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Abstract

We address the problem of tracking the 3D position and
orientation of a camera, using the images it acquires while
moving freely in unmodeled, arbitrary environments. This
task has a broad spectrum of useful applications in domains
such as augmented reality and video post production. Most
of the existing methods for vision-based camera tracking
are designed to operate in a batch, off-line mode, assum-
ing that the whole video sequence to be tracked is avail-
able before tracking commences. Typically, such methods
operate non-causally, processing video frames backwards
and forwards in time as they see fit. Furthermore, they re-
sort to optimization in very high dimensional spaces, a pro-
cess that is computationally intensive. For these reasons,
batch methods are inapplicable to tracking in on-line, time-
critical applications such as video see-through augmented
reality. This paper puts forward a novel feature-based ap-
proach for camera tracking. The proposed approach op-
erates on images continuously as they are acquired, has
realistic computational requirements and does not require
modifications of the environment. Sample experimental re-
sults demonstrating the feasibility of the approach on video
images are also provided.

1 Introduction

Camera matchmoving is an application involving syn-
thesis of real scenes and artificial objects, in which the goal
is to insert computer-generated graphical 3D objects into
live-action footage depicting unmodeled, arbitrary scenes.
Graphical objects should be inserted in a way so that they
appear to move as if they were a part of the real scene.
Seamless, convincing insertion of graphical objects calls
for accurate 3D camera motion tracking (i.e. pose estima-
tion), stable enough over extended sequences so as to avoid
the problems of jitter and drift in the location and appear-
ance of objects with respect to the real scene. Additionally,
the placement of the objects with respect to the real scene

often requires the availability of some 3D geometry infor-
mation; for instance, accurate 3D reconstruction of a few
guiding control points is in most cases sufficient. Match-
moving finds several important applications in augmented
reality as well as the creation of special effects in the post-
production industry [26]. To provide the versatility required
by such applications, very demanding camera tracking re-
quirements, both in terms of accuracy and speed, are im-
posed [3].

Optical and electromechanical camera tracking are tech-
nologies that have successfully proven themselves in appli-
cations such as virtual studio TV shooting [27]. Neverthe-
less, apart from suffering from range limitations, such tech-
nologies call for special modifications of the environment
that render them inapplicable for tracking in unprepared,
unstructured scenes, large scale environments or archive
footage. Being non-intrusive, passive and capable of cov-
ering large fields of view, computer vision techniques pro-
vide an attractive alternative to optical and electromechani-
cal tracking methods for recovering camera motion. Track-
ing the pose of a camera using the images it acquires while
moving freely in unmodeled, arbitrary environments, is a
very challenging problem in visual motion analysis. Dur-
ing the last fifteen years, numerous research efforts have
focused on vision-based camera tracking within the frame-
work of the more general structure from motion problem
[8]. Before briefly reviewing a few representative ones, it
is pointed out that our requirement for operation in unpre-
pared environments exclude methods such as [14] that rely
upon the presence of fiducial markers or special calibration
objects in the environment.

Methods that avoid making any assumptions regarding
the environment exploit geometric constraints that arise
from the automatic extraction and matching of appropri-
ate 2D image features such as corner points. Corners are
simply points of localized image structure, formed at the
boundaries of different brightness image regions. Depend-
ing on their mode of operation, proposed approaches can



be classified into two categories. The first category con-
sists of methods designed for off-line use on pre-recorded
image sequences [7, 5]. Such methods process image data
in a batch mode and usually are non-causal, employing
both past and future frames for deducing the camera motion
corresponding to the current frame. Commercially avail-
able camera tracking software products such as boujou,
MatchMover, 3D-equalizer and PFTrack also fall
into this category. Albeit accurate, batch techniques share
the limitation of being computationally demanding due to
the use of global bundle adjustment, which involves the so-
lution of large, non-linear optimization problems [25]. This,
plus the requirement of operating on the whole sequence at
once, makes batch methods inappropriate for use in time-
critical applications. Methods operating in a continuous
mode, in which images are processed incrementally as ac-
quired, constitute the second class of camera tracking tech-
niques [4, 24, 2]. Typically, such methods are causal, rely-
ing only on past frames for estimating the camera motion
for the current one.

