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Efficient 3D Camera Matchmoving Using
Markerless, Segmentation-Free Plane Trackingt

Manolis I.A. Lourakis and Antonis A. Argyros

We address the problem of tracking the position and orientation of a camera in
3D space, using the images it acquires while moving freely in unmodeled, arbitrary
environments. This task has a broad spectrum of useful applications in domains
such as augmented reality and video post production. Most of the existing meth-
ods for camera tracking are designed to operate in a batch, off-line mode, assuming
that the whole video sequence to be tracked is available before tracking commences.
Typically, such methods operate non-causally, processing video frames backwards
and forwards in time as they see fit. Furthermore, they resort to optimization in
very high dimensional spaces, a process that is computationally intensive. For these
reasons, batch methods are inapplicable to tracking in on-line, time-critical applica-
tions such as video see-through augmented reality. This paper puts forward a novel
feature-based approach for camera tracking. The proposed approach operates con-
tinuously as images are acquired, has realistic computational requirements and does
not require modifications of the environment. At its core lies a novel, feature-based
3D plane tracking technique, which permits the estimation of the homographies in-
duced by a virtual 3D plane between successive image pairs. Knowledge of these
homographies allows the corresponding projection matrices encoding camera mo-
tion to be expressed in a common projective frame and, therefore, to be recovered
directly. Projective camera matrices are then upgraded to Euclidean and used for
recoverying 3D structure, which is in turn employed for refining the projection ma-
trices through local bundle adjustment. Sample experimental results demonstrating
the feasibility of the approach on several image sequences are also provided.

1 This work was partially supported by the EU IST-2001-34545 project LifePlus.
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We address the problem of tracking the position and orientation of a camera in
3D space, using the images it acquires while moving freely in unmodeled, arbitrary
environments. This task has a broad spectrum of useful applications in domains such
as augmented reality and video post production. Most of the existing methods for
camera tracking are designed to operate in a batch, off-line mode, assuming that the
whole video sequence to be tracked is available before tracking commences. Typically,
such methods operate non-causally, processing video frames backwards and forwards in
time as they see fit. Furthermore, they resort to optimization in very high dimensional
spaces, a process that is computationally intensive. For these reasons, batch methods
are inapplicable to tracking in on-line, time-critical applications such as video see-
through augmented reality. This paper puts forward a novel feature-based approach
for camera tracking. The proposed approach operates continuously as images are ac-
quired, has realistic computational requirements and does not require modifications of
the environment. At its core lies a novel, feature-based 3D plane tracking technique,
which permits the estimation of the homographies induced by a virtual 3D plane
between successive image pairs. Knowledge of these homographies allows the corre-
sponding projection matrices encoding camera motion to be expressed in a common
projective frame and, therefore, to be recovered directly. Projective camera matrices
are then upgraded to Euclidean and used for recoverying 3D structure, which is in
turn employed for refining the projection matrices through local bundle adjustment.
Sample experimental results demonstrating the feasibility of the approach on several
image sequences are also provided.
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1 Introduction

Camera matchmoving is an application involving synthesis of real scenes and artificial
objects, in which the goal is to insert computer-generated graphical 3D objects into
live-action footage depicting unmodeled, arbitrary scenes. Graphical objects should
be inserted in a way so that they appear to move as if they were a part of the real scene.
Seamless, convincing insertion of graphical objects calls for accurate 3D camera motion
tracking (i.e. pose estimation), stable enough over extended sequences so as to avoid
the problems of jitter and drift in the location and appearance of objects with respect
to the real scene. Additionally, the placement of the objects with respect to the real
scene often requires the availability of some 3D geometry information; for instance,
accurate 3D reconstruction of a few guiding control points is in most cases sufficient.
Matchmoving finds several important applications in augmented reality as well as
virtual studio shooting and the creation of special effects in the post-production/film-
making industry [40]. To provide the versatility required by such applications, very
demanding camera tracking requirements, both in terms of accuracy and speed, are
imposed [4].

Optical and electromechanical camera tracking are technologies that have success-
fully proven themselves in applications such as live TV broadcasting [41]. Nevertheless,
apart from suffering from range limitations, such technologies call for special modifi-
cations of the environment that render them inapplicable for tracking in unprepared,
unstructured scenes, large scale environments or archive footage. Being non-intrusive,
passive and capable of covering large fields of view, computer vision techniques pro-
vide an attractive alternative to optical and electromechanical tracking methods for
recovering camera motion. Tracking the position and orientation of a camera using the
images it acquires while moving freely in unmodeled, arbitrary environments, is a very
challenging problem in visual motion analysis. During the last fifteen years, numerous
research efforts have focused on vision-based camera tracking within the framework
of the more general structure from motion problem [14]. Before briefly reviewing a
few representative ones, it is pointed out that our requirement for operation in un-
prepared environments exclude methods such as [23, 22] that rely upon the presence
of fiducial markers or special calibration objects in the environment. Additionally,
due to the problems pertaining to the accurate estimation of optical flow when the
inter-frame image motion is not infinitesimal, we have chosen to focus our attention
to feature-based approaches only. For more details regarding direct, i.e. flow-based
approaches, see [24] and references therein.

Methods that avoid making any assumptions regarding the environment exploit
geometric constraints that arise from the automatic extraction and matching of appro-
priate 2D image features such as corner points. Depending on their mode of operation,
proposed approaches can be classified into two categories. The first category consists
of methods designed for off-line use on pre-recorded image sequences. Such methods
process image data in a batch mode and usually are non-causal, employing both past
and future frames for deducing the camera motion corresponding to the current frame.
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Viéville et al [39], for instance, rely upon a set of point and line features extracted
from an uncalibrated monocular image sequence and recover structure and motion
by formulating a huge non-linear optimization problem that is solved by alternating
between structure and motion estimation. Cornelis et al [8, 7] describe a system that
relies on pairwise fundamental matrices for simultaneously recovering structure and
motion for augmented reality applications. Camera motions for all frames are de-
termined in a single final step using bundle adjustment. Fitzgibbon and Zisserman
[13] take a different direction and recover structure and motion using a hierarchical
bundle adjustment approach based on image triplets and associated trifocal tensors.
Commercially available camera tracking software products such as boujou™, Match-
Mover™, 3D-equalizer™and PFTrack™also fall into this category'. Albeit accurate,
batch techniques share the limitation of being extremely time-consuming due to the
use of global bundle adjustment, which involves the solution of large, non-linear opti-
mization problems [38]. This, plus the requirement of operating on the whole sequence
at once, makes batch methods inappropriate for use in time-critical applications.
Methods operating in a continuous mode, in which images are processed incremen-
tally as acquired, constitute the second class of camera tracking techniques. Typically,
such methods exploit the natural ordering of images and are causal, i.e. they rely only
on past frames for estimating the camera motion for the current image. The work by
Beardsley et al [5], who estimate camera matrices from 3D structure that is recovered
incrementally, was one of the first to propose such an approach. In some cases, struc-
ture recovery is completely avoided. For example, Simon et al [37] describe a camera
tracking system that relies on continuous tracking of a 3D plane that is assumed to be
present in the scene. The plane is tracked by estimating pairwise planar homographies
with the aid of tracked interest points. The disadvantage of this technique is that it
requires the tracked plane to be continuously visible and its image segmented from
the rest of the scene. Moreover, the tracking scheme employed requires manual in-
tervention to bootstrap and cannot incorporate information from points off the plane
or from more than two images. Avidan and Shashua [3] follow a direct approach for
recovering a set of consistent projective camera matrices without reconstructing the
3D scene. The main contribution of this work is a “threading” operation on two con-
secutive fundamental matrices that uses the trifocal tensor as the connecting thread.
Their method is based on tracking a scene plane along an image sequence and pro-
vides, as a byproduct, the homography matrices it induces between adjacent views.
However, owing to the use of constraints involving algebraic distances, the estimated
homographies are not statistically optimal. Besides, the experimental results pro-
vided mainly focus on the performance of plane tracking rather than on the recovery
of the underlying Euclidean camera motion and its accuracy. Zhang and Shan [44]
propose yet another incremental motion estimation algorithm, which simultaneously
recovers motion and 3D structure by applying a series of local bundle adjustments to

