying a proper message to the user.

September 1999/v2.3 -23- ICS-FORTH

 SIS-Entry Form User’s Manual

5.6.3 Rename Attribute
Using the update attributes form, the user can rename attributes: after setting the
attribute's operation menu in the Edit attribute name state, the user has to click the
right mouse button on the attribute that (s)he wants to rename. Then the form for
attribute renaming appears (see figure 12)

The attribute modifica
target of the form for at
is renamed to modified

The user has to type the new
unique in the scope of the fro
given to an attribute, which
form.

September 1999/v2.3
Figure 11: Rename Attribute
tion (pointing from ArtificialObjectto Modification) is the
tribute renaming. It is indicated by the CurrentName label. It
(NewName), upon pressing the COMMIT button.
 logical name for the selected attribute. This should be
m-object. This means that the user cannot re-use a name

is already, assigned to the target of the update attributes

-24- ICS-FORTH

SIS-Entry Form User’s Manual

NOTE: In the current version the user cannot rename an unnamed attribute, i.e. set a
name for it.

Figure 1 Three-activity process model

5.6.4 Classify Attribute
Using the update attributes form, the user can create or delete classification links from
attributes: after setting the attribute's operation menu in the Edit attribute classes
state, the user has to click the right mouse button on the attribute (s)he wants to
classify. Then the form for attribute classification appears (see figure 13)

The target of the operatio
SingleMeasure) is already
state). A classification lin
added. The list of the attrib
presses the category butto
pressing the COMMIT bu

The functionality of this fo
(section 5.4). Classification

September 1999/v2.3
Figure 13 Classify Attribute
n for attribute classification (measure from Acquisition to

classified in the attribute class plus(MeasureType) (<existing>
k to the attribute class minus (MeasureType) is going to be
utes that can be classes of the target appears whenever the user
n. The actual update of the information base is done upon

tton.
rm is the same as the one of the node classification form
 links can be created or deleted from the target. Since the

-25- ICS-FORTH

 SIS-Entry Form User’s Manual

attribute class is difficult to be typed (the user would have to type the attribute class
name and the attribute class from-object), there is no text field offered for typing; the
user can only select an attribute class from the available list 6, just as (s)he selects
classes from the available list in case of node classification.

5.6.5 Generalize Attribute
Using the update attributes form, the user can create or delete generalization links
from attributes: after setting the attribute's operation menu in the Edit attribute
superclasses state, the user has to click the right mouse button on the attribute (s)he
wants to generalize. Then the form for attribute generalization appears (see figure 14)

Figure 14: Generalize Attribute
The target of the operation for attribute generalization (destruction from Existence to
EventType) already has attribute superclass history (Occurence) (<existing> state). The
list of the attributes that can be superclasses of the target appears when the user presses
the superclass button.

The same mechanisms with attribute classification form are offered (section 5.6.4)

6 In the current version, no attribute class whose TO is a telos system class, is offered
for selection.

September 1999/v2.3 -26- ICS-FORTH

SIS-Entry Form User’s Manual

5.6.6 Update Attribute Attributes
Using the update attributes form, the user can update attribute attributes: after setting
the attribute's operation menu in the Edit attribute superclasses state, the user has to
click the right mouse button on the attribute whose attributes (s)he wants to update.
Then the form for updating the attribute attributes appears (see figure 15)

Figure 15: Update Attribute Attributes
The attributes of the target attribute (creation from Existence to EventType) are updated. The
attribute created_by pointing to Personis going to be added. Also the user can perform other
operations on the attributes of the target. These operations are indicated in the attribute's
operation menu, just like in updating the attributes of a node.

The user can update the attributes of the target attribute, just as (s)he can do in case of
updating the attributes of a node (section 5.6) In the form for updating the attributes
of an attribute, the updatable attribute classes are not defined in the process model;
these are selected by the user, using the attribute class selection menu.