In this paper, a novel feature-based approach to camera
tracking is presented. The method is based on tracking a
3D plane through a homography “chaining” operation that
is applied to triplets of consecutive images through a sliding
time window and exploits the fact that all images of a planar
surface acquired by a rigidly moving observer depend upon
the same 3D geometry. The tracked plane is not required to
be physically present in the scene; it can be a virtual one.
Plane tracking is achieved by tracking the 2D projections
of points from all over the scene. By doing so, all infor-
mation conveyed by matching points is taken into account,
without the need for continuously maintaining a segmenta-
tion of the tracked plane from the scene. The motion model
estimated for the tracked plane is exact and fully projective
(i.e. a homography) and no camera calibration information
or 3D structure recovery is necessary. Knowledge of the ho-
mographies induced by the virtual 3D plane between each
pair of successive images, allows the corresponding projec-
tion matrices encoding camera motion to be expressed in a
common projective frame and therefore to be recovered di-
rectly, without the need for retrieving structure. Then, 3D
structure is recovered from the projection matrices and used
for refining the latter through local bundle adjustment. In-
tended for use in close to on-line applications, the proposed
method is designed to operate in a continuous mode. The
proposed method follows a strategy similar to [2]. However,
it is based on much simpler constraints whose derivation is
shorter and does not involve neither the trifocal tensor nor
tensorial notation. Moreover, our method tracks 3D planes
by minimizing a geometrically meaningful criterion with
respect to a set of four free parameters, which, according
to the subspace constraint of [21], is a theoretically mini-
mal one. Compared to [2] and [24] which estimate twelve

and eight parameters respectively, the estimation of just four
parameters is both faster and more accurate.

The rest of the paper is organized as follows. Section 2
explains the notation that will be used throughout all equa-
tions and provides some background knowledge. Section 3
briefly describes plane tracking and section 4 builds upon
it for solving the problem of camera tracking. Since the
tracked plane is not required to be physically present in the
scene, any virtual 3D plane suffices for the purposes of cam-
era tracking. Section 5 explains how can such a virtual plane
be selected. Implementation issues and sample experimen-
tal results are reported in section 6. The paper is concluded
with a brief discussion in section 7. An extended version of
this paper can be found in [15].

2 Notation and Background

In the following, vectors and arrays appear in boldface
and are represented using projective (homogeneous) coor-
dinates. The symbol � denotes equality of vectors up to an
arbitrary scale factor. 3D points are written in uppercase,
while their image projections in lowercase (e.g. � and � ).

A well-known constraint for a pair of perspective views
of a rigid scene is the epipolar constraint. This constraint
states that for each point in one of the images, the corre-
sponding point in the other image must lie on a straight line.
Assuming that no calibration information is available, the
epipolar constraint is expressed mathematically by a �����
singular matrix, known as the fundamental matrix and de-
noted by 	 . Denoting by 
 and 
�� the centers of projection
corresponding to the two perspective views, the points of
intersection of the line 


 � with the first and second im-
age planes are the epipoles, depending on relative transla-
tional motion only and being denoted by � and ��� , respec-
tively. For example, epipole ��� corresponds to the uncali-
brated translational component of the camera motion from
the first to the second image. Given 	 , the epipoles can be
recovered by finding the kernels of 	 and 	�� . Another im-
portant concept in projective geometry is the plane homog-
raphy � , a nonsingular ����� matrix which relates two un-
calibrated retinal images of a 3D plane. More specifically,
if � is the projection in one view of a point on the plane
and ��� is the corresponding projection in a second view,
then the two projections are related by the linear projective
transformation ��������� . For more detailed treatments of
the application of projective geometry to computer vision,
the interested reader is referred to [13].

As shown in [21], the fundamental matrix and plane ho-
mographies are tightly coupled. More specifically, the en-
tire group of all possible homography matrices between two
images lies in a subspace of dimension 4, i.e. it is spanned
by 4 homography matrices. These 4 homography matri-
ces are such that their respective planes do not all coincide



with a single point. Shashua and Avidan show in [1] that
given the fundamental matrix 	 and the epipoles � and � �
in an image pair, a suitable basis of 4 homography matri-
ces ������� ���!�"��# , referred to as “primitive homographies”,
is defined as follows��$�%'& ()$+*-,.	/�102%435�"67�"� 8:9<; ��#=%>� �@?�� � (1)