'See  http://www.2d3.com,  http://www.realvis.com,  http://www.3dequalizer.com  and
http://www.thepixelfarm.co.uk respectively.

TR-324 — FORTH-ICS, Sep. 2003 1 Introduction



Efficient 3D Camera Matchmoving Using Plane Tracking 3

a sliding window of image triplets. By restricting the permissible camera motions to
pure rotations, Prince et al [32] propose a camera tracking algorithm for augmented
reality applications. Despite its computational efficiency, however, its applicability is
severely limited by the restricted camera motion model it employs. By introducing
probabilistic simultaneous localization and mapping (SLAM) techniques in computer
vision, Davison [9] has recently proposed an interesting approach to camera tracking.
By employing a camera motion model and explicitly modeling uncertainty, his method
is capable of determining in real-time the camera position/orientation and recovering
sparse 3D information regarding the environment. Still, the method relies upon cer-
tain prior knowledge regarding the imaged environment, requires manual intervention
for bootstrapping and employs image features that are of limited viewpoint-invariance,
thus restricting its application in small scale environments.

In this paper, a novel feature-based approach to camera tracking is presented. The
method is based on tracking a 3D plane through a homography “chaining” operation
that is applied to triplets of consecutive images through a sliding time window and
exploits the fact that all images of a planar surface acquired by a rigidly moving
observer depend upon the same 3D geometry. The tracked plane is not required to
be physically present in the scene; it can be a virtual one. Plane tracking is achieved
by tracking the 2D projections of points from all over the scene. By doing so, all
information conveyed by matching points is taken into account, without the need
for continuously maintaining a segmentation of the tracked plane from the scene.
The motion model estimated for the tracked plane is exact and fully projective (i.e.
a homography) and no camera calibration information or 3D structure recovery is
necessary. Knowledge of the homographies induced by the virtual 3D plane between
each pair of successive images, allows the corresponding projection matrices encoding
camera motion to be expressed in a common projective frame and therefore to be
recovered directly, without the need for retrieving structure. Then, 3D structure is
recovered from the projection matrices and used for refining the latter through local
bundle adjustment. Intended for use in close to on-line applications, the proposed
method is designed to operate in a continuous mode. The proposed method follows
a strategy similar to [3]. However, it is based on much simpler constraints whose
derivation is shorter and does not involve neither the trifocal tensor nor tensorial
notation. Moreover, our method tracks 3D planes by minimizing a geometrically
meaningful criterion with respect to a set of four free parameters, which, according to
the subspace constraint of [34], is a theoretically minimal one. Compared to [3] and
[37] which estimate twelve and eight parameters respectively, the estimation of just
four parameters is both faster and more accurate.

The rest of the paper is organized as follows. Section 2 explains the notation
that will be used throughout all equations and provides some background knowledge.
Section 3 briefly describes plane tracking and Section 4 builds upon it for solving the
problem of camera tracking. Since the tracked plane is not required to be physically
present in the scene, any virtual 3D plane suffices for the purposes of camera track-
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ing. Section 5 explains how can such a virtual plane be selected. Section 6 deals
with the problem of aligining the coordinate system used for camera tracking with
that employed internally by a graphics subsystem. Implementation issues and sample
experimental results are reported in Section 7. The paper is concluded with a brief
discussion in Section 8.

2 Notation and Background

In the following, vectors and arrays appear in boldface and are represented using
projective (homogeneous) coordinates. The symbol ~ denotes equality of vectors up
to an arbitrary scale factor. 3D points are written in uppercase, while their image
projections in lowercase (e.g. X and x).

A well-known constraint for a pair of perspective views of a rigid scene is the
epipolar constraint. This constraint states that for each point in one of the images,
the corresponding point in the other image must lie on a straight line. Assuming that
no calibration information is available, the epipolar constraint is expressed mathemat-
ically by a 3 x 3 singular matrix, known as the fundamental matriz and denoted by F.
Denoting by O and O' the centers of projection corresponding to the two perspective

views, the points of intersection of the line OO" with the first and second image planes
are the epipoles, depending on relative translational motion only and being denoted
by e and €', respectively. For example, epipole € corresponds to the uncalibrated
translational component of the camera motion from the first to the second image.
Given F, the epipoles can be recovered by finding the kernels of F and F”'. Another
important concept in projective geometry is the plane homography H, a nonsingu-
lar 3 x 3 matrix which relates two uncalibrated retinal images of a 3D plane. More
specifically, if x is the projection in one view of a point on the plane and x is the
corresponding projection in a second view, then the two projections are related by the
linear projective transformation

x ~ Hx. (1)
For more detailed treatments of the application of projective geometry to computer
vision, the interested reader is referred to [18, 11].