September 1999/v2.3 -27- ICS-FORTH

 SIS-Entry Form User’s Manual

5.6.7 Update Attribute Value (to-obiect)
Using the update attributes form, the user can update an attribute’s value (to-object):
after setting the attribute's operation menu in the Edit attribute to value state, the
user has to click the right mouse button on the attribute (s)he wants to update. Then
the form for attribute’s to-value renaming appears.

The same mechanisms with attribute renaming form are offered (section 5.6.3)

5.7 User Defined Operations
The user can construct special update forms for special operations related to his (her)
application (see [DT95]).

6. Further features
EF further provides the following mechanisms, which facilitate the update of the
information base: complex object update (section 6.1), attribute-like classes update
(section 6.2), and primitive value editing (section 6.3) and free text editing (section
6.4).

6.1 Complex object update
Some objects linked with attributes, may be considered as a complex object. The
objects that are parts of a complex object are called dependent objects. The attributes
through which these objects are connected, are called dependent attributes. The
objects that have such a property are specified in the constraint model, as explained in
[Das96a]. The user can distinguish the dependent attributes from the others by the
“4” image which help the user to specify the attribute that is going to be created.
Additionally, these attributes are displayed at the top of the attribute list, below the
attribute-like classes (see section 6.2) and the necessary attributes (see section 5.6.1).
EF provides mechanisms, in order to update the dependent objects easily. There can
also be an attribute, which is dependent and necessary. The user can distinguish the
dependent - necessary attribute from the others by the “!4” image which help the
user to specify the attribute that is going to be created.

September 1999/v2.3 -28- ICS-FORTH

SIS-Entry Form User’s Manual

6.1.1 Creation of dependent objects
Dependent objects can be updated through the dependent object update attributes
form (see figure 16)

The object spatha5691
update attributes form
on it. Then a chain of
the dependent object.
information base is upd

September 1999/v2.3
Figure 16: Create dependent object
'inscription depends on the object spatha5691. The dependent object
appears for the former, when the user clicks the right mouse button
update attributes forms appears. The user can edit the attributes of
By pressing the COMMIT button in the last form of the chain, the
ated with the changes of the chain's forms in one transaction.
-29- ICS-FORTH

 SIS-Entry Form User’s Manual

This form can be called from every update attributes form. The user has to click the
left mouse button on the value of an attribute 7. The attribute state should be
<existing> or <to be added>.

When a new dependent object is going to be created in the information base, then the
dependent object update attributes form is displayed automatically. In this case, the
name of the dependent object is proposed by the system.

 Creating dependent objects, a chain of update attributes forms appears. By pressing
the COMMIT button in the last form of the chain, the information base is updated
with the changes of the chain's forms in one transaction.

6.1.2 Deletion of dependent objects
The user can delete the dependent object from the dependent object update attributes
form. The deletion is allowed, provided that there are no attributes assigned to the
dependent object, and that there are no more than one attribute pointing to it (there
should exist at least the attribute that connects the dependent object with the object on
which it depends). By pressing the DELETE button located at the right top of the
form, deletion of the dependent object takes place (see figure 17).

After the deletion of the object, the dependent object update attributes form closes.

6.2 Attribute-like classes update
Quite often the user classifies a node in order to assign properties to it; then
classification in a sense plays the role of attribution. The classes that are used for
property assignment can be displayed in the update attributes form. These classes are
called attribute-like classes and they can be preselected in the EF's constraint model
(see [Das96a]). In this case, classification links can be grouped in categories and can
be displayed like attributes in separate lists, just like the attribute class lists shown in
section 5.6. The user has the ability to select available attribute-like classes, which
can be added to the target just like the attributes, by pressing the OLD button.
Attribute-like classes are displayed at the top of the list of the updateable attribute
classes.

6.3 Primitive value editing
EF provides for editing the primitive values of the attributes. When the value of an
attribute is primitive (integer, string, real, time expression, indicated by the buttons
INTEGER, STRING, REAL, TIME respectively), the user can edit it by clicking
the left mouse button on it. Then, if the attribute state is <existing> or <change
value>, a text field appears. It contains the current primitive value. The user can edit
this value and apply the change back to the form by pressing the APPLY button. The
attribute is then displayed in state <change value > (see figure 18).