where ()$ are the identity vectors (���%BAC35�ED<�ED5F , ("GH%AID�� 3:�"D5F and ()JK%LAID<�ED<��3MF , &N� *C, designates the skew sym-
metric matrix representing the vector cross product (i.e. for
a vector O , & OP* , is such that & OP* ,RQ %SOT� Q �VU Q ) and? is a vector such that ? ���XW%'D . This last requirement can,
for example, be satisfied by defining vector ? so that each of
its elements has an absolute value of 1 and a sign identical
to that of the corresponding element of � . The first three
homography matrices ( � � , � G and � J ) are of rank 2 and
span the subgroup of homography matrices whose under-
lying 3D planes contain the center of projection 
�� of the
second camera. On the other hand, ��# by definition cor-
responds to a 3D plane not coincident with 
�� but going
through the center of projection 
 of the first camera, thus
having rank 1. Knowledge of the 4 primitive homographies
allows any other homography � to be expressed as a linear
combination �Y% #Z $N[\�^] $ � $ � (2)

for some scalars ] $ .Next, a result due to Shashua and Navab [22] that plays
a central role in the development of the proposed method
is presented. Let _ be an arbitrary 3D plane inducing a
homography � between two images. Let also �K` be a 3D
point not on _ projecting to image points ��` and ���` and
assume that � has been scaled to satisfy the equation � �` ����R`bac�P� . Then, for any 3D point � projecting onto � and��� , there exists a scalar d such that� � �e���fagdh� � (3)

Equation (3) dictates that the position of projected points in
the second image can be decomposed into the sum of two
terms, the first depending on the homography induced by _
and the second involving parallax due to the deviation of the
actual 3D structure from _ . The term d in Eq. (3) depends
on � but is invariant to the choice of the second image and
is termed as relative affine structure in [22]. Given � , � � , �
and �P� , the term d corresponding to � can be computed by
cross-multiplying both sides of Eq. (3) with �\� , which after
some algebraic manipulation yields dK%'Ai���j�k� � F � A@� � ��l�iFbm�nNn ���o�k�P�"nNn G .
3 3D Plane Tracking

Point � ` plays a special role in the derivation of Eq. (3).
Specifically, recall that � and �7� are homogeneous entities,

defined up to an arbitrary scale factor. Therefore, by fixing� ’s scale, � ` serves to establish a common relative scale
between � and �P� . Notice, however, that in the case that �
has not been scaled with the aid of �K` , Eq. (3) continues
to hold for some d � that is a scaled version of d defined by
Eq. (3). In addition, in this case d is not invariant to the
choice of the second view. What remains invariant though,
is the ratios of d ’s computed from different image pairs.

Suppose now that three consecutive images p�� , p!G andp!J are available and that a planar homography between p��
and p G has been estimated. Considering the two pairs ( p � ,p G ) and ( p G , p J ) formed by the three images, a key obser-
vation is the fact that image p G is shared by both of these
pairs. Hence, the relative affine structure defined when p G
assumes the role of the first image in Eq. (3) is insensitive
to the choice of the second image (i.e. p � or p J ) completing
the pair. This allows one to estimate the relative affine struc-
ture from the pair ( p � , p G ) and the corresponding homogra-
phy and then use this estimate for computing the plane ho-
mography for the pair ( p G , p!J ). This, in effect, constitutes
a chaining operation involving plane homographies. The
process just outlined is explained in more detail in the next
section.

3.1 Chaining Homographies Among Consecutive
Frames

Assume that q triplets of matching pointsA@� $ �e���$ �e���:�$ F , 0r%s3:� �������Eq , are available across the
three images p � , p G and p J respectively and that the homog-
raphy t from image p � to p G due to some 3D plane has been
estimated. In the remainder of this section, a procedure for
estimating the plane homography u induced by this 3D
plane between images p G and p J will be described.

From the set of matching pairs A@� $ �v� �$ F the epipolar ge-
ometry for images p � and p G and thus the epipole � in im-
age p � can be estimated. In a similar manner, the epipole� �w� in p J for the camera motion corresponding to framesp!G and p!J can be estimated from the set of matching pairsA@���$ �2���:�$ F . Recalling that the homography from image p G top � is simply t�x � , Eq. (3) takes the following form for all
point matches in those two images� $ �yt x � � �$ azd $ �h� (4)

Solving for d $ yields the former asd $ % Ait�x � ���$ �K� $ FC�vA@� $ �k�7FnNn ��$b���RnNn G � (5)