As shown in [34], the fundamental matrix and plane homographies are tightly cou-
pled. More specifically, the entire group of all possible homography matrices between
two images lies in a subspace of dimension 4, i.e. it is spanned by 4 homography
matrices. These 4 homography matrices are such that their respective planes do not
all coincide with a single point. Shashua and Avidan show in [2] that given the fun-
damental matrix F and the epipoles e and e in an image pair, a suitable basis of 4
homography matrices Hy, ..., Hy, referred to as “primitive homographies”, is defined
as follows

H; =[¢]F, i=1,23 and Hy=ed', (2)

where ¢; are the identity vectors e; = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1), [.]«
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designates the skew symmetric matrix representing the vector cross product (i.e. for
a vector a, [a]y is such that [a]yb =a x b, V b) and § is a vector such that 6”'e # 0.
This last requirement can, for example, be satisfied by defining vector § so that each of
its elements has an absolute value of 1 and a sign identical to that of the corresponding
element of e. The first three homography matrices (H;, Hy and H3) are of rank 2
and span the subgroup of homography matrices whose underlying 3D planes contain
the center of projection O of the second camera. On the other hand, H, by definition
corresponds to a 3D plane not coincident with O" but going through the center of
projection O of the first camera, thus having rank 1. Knowledge of the 4 primitive
homographies allows any other homography H to be expressed as a linear combination

4
H=> \H,;, (3)
i=1
for some scalars \;.

Next, a result due to Shashua and Navab [35] that plays a central role in the
development of the proposed method is presented. Let II be an arbitrary 3D plane
inducing a homography H between two images. Let also X be a 3D point not on II
projecting to image points x¢ and xz) and assume that H has been scaled to satisfy
the equation x’O ~ Hxy + €. Then, for any 3D point X projecting onto x and X,
there exists a scalar x such that

x ~ Hx + ke (4)

Equation (4) dictates that the position of projected points in the second image can
be decomposed into the sum of two terms, the first depending on the homography
induced by II and the second involving parallaz due to the deviation of the actual 3D
structure from II. The term  in Eq. (4) depends on X but is invariant to the choice
of the second image and is termed as relative affine structure in [35]. Given x, x , H
and €, the term & corresponding to X can be computed by cross-multiplying both
sides of Eq. (4) with x , which after some algebraic manipulation yields
(Hx x x)T(x" x €)

K= (5)

%" x €2

3 3D Plane Tracking

Let us begin by explaining the role of point X in the derivation of Eq. (4). Recall that
H and e are homogeneous entities, defined up to an arbitrary scale factor. Therefore,
by fixing H’s scale, X serves to establish a common relative scale between H and
e. Notice, however, that in the case that H has not been scaled with the aid of X,
Eq. (4) continues to hold for some  that is a scaled version of k given by Eq. (5).
In addition, in this case x is not invariant to the choice of the second view. What
remains invariant though, is the ratios of x’s computed from different image pairs.

TR-324 — FORTH-ICS, Sep. 2003 3 3D Plane Tracking
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Suppose now that three consecutive images I1, Is and I3 are available and that a
planar homography between I; and Is has been estimated. Considering the two pairs
(I1, Iz) and (I, I3) formed by the three images, a key observation is the fact that
image I, is shared by both of these pairs. Hence, the relative affine structure defined
when I, assumes the role of the first image in Eq. (4) is insensitive to the choice of
the second image (i.e. I; or I3) completing the pair. This allows one to estimate the
relative affine structure from the pair (I;, I3) and the corresponding homography and
then use this estimate for computing the plane homography for the pair (I3, I3). This,
in effect, constitutes a chaining operation involving plane homographies. The process
just outlined is explained in more detail in the next section.

3.1 Chaining Homographies Among Consecutive Frames

Assume that N triplets of matching points (x;, x;, x;'), 1 =1,...,N, are available
across the three images I;, Iy and I3 respectively and that the homography U from
image I; to Iy due to some 3D plane has been estimated. In the remainder of this
section, a procedure for estimating the plane homography V induced by this 3D plane
between images I and I3 will be described.

From the set of matching pairs (x;, x;) the epipolar geometry for images I; and Iy
and thus the epipole e in image I; can be estimated. In a similar manner, the epipole
e in I3 for the camera motion corresponding to frames Iy and I3 can be estimated
from the set of matching pairs (x;, x; '). Recalling that the homography from image
I5 to I is simply U~ !, Eq. (4) takes the following form for all point matches in those
two images

x; ~ U ', + rge. (6)
By employing Eq. (5), x; can then be estimated as

(U'x; x x;)T(x; x e)
[l x elf?

Ki =

(7)
Taking into account point matches in frames Iy and I3, Eq. (4) gives
X; ~ VX, + ke, (8)

where the k; are given by Eq. (7). In order for Eq. (8) to hold for the x; given by
Eq. (7), the scale of V in it has to be compatible with that of the estimated e . For this
reason, V in Eq. (8) is no longer a homogeneous 3 x 3 matrix but rather an ordinary,
inhomogeneous one. Equation (8) is thus a vector equation linear in V, providing
three linear constraints on the nine unknown elements of V. Due to the presence of
an arbitrary, unknown scale factor, only two of those three constraints are linearly

. . . . o, . Il 1 rr
independent. Denoting the i-th row of matrix V by v!, writing x;” = (z; ,y; ,1)T
d rr _ r r r T h . b l. . 1 d 2
and e = (e, , ey, €, )", those two constraints can be explicitly expressed as
’ rr ’ rr rror
vgxlxl — V,{XZ = KRi€, — ki€, T;

*Notice that all available point matches are assumed to originate from actual image points (i.e.
corners); no ideal points whose third coordinate is zero exist among them.
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rr rror

Tlll Tl _
i T Ki€y — ki€ Y - (9)

V3 XiY; — V2 X
Notice that Egs. (9) do not require that the employed point matches have been iden-
tified as lying on the plane. Therefore, they do not require that the tracked plane
has been segmented from the rest of the scene and are applicable even in the case of

tracking a virtual (i.e. not physically present in the scene) plane. Since v-Tx; =x;

7 i Vi
Egs. (9) can be written in matrix form as
’ ’ rr V1 rr 1o
-xI o xTz, Ki€y — Ki€, I;
T T ot Vo = R AR (10)
0 —X7 XY V3 Ki€y — Ri€, Y;

Thus, each triplet of corresponding points provides two equations in the elements
of V. Concatenating the equations arising from five triplet correspondences, a matrix
equation of the form Mv = b is generated, where M is a 10 x 9 matrix, v is a
9 x 1 vector equal to (vI, vi, vI)T and b is a 10 x 1 vector. Omitting any row of
matrix M, yields a 9 X 9 linear system with 9 unknowns that may be solved using
Gaussian elimination [16]. In the case that more than five triplet matches are available,
Eq. (10) gives rise to an over-constrained system from which V can be estimated in a
least squares manner with the aid of SVD.

According to the terminology of [18], ch. 3, the estimation of V as described up
to this point, is achieved with a Direct Linear Transformation (DLT) algorithm. It is
well-known that DLT algorithms are not invariant to similarity transformations of the
image but depend on the coordinate system in which image points are expressed. To
alleviate this and, at the same time, improve the condition number of the DLT con-
straints, therefore ameliorating the accuracy of results, the normalization technique
of [19] is applied to matching points prior to feeding them to the DLT algorithm.
Independently for each image, this normalization consists in translating image coordi-
nates so that the centroid of points is brought to the origin of the coordinate system,
followed by an isotropic scaling that maps the average point to (1,1,1)?. The nor-
malizing transformation for image ¢ is expressed by a 3 x 3 linear transformation L;.
Notice that in this case, the normalized version U = L2UL1*1 of U must be employed
in Eq. (7) along with the normalized points and epipole. The normalized epipole
can be recovered from the normalized fundamental matrix F = L TFLI_I. After the
application of DLT, the computed homography estimate V needs to be denormalized
using L3_IVL2.