The user can cancel the change of the value, by pressing the toggle button <change
value>, switching it to <cancel value change>.

7 We remind that by clicking the right mouse button on an attribute, the user can
update it with the operation being current in the attribute's operation menu.

September 1999/v2.3 -30- ICS-FORTH

SIS-Entry Form User’s Manual

The dependent object
update attributes form

6.4 Free text editin
EF provides for editing t
by the EDIT COMMEN
attribute. Then, if the at
appears and the user can
text, the attribute is displ
by pressing the toggle bu

September 1999/v2.3
Figure 17: Delete dependent object
 spatha5691'inscription can be deleted from the dependent object
 by pressing the DELETE button.
g
he free text assigned to a comment type attribute (indicated
T button). The user can click the left mouse button on the

tribute state is <existing> or <to be added>, a text editor
 edit the current text value of the attribute. After saving the
ayed in <to be added> state. The user can cancel the editing,
tton <to be added>, switching it to <cancel addition>.

-31- ICS-FORTH

 SIS-Entry Form User’s Manual

Figure 18: Primitive value editing
The user can edit the primitive value, using the editor offered for this reason. It appears when
the user clicks the left mouse button on an attribute pointing to a primitive value (the time
expression <1970 June 5> in the example shown). After editing, the user can press the APPLY
button, and the attribute's state is changed to <change value> (as shown in the figure). The
primitive value is changed by pressing the COMMIT button.

September 1999/v2.3 -32- ICS-FORTH

SIS-Entry Form User’s Manual

7. References
[DKP95] Dimitris Daskalakis, Polykarpos Karamaoynas, and Nikos Prekas. "SIS

Graphical Analysis Interface User's Manual". Information Systems
and Software Technology Group, Institute of Computer Science
Foundation of Research and Technology Heraklion, Crete, Hellas,
November 1995, version 1.3.

[DKT95] Martin Dörr, Polivios Klimathianakis, and Manos Theodorakis. "SIS
Data Entry Language User's Manual". Information Systems and
Software Technology Group, Institute of Computer Science
Foundation of Research and Technology Heraklion, Crete, Hellas,
November 1995, version 1.3.

[DT95] Dimitris Daskalakis and Yannis Tzitzikas. "Customizing Data Entry
Forms". Information Systems and Software Technology Group,
Institute of Computer Science Foundation of Research and Technology
Heraklion, Crete, Hellas, November 1995, version 1.3.

[MBJK90] John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis
Koubarakis. "Telos: Representing Knowledge about Information
Systems". ACM Transactions on Information Systems, 8(4), October
1990.

[The95] Maria Theodoridou. "Binding SIS with External Tools". Information
Systems and Software Technology Group, Institute of Computer
Science Foundation of Research and Technology Heraklion, Crete,
Hellas, November 1995, version 1.3.

September 1999/v2.3 -33- ICS-FORTH

 SIS-Entry Form User’s Manual

8. INDEX
from-object.. 5, 26

A
G

Admin menu ... 8
APPLY button.. 30 GAIN .. 8

Garbage Collected .. 23 attribute assignment5, 12, 17
Attribute class selection state.............................. 19 generalization.......................5, 7, 12, 14, 17, 22, 26
Attribute name visibility state 19 Generalize Attribute.. 26
Attribute operation menu................................. 19 Generalize Node ... 17
attributes 5, 7, 12, 14, 17, 18, 19, 20, 23, 24, 25, 26,

27, 28, 29, 30
graphical interface .. 7

H
C

HIDDEN LABEL .. 19
cancel value change .. 30

I change value ... 30
class 5, 14, 16, 18, 19, 20, 21, 22, 23, 26, 27, 30

individuals .. 5
classes ..5, 13, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26,

27, 28, 30
information base 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 19,