In practice, the set of available matching point triplets is almost certain to contain
errors due to false matches and errors in the localization of image corners. Conse-
quently, in order to prevent such errors from corrupting the computed homography
estimate, the group of DLT constraints should be employed within a robust regression
framework. In our case, the Least Median of Squares (LMedS) [33] robust estimator
is employed to iteratively sample random sets of nine constraints, recover an estimate
of matrix V from each of them and find the estimate that is consistent with the ma-
jority of the available constraints. To ensure that those random sets arise from points
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having a good spatial distribution over the image, random sampling is based on the
bucketing technique of [43]. Finally, V is recomputed using least squares on the set
of constraints having the largest support, i.e. the LMedS inliers.

Since the DLT constraints minimize an algebraic error term with no physical mean-
ing, the estimate computed by LMedS is refined by a non-linear minimization process
that involves a geometric criterion. Letting d(x, y) represent the Euclidean distance
between the inhomogeneous points represented by x and y, the non-linear refinement
minimizes the following sum of squared distances

1
[1%; |l

d X,'I, VX" +l€'e” 2 + d X,~, V_IX,~’ T ———
Z( ( A 1 1 ) ( A 4 ||Vxl+l§le ||

ki Ve ’)2> (11)

2
with respect to V. This criterion involves the mean symmetric transfer error be-
tween actual and transferred points in the two images and is minimized by applying
the Levenberg-Marquardt iterative algorithm as implemented by MINPACK’S LMDER
routine [28], initialized with the least squares estimate from the LMedS inliers. To
safeguard against point mismatches, the non-linear refinement is performed using only
the point features that correspond to inliers of the LMedS homography estimate.

Having presented the basic 3-frame chaining operation, it is straightforward to
extend it to handle a sequence of more than three views. For example, in order to
track the plane in a new image I, the homography V computed in the previous step
between frames Is and I3 becomes the new U for the triplet I, I3 and I;. Note also
that the epipolar geometry of frames I and I3 has been computed from the previous
iteration, therefore only the epipolar geometry between frames I3 and Iy needs to be
estimated during this step. A final remark concerning the extension of the chaining
operation to more than three frames is that the estimation of V can benefit from
point trajectories that are longer than three frames: If, for example, a four-frame
point trajectory is available for images Iy, I, I3 and I, the constraints generated by
the triplet I, I3 and I4 can be combined with those arising from I, I3 and I4. This
variant of chaining from multiple triplets can be carried out by maintaining a small
moving window of past frames.

3.2 Reducing the DOFs Involved in Plane Tracking

In the following, the basic method of the previous section will be refined, aiming to de-
rive a model involving fewer, therefore easier to estimate, degrees of freedom (i.e. free
variables). As already mentioned, the entire group of all possible homography matri-
ces between two images lies in a subspace of dimension 4, spanned by the 4 primitive
homographies of Eq. (2). According to Eq. (3), knowledge of those homographies al-
lows any other homography H to be expressed as a linear combination encompassing
4 scalars A;. This implies that when the primitive homographies for frames I and
I3 have been computed, the rows v of matrix V in Eqgs. (9) depend on four rather
than nine parameters. Therefore, the process described in section 3.1 can be slightly
modified to estimate the coefficients A; making up V instead of directly estimating
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1. Eaxtract and match point features across three frames Iy, I and I3
Normalize the coordinates of matched points in each frame

3. Estimate the fundamental matrices between frames Iy, I and Iy, I3
along with the epipoles

4. Use Eq. (7) with frames I1, I to compute the k; and then use
Iy and I3 to form the DLT constraints

5. Compute the primitive homographies of frames Iy and I3 by employing
the corresponding epipolar geometry

6. Use the LMedS robust estimator to identify the estimates of A\; that
give rise to an estimate of V having the largest support from the DLT
constraints of Eq. (10)

7. Reestimate the \; using all DLT constraints corresponding to point
inliers identified in step 6

8. Starting with the estimate of step 6, refine the \; and thus V, using
Levenberg-Marquardt non-linear minimization of Eq. (11) over the
LMedS inliers in step 6

Figure 1: An overview of the proposed homography chaining operation; see text for
details.

the latter. In other words, both the linear and the non-linear estimation processes
that have been described above are performed with four rather than nine unknowns.
This reduction in the dimensionality of the problem is of utmost importance since
fewer degrees of freedom entail less computation time for the homography (partic-
ularly for the non-linear refinement) and typically more accurate estimates. Fewer
DOFs involve the solution of smaller systems and require less iterations (i.e. samples
taken) to find a solution with a given confidence level when embedded within ran-
dom sampling schemes such as LMedS or RANSAC [12]. It was found experimentally
that the execution time for plane tracking using the formulation involving A; is by
an order of magnitude shorter than that required when estimating V directly. Space
considerations prevent us from deriving here the exact form of Egs. (9) and Eq. (10)
after introducing the coefficients A;. Doing so, however, is straightforward and should
not present any particular difficulty to the reader. The complete sequence of steps
comprising the homography chaining operation is listed in pseudocode in Fig. 1.

4 Camera Tracking

In this section, H; ; and e;; will be used to denote respectively the tracked plane
homography and the epipole in I; for the image pair I; and I;. Assume also that Hj o
has been supplied and, using the method outlined in Section 3, the plane homography
H,3 has been estimated from the matching triplets among images I, I and I3.

TR-324 — FORTH-ICS, Sep. 2003 4 Camera Tracking
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Recalling that these homographies are, by computation, scale compatible with the
corresponding epipoles, Eq. (4) yields the image projections of a 3D point X as x =~

li " li . . 1T T
H>1x +rey1 and x ~ Hy3x + key 3, implying that X ~ [x , Ii] . Therefore, a
consistent set of projective camera matrices in canonical form for the three views is
given by [18, 3]

P, =[Hy; |ey1], P =[1|0], P3=[Hy3|ez3], (12)

where I denotes the 3 x 3 identity matrix. Since it is customary to express the camera
matrices relative to the first image I;, application of an appropriate 3D projective
mapping can transform Eqs.(12) so that P; becomes equal to [I | 0]. Indeed, right
multiplication of the camera matrix [A | b] by the 4 x 4 matrix M given by

Al | —A'b
M = (13)
o” 1

makes the former equal to [I | 0]. Therefore, to make Py equal to [I | 0], the projection
matrices in Eq. (12) should be right multiplied by the matrix given by Eq.(13) for A =
Hj; and b = ey, which, taking into account that H;zl ej; =e;jand Hy3 Hyo =
H, 3, yields after some algebraic manipulation

P, =[I|0], Py=[H|e], P3=[Hi3|es|. (14)

Suppose now that by employing the plane tracker for the image triplet I, I3
and I4, the homography Hs4 induced by the tracked plane has been estimated. If
P3 were equal to [I| 0], a projection matrix for I; consistent with the projection
matrices of the previous three images would simply be [H3 4 | €3 4]. Here, the former
should be right multiplied by the matrix given by Eq.(13) for A = H; 3 and b =e; 3,
to account for the fact that the employed coordinate system coincides with that of
I,. Thus, Py is equal to [Hz 4 Hy3 | H34 €13 + e34], which in turn is simplified to
[Hi 4 | e1,4]. Clearly, the procedure for obtaining P4 just described, can be generalized
to incorporate the projection matrix P; corresponding to any image I; with ¢ > 4.
Hitherto, knowledge of the plane homographies has permitted the direct recovery of
a set of consistent projective camera matrices, without the need for 3D structure
estimation and resectioning.

In order to increase stability and at the same time relieve the camera tracker from
the associated computational burden, the camera intrinsic calibration parameters are
assumed here to be constant and known, either as a result of a self-calibration algo-
rithm or of an off-line, grid based calibration method [26]. Given the 3 x 3 camera
intrinsic calibration matrix K, a projective camera matrix can be upgraded to Eu-
clidean by right multiplication with the 4 x 4 matrix defined as

K 0
5 (15)
-pI'K 1
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where p is such that the coordinates of the plane at infinity in the projective re-

construction are given by [pT, I]T. Following this, the 3D translation and rotation
corresponding to the KEuclidean camera matrix can be estimated with RQ decomposi-
tion [18].

A rough representation of 3D scene structure in the form of a point cloud can be
built-up incrementally as new image triplets become available. More specifically, when
the camera matrices for a new image triplet have been estimated, the 3D coordinates
of points that became visible in the new triplet can be recovered with the aid of a
triangulation algorithm [17]. The main problem that needs to be addressed by all
triangulation algorithms is the fact that errors in the estimates of camera matrices
result in making skew the back-projected 3D lines defined by the camera optical centers
and the corresponding image projections. In this work, 3D structure recovery can be
achieved in two different ways. The first employs the three view triangulation method
of Avidan and Shashua [2]. This method aims to account for the error introduced
by the corner detection and camera matrix estimation processes. To accomplish this,
the method modifies the coordinates of image points in a way that guarantees that
they satisfy the trifocal constraints exactly, while remaining at a minimal distance
from their original locations. Then, since the back-projected lines defined by the
corrected image points are certain to intersect in space, the corresponding 3D point
is determined by a simple linear method [17]. Notice that the 3D point determined
in this manner is expressed in a projective coordinate frame; left multiplication by
the inverse of the matrix in Eq. (15) upgrades it to Euclidean [18]. The second
triangulation method exploits the knowledge of the camera intrinsic parameters to
express two back-projected 3D lines in an Euclidean coordinate frame. Then, a 3D
point is reconstructed as the midpoint of the minimal length straight line segment
whose endpoints lie on the skew back-projected lines [15]. Since an image triplet gives
rise to three different image pairs, the reconstructed point is taken here to be the
centroid of the three 3D points reconstructed from the triplets’ image pairs. To avoid
reconstructing points arising from triplets (x, X, x ') involving spurious matches, the
projection matrices of Eq. (12) are used to compute the corresponding trifocal tensor
using a closed form formula [21]. Then, using point matches x, x from the first two
views along with the computed tensor, permits the elimination of point triplets whose
transferred third image point lies at a distance further than a certain threshold from
the point x .

By trading some speed for increased accuracy in camera tracking, structure infor-
mation can be used in a local bundle adjustment framework for evenly distributing
the camera tracking error among consecutive images belonging to the same sliding
time window. Assume that a narrow window of W past frames in some of which M
Euclidean 3D points X, 7 = 1... M are visible is maintained and let R; and t; be the
estimates of camera orientation and position for frame ¢. Then, the KEuclidean projec-
tion matrix P; is equal to K [R; | t;]. Bundle adjustment amounts to estimating the
motion parameters R; and t;, ¢ = 1... W so that the sum of squared image distances
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between reprojected and detected, actual image points is minimized, namely

w
Ir{u?; zj:d(Pi X;, x5)?  with P; =K [R; | t], (16)
where d(x, y) denotes the Euclidean distance between the inhomogeneous image
points represented by x and y, and x§~ is the detected projection of point j in image ¢,
i € {1,...,W}. Rotation matrices R; are parametrized using Euler angles; however,
a parametrization based on quaternions should work equally well. To keep the com-
putational overhead of the minimization low, observe that Eq. (16) is minimized with
respect to the 3D motion only and not the 3D structure. The minimization of Eq. (16)
is performed with the aid of a non-linear least squares algorithm [10] that is initialized
with the motion parameters computed directly from the tracked plane homography.
Finally, since the projective camera matrix for I; will be needed for determining the
camera motion of subsequent frames, it is recomputed as the product of the Euclidean
camera matrix amounting to the refined camera motion by the inverse of the matrix
in Eq. (15). The complete algorithm for camera tracking using the homographies of
a tracked plane is listed in pseudocode in Fig. 2.

1. Initialization: Select a plane in Iy and I and estimate the homography H; o
2.  For each image I,,, n > 2 do
2.a Use the algorithm of Fig. 1 to track the plane
between 1mages In_1 and I, estimating Hy,_1 5,
2.b if n=3 then
Use Eqs. (14) to compute a canonical set of projection matrices
for images I, Iy and I3
else
Let P, 1 = [Hi 1 | €1,n-1] be the projection matriz for I,
Then, Pn = [anl,n Hl,nfl | anl,n €1n—1 + enflyn] = [Hl,n | el,n]
endif
2.c Use P,_o, P, _1 and P, to reconstruct 3D points whose projections
have appeared for the first time in all images I, o, I,, 1 and I,
2.d Upgrade Py, to Euclidean using the intrinsic calibration parameters
2.e Recover camera motion using the RQ decomposition of the Euclidean Py,
2.f Refine camera motion through the bundle adjustment of Eq. (16)
2.9 Recompute the projective P, using the intrinsic parameters and the
refined camera motion

endfor

Figure 2: Camera tracking based on tracked plane homographies; see Section 4 for
details.
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5 Using a Quasi-Metric Virtual Plane

As explained in Section 4, camera tracking requires a 3D plane to be tracked over
an image sequence. Although planes abound in man-made environments and fully
automatic methods exist for detecting them [25], it would be preferable if the proposed
method did not rely on the assumption of a physical 3D plane being present in the
scene. To achieve this, recall that any plane is adequate for camera tracking as long as
it can be tracked along the whole sequence. In order for plane tracking to commence,
the plane homography induced among the first two frames of the sequence must be
available. Apart from this requirement, however, no other information regarding the
plane must be supplied. The tracked plane can actually be a virtual one, i.e. not
corresponding to a physical 3D plane present in the scene. All that is needed is that
the plane’s homography is compatible with the underlying epipolar geometry. The
rest of this Section describes how can such a virtual plane be selected.