20, 22, 23, 28, 30
classification5, 7, 15, 17, 22, 25, 26, 30

INHERITED INCLUDED 19
Classify Attribute.. 25

INHERITED NOT INCLUDED 19
Classify Node ... 15

instances...5, 18, 23
COMMIT button12, 13, 14, 15, 16, 19, 30

instantiation ...5, 12, 14
constraint model.............................7, 20, 23, 28, 30

INTEGER ...20, 22, 30
constraint set13, 14, 15, 16, 19
CONTINUE button.. 12 L
Create Attribute .. 20

List of Objects ... 11 Create Node .. 13
creation5, 7, 12, 13, 18, 19

M CURRENT..20, 22

M1_Class .. 14 D
M2_Class .. 14

DAG ...22, 23 M3_Class .. 14
M4_Class .. 14 Delete Attribute .. 23
meta-classes .. 5 Delete Node .. 14
ModelName... 7, 8 deletion5, 7, 12, 14, 15, 19, 23, 30

dependent...28, 29, 30
N dependent - necessary ... 28

dependent object ... 30
necessary ...14, 22, 23, 28

Directed Acyclic Graph22, 23
NEW..18, 20, 21, 22
NEW/EXISTING .. 20 E
NEXT button .. 11

Edit attribute attributes18, 19 nodes5, 7, 9, 11, 17, 20, 22
Edit attribute classes... 20

O Edit attribute name................................18, 19, 24
Edit attribute superclasses18, 19, 26, 27

object set ..9, 10, 11
Edit attribute to value............................18, 19, 28

object-oriented .. 5
EDIT COMMENT20, 22, 31

OLD ..18, 20, 21, 30
EF 5, 7, 8, 9, 13, 19, 20, 23, 28, 30, 31

operation selection6, 7, 12
Entry Form.. 1, 5

P F
process model5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 27

FIND button...10, 11
Form customization .. 13

September 1999/v2.3 -34- ICS-FORTH

SIS-Entry Form User’s Manual

R
REAL ..20, 22, 30
Rename Attribute.. 24
Rename Node.. 15
renaming5, 7, 12, 15, 24, 28
RETURN button .. 12
RootClass.. 12

S
S_Class ... 14
scope ... 5, 24
Selected Object...11, 12
Semantic Index System... 5
SIS ...1, 5, 8, 16
specialization .. 5
STRING ..20, 22, 30
superclass.. 5
System Controlled ... 20
SYSTEM INCLUDED 19

T
target..12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24,

25, 27, 30
Task form.. 9
task selection......................................6, 7, 8, 10, 11
TaskList .. 9
task-oriented ... 5
tasks .. 5, 9
Telos ..5, 7, 18
TIME...20, 22, 30
Token.. 14
Tokens ... 5
to-object ...5, 17, 20, 28

U
Update Attribute Attributes................................. 27
Update Attribute Value....................................... 28
Update Node Attributes 17
user defined operations 12
UserPermissions ... 7, 8, 9

V
VISIBLE LABEL...19, 20

September 1999/v2.3 -35- ICS-FORTH

 SIS-Entry Form User’s Manual

9. Appendix A -Changes from previous versions
Changes from version 1.3 to version 2.2

• User defined operations specification (see [DT95])

• System Controlled classes (see [DT95])

• Forwards/Backwards Sorted attribute classes (see [DT95])

• Prefix mechanism (see [DT95])

• Directed Acyclic Graph (DAG) attribute classes (see [DT95])

September 1999/v2.3 -36- ICS-FORTH

	Introduction
	Getting started
	Task form
	Node and operation form
	Update forms
	Create Node
	Delete Node
	Rename Node
	Classify Node
	Generalize Node
	Update Node Attributes
	Create Attribute
	Delete Attribute
	Rename Attribute
	Classify Attribute
	Generalize Attribute
	Update Attribute Attributes
	Update Attribute Value (to-obiect)

	User Defined Operations

	Further features
	Complex object update
	Creation of dependent objects
	Deletion of dependent objects

	Attribute-like classes update
	Primitive value editing
	Free text editing

	References
	INDEX
	Appendix A -Changes from previous versions