Let x;, x;, 1 =1,...,N be a set of matching point pairs in the first two frames.
The virtual plane can be chosen so that it approximates the set of available point
matches as much as possible. In other words, the virtual plane is situated “in-between”
the 3D space points giving rise to the set of available point matches. Assuming that the
epipolar geometry corresponding to the two images has been estimated, we therefore
seek the planar homography H for which the contribution of the parallax term in
Eq. (4) is as little as possible. It has been explained in Section 2 that any planar
homography defined between two images can be expressed as the linear combination
of the four primitive homographies of Eq. (2). The sought H is thus computed from
the coefficients pj, 7 =1,...,4 minimizing

4 !
D wiHj)xi~x;, i=1,...,N (17)
j=1

Each of the available point matches provides two independent linear constraints for
the pj;, therefore N matches yield an overdetermined system from which the p; can be
estimated using robust least squares. The LMedS robust estimator is again employed
to find the p; corresponding to the homography minimizing Eq. (17) for at least 70%
of the available matches; the estimated j1; are then refined by applying least squares to
the constraints corresponding to the LMedS inliers. The plane computed in this man-
ner is referred to as “quasi-metric” in [2] and gives rise to a projective reconstruction
of space that is characterized by a small amount of projective distortion.

6 Aligning Coordinate Systems

The camera tracking algorithm described in Section 4 provides the camera trajectory
expressed in a coordinate system that coincides with that of the initial location of
the camera. Often, augmentation (i.e. computer graphics) modules that need to be
combined with the camera tracker use their own coordinate system internally. Thus, it
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is clear that some agreement between the two coordinate systems should be achieved.
The process of determining the relationship between the coordinate systems employed
by the camera tracking and the graphics modules is referred to as coordinate system
alignment. When the merging of graphics and video is to be performed off-line, the
coordinate system alignment problem can be manually solved by human operators;
this is the approach followed by all commercial camera tracking systems. Obviously,
in the case of applications such as video see-through augmented reality, this solution
is inadequate.

A possible solution to the alignment problem proceeds as follows. Before tracking
starts, assume that a reference image of the scene to be tracked is obtained. Assume
also that several 2D corners with known 3D coordinates, expressed in the coordinate
system used in the graphics module, are selected on the reference image. Such 2D
points can for example be supplied by manually identifying the image projections of
several “control points” with known 3D coordinates. To bootstrap camera tracking,
the camera is required to start its trajectory from a location close to that corresponding
to the reference image. The first frame to be tracked is matched with the reference
image. Next, the resulting 2D matches along with the 3D - 2D matches that have
been predetermined for the reference image permit the extraction of 3D - 2D matches
for the first image. A camera pose estimation algorithm [27] can then provide the
position and orientation of the camera that acquired the first image in the coordinate
system of the graphics module. Using the pose of the first frame, the camera motion
estimated for all subsequent frames is then appropriately transformed so as to be
expressed in the coordinate system of the graphics module rather than that of the
first frame. More specifically, assume that the pose of the first frame in the graphics
coordinate system is specified by a rotation matrix R; and a translation vector t;.
Assume also that the relative pose of frame ¢ > 1 expressed in the coordinate system
of the first frame is given by AR,; and At;. Then, the pose of frame ¢ in the graphics
coordinate system is given by

R, = AR; R4
t; = AR, t; + At;.

It should be noted, however, that in the case that no prior 3D information regarding
the scene is available, the alignment problem can only be solved interactively, by
manually rotating and translating the 3D structure recovered by camera tracking
until it lines up with the 3D graphical objects that are to be inserted in images.

7 Implementation and Experimental Results

A prototype of the proposed camera tracking method has been implemented in C.
Linear algebra numerical operations were carried out using LAPACK [1]. The point
features that are required as input have been extracted and matched automatically
with the aid of the KLT corner tracker [36]. Using the resulting matches, the epipoles
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were computed by applying SVD on the fundamental matrices estimated using an
implementation of [43]. A technique that directly derives the epipoles from point
matches [6] has also been evaluated and was found to produce similar results.

The current implementation of the plane tracker performs chaining based on con-
straints arising from three frames at a time. Possible camera lens distortions (e.g.
radial distortion) are neglected. The intrinsic camera parameters (i.e. focal length,
aspect ratio, principal point and skew), were determined by using the auto-calibration
method described in [26]. This method exploits constraints arising from a simplified
version of the Kruppa equations that is derived with the aid of SVD of pairwise funda-
mental matrices [20]. Throughout all experiments, the plane homography between the
first two images that is necessary for bootstrapping plane tracking was determined as
described in Section 5. The second of the triangulation techniques described in Section
4 performed better compared to the first and therefore was chosen for accomplishing
3D reconstruction. W in Eq. (16) is set to 5 and the minimization is carried out using
the NL2SOL algorithm [10], as implemented by the DN2G routine in the PORT3 library
from Bell Labs. Compared to the Levenberg-Marquardt algorithm as implemented by
the LMDER routine [28], NL2SOL was found in this case to converge faster while produc-
ing results of similar accuracy. The NLSCON non-linear least squares routine [30] has
also been evaluated and yielded results slightly worse than those of DN2G. The jaco-
bians of Eq. (11) and Eq. (16) that are necessary for the non-linear minimizations are
computed analytically with the aid of MAPLE™s symbolic differentiation facilities 3.

Since the performance of plane tracking is crucial for the overall performance of
camera tracking, the following subsection presents experimental results demonstrat-
ing is effectiveness. Experimental validation results regarding the complete camera
tracking system are reported in subsection 7.2.

7.1 Plane Tracking Experiments

In this section, results from three experiments demonstrating the performance of the
proposed plane tracker are presented. To aid in the visual interpretation of results,
3D planes that are physically present in the scene have been employed in all exper-
iments. The spatial extend of the employed planes has been defined manually using
a polyline in the first frame. Following this, the plane homography between the first
two images that is necessary for bootstrapping plane tracking (i.e. U in Section 3.1),
is estimated from the point matches lying within the specified polyline. Alternatively,
plane tracking could have been bootstrapped by applying to the first pair of images
an automatic plane detection algorithm such as [25].

The first experiment was performed on the well-known “basement” image se-
quence, two frames of which (namely 0 and 8) are shown in Figs. 3(a) and (b). This
sequence consists of 11 frames acquired by a camera mounted on a mobile robot as
it approached the scene while smoothly turning left. The plane corresponding to the

3 Analytical differentiation was prefered over numerical one owing to its better performance and
convergence characteristics.
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(c)

Figure 3: (a), (b) two views of a basement (courtesy of the Oxford Visual Geometry
Group). The two polylines in (a) delineate the planar regions tracked over the whole
sequence. (c) right wall warped and stitched with (b), (d) floor warped towards and
stitched with (b); see text for explanation.

right corridor wall was tracked from frame 0 to frame 8 using the proposed method.
Then, by employing the estimated homography, the right wall from frame 0 was
warped towards frame 8. Fig. 3(c) shows the warped wall stitched with frame 8. A
second plane, namely the one corresponding to the floor, was also tracked between
frames 0 and 8. Fig. 3(d) shows the result of warping the floor plane from frame 0
towards frame 8 and stitching them together. As it is clear from the results, the accu-
racy of the homographies estimated using the proposed method is satisfactory in both
cases. Excluding the time required to detect and match corners between successive
frames, the average running times for tracking the wall and floor planes in the whole
sequence were respectively 63 and 66 ms per frame on an Intel P4@1.8 GHz running
Linux.
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(d)

Figure 4: (a), (b) first and last images from the Arenberg castle sequence (courtesy of
the University of Leuven VISICS Group), (c) first image warped towards the second
using the estimated homography; notice the distortion due to parallax on the left part
of the image and (d) warped image in (c) superimposed on (b).

In order to quantitatively evaluate the performance of plane tracking, the floor
plane was tracked from frame 0 to frame 10 and then back to frame 0, reversing the
order of intermediate frames. This effectively simulates a camera motion that is circu-
lar, i.e. ends at the location where it started. Composing the pairwise homographies
estimated by the plane tracker, the floor’s homography from the first frame through
the last and back to itself can be estimated. Ideally, this homography should be equal
to the identity matrix. In practice, the deviation in the position of floor points trans-
ferred using this homography from their actual locations in the first frame, indicates
the accuracy of plane tracking. The root mean square (RMS) error corresponding to
the 91 transferred floor points was found to be 19.3 pixels, corresponding to an aver-
age RMS error of 0.91 pixels for each of the 21 frames involved in tracking. However,
since certain floor points correspond to mismatches or poorly localized corners, a more
appropriate error measure is given by the root median square (RMedS) error, which
was found to be equal to 8.47 pixels or on average 0.40 pixels per tracked frame.

The second experiment employs another well-known image sequence, the first and
last frames of which are shown in Figs. 4(a) and (b). The sequence depicts the
Arenberg castle in Belgium and consists of 22 frames acquired with a handheld camera.
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Figure 5: (a), (b) first and last frames from a clip imaging a Pompeian tavern, (c)
fountain front face warped and stitched with (b).

Using the proposed method and the image frames between those in Figs. 4(a) and (b),
the 3D plane defined by the rightmost wall (see Fig. 4(a)) was tracked throughout
the sequence. Fig. 4(c) illustrates the result of warping the first frame towards the
last using the estimated homography. To aid in the evaluation of this result, Fig. 4(d)
shows it superimposed on Fig. 4(b), using different color channels for each image. As
can be clearly seen, image warping according to the estimated homography successfully
registers the plane’s image in Fig. 4(a) with that in Fig. 4(b). In this case, the average
running time for plane tracking was 84 ms per frame. The plane of the right wall was
again tracked from the first to the last frame and back (for a total of 43 frames)
and the RMS and RMedS errors in this case were 31.7 and 18.3 pixels, amounting to
average errors of 0.73 and 0.43 pixels per frame respectively.

The third experiment employs a sequence depicting the remains of a roman tavern
(thermopolium) in ancient Pompeii. This sequence is quite shaky, due to the fact that
it was shot with a camcorder as the operator approached the tavern. It consists of
80 frames, the first and last of which are shown in Fig. 5(a) and (b) respectively. In
this experiment, every fourth frame of the original sequence was employed and the
plane defined by the front face of the foreground fountain was tracked until the last
frame. Fig. 5(c) shows the warped plane from the first plane stitched with the last.
Evidently, the homography estimated for the tracked plane is quite accurate. The
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Figure 6: (a) the first frame from the “house” sequence (courtesy of the INRIA MOVI
Group), (b) and (c) top and side views of the 3D reconstruction and the camera
trajectory. The 3D camera locations are indicated with red pyramids whose apexes are
located on the camera optical centers; the green curve connecting the optical centers
corresponds to the recovered camera trajectory whereas the white dots illustrate the
reconstructed 3D points cloud. Note that the camera trajectory is very close to being
a full circle.

average running time for plane tracking was 65 ms per frame. The RMS and RMedS
errors computed after tracking the plane of the fountain front face back and forth (39
frames total), were 50.3 and 34.1 pixels respectively, corresponding to average errors
of 1.28 and 0.87 pixels per frame respectively.

7.2 Camera Tracking Experiments

Representative results from six of the conducted camera tracking experiments are
given in this section. Rigorous performance evaluation of camera tracking for an
image sequence is difficult, due to the fact that ground truth for the camera motion is
usually unavailable. Therefore, we have chosen to indirectly evaluate camera tracking
from the sequences resulting from augmenting the original ones with artificial 3D
objects. To achieve this, the estimated camera trajectories were exported to the
3DSMax Mgraphics package using MaxScript™and then the augmented sequences were
generated with the aid of 3DSMax’s rendering engine that used the original sequence
as a background. The positioning of the artificial graphical objects into the scene
was guided by the structure information also provided by the camera tracker. Sample
augmented sequences can be found at http://www.ics.forth.gr/cvrl/demos.html.

The first experiment was performed on the well known “MOVI house” image se-
quence, consisting of 119 frames acquired by a fixed camera as a model house on a
turntable made a full revolution around its vertical axis. This is equivalent to the
camera making a complete circular orbit around the house. The first frame of the
sequence is shown in Fig. 6(a), while Figs. 6(b)-(c) illustrate different views of the
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VRML 3D model recovered using the proposed method on odd numbered frames. As
can be seen from Figs. 6(b), the estimated trajectory is very close to being a circle.
The average running time of the proposed tracking method for each image frame was
317 ms on an Intel P4@1.8 GHz running Linux. Most of this time is spent in the
bundle adjustment of Eq. (16) and does not include the time required for match-
ing between 200 and 330 points between successive frames. For comparison, note
that the time required by existing commercial products such as 2D3’s boujou™for
batch camera tracking on such sequences is in the order of several minutes for the
whole sequence. It should also be mentioned at this point that the performance of
bundle adjustment could be considerably improved by employing a sparse variant
of the Levenberg-Marquardt minimization algorithm, which will exploit the sparse
block structure of the involved normal equations. Additionaly, considering that the
task of point matching between frames is characterized by data parallel computa-
tions (i.e. correlations), substantial speedups could be gained by adopting a SIMD
computation model, employing for example special hardware optimizations such as
Pentium’s MMX instructions. Figure 7 shows snapshots of the original sequence after
augmenting it with the addition of a pine tree. As can be verified from the accompa-
nying videos (http://www.ics.forth.gr/cvrl/demos.html) the augmenting object

has been convincingly merged with the original sequence.

Figure 7: Snapshots of the augmented “house” sequence corresponding to frames 0,
4, 8, 12, 16 and 20 respectively.

The second experiment employs the “cooks” sequence, the first and last frames
of which are shown in Fig. 8 (a) and (b). This sequence is recorded using Digital
Air’s* Timetrack™camera. This camera is made up of an array of lenses that simulta-
neously photograph a scene from different points of view. If the entire set of images

“See http://www.digitalair.com.
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Figure 8: (a), (b) the first and last frames of the “cooks” sequence (courtesy of Dayton
Taylor/Digital Air Inc.), (c) and (d) top and side views of the 3D reconstruction and
the camera trajectory. Observe that the recovered trajectory is indeed a circular arc.

recorded by all lenses at a specific time instant is played back as a sequence, a viewer
has the impression of a camera that appears to move relative to a subject which ap-
pears stopped in time. The particular Timetrack camera model used for shooting the
“cooks” sequence had 80 lenses configured in a 66 degree arc spanning 3m with a
2.6m radius. In a sense, a Timetrack camera provides sequences that are analogous
to those using a fixed camera and a turntable, without, however, the limitations of
the latter technique. More details regarding the Timetrack camera can be found at
http://www.virtualcamera.com. Different views of the VRML 3D model recovered
by the proposed method using one every three frames of the sequence are shown in
Figs. 8(c) and (d). Clearly, the recovered camera trajectory is a circular arc. The
average running time of the proposed tracking method for each image frame was 519
ms, again excluding the time spent for matching about 550 to 550 points between
image pairs. Figure 9 illustrates the result of augmenting the original sequence by
placing an artificial kettle on top of the stove.
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Figure 9: Snapshots of the augmented “cooks” sequence corresponding to frames 0,
5, 10, 15, 20 and 26 respectively.

Figure 10: The “castle” sequence (courtesy of the University of Leuven VISICS

Group). Snapshots of the augmented sequence corresponding to frames 0, 4, 8, 12, 16
and 20.

The third experiment refers to the 22 frame Arenberg castle sequence. Fig. 10
shows several frames of the original sequence augmented with a helicopter. A top view
of the VRML 3D model that was recovered, showing also the the camera locations
and trajectory, is illustrated in Fig. 14(a). On average, camera tracking required 174
ms per frame, employing 250 to 350 corner matches between successive images.

The fourth experiment employs yet another well-known sequence, namely the one
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Figure 11: The “sagalassos” sequence (courtesy of the University of Leuven VISICS
Group). Snapshots of the augmented sequence corresponding to frames 0, 25, 50, 75,
100 and 125 respectively.

showing the ruins of the Agora in the Sagalassos archaeological site. This sequence
has been shot using a camcorder and consists of 126 frames with very small interframe
motion. In sequences such as this, a well known issue that can seriously affect the
quality of the estimated camera motion is that of selecting appropriate keyframes, i.e.
frames in the image sequence that are sufficiently apart in time from each other, so that
sufficient translational camera motion exists between them. Despite that automatic
methods exist for determining keyframes [29], in this experiment the sequence was
time subsampled by a factor of five, i.e. every fifth frame was used for computing
camera motion. In the case that the camera motion needs to be estimated for frames
among the keyframes, this can be achieved using a pose estimation procedure using
resectioning based on the 3D structure computed from keyframes [13, 27]. Fig. 11
shows snapshots after augmenting the original sequence with a virtual Roman standing
on the wall. A side view of the recovered VRML 3D model is also illustrated in
Fig. 14(b). The average running time for each frame in this case was 377 ms, using
500 to 550 matching points between pairs.

The fifth experiment is based on the “béguinages” sequence, consisting of 90 frames
and shot with a camcorder as the operator approached the scene. This forward trans-
lational motion results in the baseline for triangulation being small, which in turn
makes structure recovery for this sequence difficult. The proposed method was ap-
plied to the “béguinages” sequence by time subsampling it by a factor of ten. Fig. 12
shows snapshots after augmenting the original sequence with a statue. A top view of
the recovered VRML 3D model is included in Fig. 14(c). On average, 390 ms were
required per frame and between 550 to 700 points were matched between frames.
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Figure 12: The “béguinages” sequence (courtesy of the University of Leuven VISICS
Group). Snapshots of the augmented sequence corresponding to frames 0, 30, 60 and

90 respectively.

Figure 13: The “lab” sequence depicting the robotics lab of ICS/FORTH. Snapshots of
the augmented sequence corresponding to frames 5, 10, 15, 20, 25 and 30 respectively.

The sixth and last experiment is based on the “lab” sequence, depicting the
robotics lab of ICS/FORTH and consisting of 300 frames shot with a laterally moving
camcorder. Time subsampling by a factor of ten was again employed and the tracking
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results were used to augment the original sequence with a flower pot placed on the
right (darker) robot. Selected snapshots from the augmented sequence are illustrated
in Fig. 13. Fig. 14(d) shows a top view of the recovered VRML 3D model. The average
running time per frame was 246 ms for 350 to 450 matching points between frames.

() (d)

Figure 14: Sample views of different VRML 3D reconstructions corresponding to (a)
“castle” top, (b) “sagalassos” side, (c) “béguinages” top and (d) “lab” top.

8 Conclusions

This paper has presented a method for automatic camera tracking across an image
sequence acquired without modifying the imaged environment. The method is based
on tracking a virtual 3D plane, a task involving the estimation of a quadruple of plane
parameters that is achieved using a combination of linear and non-linear optimization
techniques operating on sets of corner matches. Knowledge of the homographies in-
duced by the same 3D plane across the whole sequence permits the direct recovery of
the camera projection matrices and thus of the Euclidean camera 3D motion, which
is later refined through a local bundle adjustment process. The proposed method is
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causal and has reasonable computational requirements, permitting an efficient imple-
mentation on commodity hardware. Although not statistically optimal in the MLE
sense, the results of the proposed method are of very satisfactory accuracy for various
types of image sequences.

Future work will investigate alternative ways for making more effective use of
the 3D structure information recovered from image triplets. As already mentioned,
camera tracking performance would considerably benefit from a sparse version of the
bundle adjustment. A limitation of the current camera tracker is that it cannot
cope with entirely planar scenes since in this case the fundamental matrix cannot be
estimated uniquely [18]. Therefore, it would be desirable to extend the tracker so
that it automatically detects such cases and adapts its behavior accordingly. Some
work towards this end is reported by Pollefeys et al [31]. Another possible direction
concerns the use of subspace constraints on homographies over multiple views. Such
constraints have for example been presented in [42] and could lead to considerable
accuracy improvements for the estimates of homographies induced by the tracked
plane.
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