Regarding point matches in frames p G and p!J , Eq. (3) gives� �w�$ �yuK� �$ agd $ � �w� � (6)



where the d $ are given by Eq. (5). In order for Eq. (6) to
hold for those d $ , the scale of u in it has to be compati-
ble with that of the estimated �7�w� . For this reason, u in
Eq. (6) is no longer a homogeneous �{��� matrix but rather
an ordinary, inhomogeneous one. Equation (6) is thus a vec-
tor equation linear in u , providing three linear constraints
on the nine unknown elements of u . Due to the presence
of an arbitrary, unknown scale factor, only two of those
three constraints are linearly independent. Denoting the 0 -th
row of matrix u by |\�$ , writing � �w�$ %SAI} �l�$ �-~ �w�$ ��3MF-� and�l�:��%�AI���w�� �����w�� �����w�� F-� , those two constraints can be
explicitly expressed as 1| �J � �$ } �:�$'� | �� � �$ % d $ � �:�� � d $ � �w�� } �:�$| �J � �$ ~ �w�$�� | �G � �$ % d $ � �:�� � d $ � �w�� ~ �:�$ � (7)

Notice that Eqs. (7) do not require that the employed point
matches have been identified as lying on the plane. There-
fore, they do not require that the tracked plane has been seg-
mented from the rest of the scene and are applicable even in
the case of tracking a virtual (i.e. not physically present in
the scene) plane. Since |\�� ���$ %L���N�$ | � , Eqs. (7) can be
written in matrix form as� � �����$ � � �����$ }��:�$� � � � ���$ � ���$ ~ �:�$r���� |\�|�G|�J �� % � dh$��M�:�� � dh$I���w�� }h�:�$d<$i� �:�� � d<$i� �:�� ~ �w�$r� �

(8)
Thus, each triplet of corresponding points provides two

equations in the elements of u . Concatenating the equa-
tions arising from five triplet correspondences, a matrix
equation of the form �4|�% Q is generated, where � is a3 D���� matrix, | is a ����3 vector equal to AI|\�� �2|��G �2|��J F-�
and Q is a 3MD��g3 vector. Omitting any row of matrix � ,
yields a �K��� linear system with � unknowns that may be
solved using LU decomposition. In the case that more than
five triplet matches are available, Eq. (8) gives rise to an
over-constrained system from which u can be estimated in
a least squares manner with the aid of SVD.

According to the terminology of [13], ch. 3, the estima-
tion of u as described up to this point, is achieved with a
Direct Linear Transformation (DLT) algorithm. It is well-
known that DLT algorithms are not invariant to similarity
transformations of the image but depend on the coordinate
system in which image points are expressed. To alleviate
this and, at the same time, improve the condition number
of the DLT constraints, therefore ameliorating the accuracy
of results, the normalization technique of [10] is applied
to matching points prior to feeding them to the DLT al-
gorithm. Independently for each image, this normalization
consists in translating image coordinates so that the centroid

1Notice that all available point matches are assumed to originate from
actual image points (i.e. corners); no ideal points whose third coordinate
is zero exist among them.

of points is brought to the origin of the coordinate system,
followed by an isotropic scaling that maps the average point
to AC3:� 3:� 3MFC� . The normalizing transformation for image 0 is
expressed by a ���=� linear transformation ��$ . Notice that in
this case, the normalized version �t�%y�vG tk� x �� of t must
be employed in Eq. (5) along with the normalized points
and epipole. The normalized epipole can be recovered from
the normalized fundamental matrix �	�%4� x��G 	�� x �� . After
the application of DLT, the computed homography estimate�u needs to be denormalized using � J x � �u�� G .

In practice, the set of available matching point triplets is
almost certain to contain errors due to false matches and er-
rors in the localization of image corners. Consequently, in
order to prevent such errors from corrupting the computed
homography estimate, the group of DLT constraints should
be employed within a robust regression framework. In our
case, the Least Median of Squares (LMedS) [20] robust esti-
mator is employed to iteratively sample random sets of nine
constraints, recover an estimate of matrix u from each of
them and find the estimate that is consistent with the major-
ity of the available constraints. To ensure that those random
sets arise from points having a good spatial distribution over
the image, random sampling is based on the bucketing tech-
nique of [28]. Finally, u is recomputed using least squares
on the set of constraints having the largest support, i.e. the
LMedS inliers.

Since the DLT constraints minimize an algebraic error
term with no physical meaning, the estimate computed by
LMedS is refined by a non-linear minimization process that
involves a geometric criterion. Letting ��A@�2�f ^F represent
the Euclidean distance between the inhomogeneous points
represented by � and   , the non-linear refinement mini-
mizes the following sum of squared distancesZ $ ¡ ��A@���l�$ �2uK���$ agd $ �l�:�iF G a��A@� �$ �ou�x � � �5�$ � ¢£¢ ¤ � �¥ ¢£¢¢£¢ ¦§¤ �¥@¨�© ¥+ª ��� ¢£¢ d $ ujx � � �:� F G�« (9)

with respect to u . This criterion involves the mean sym-
metric transfer error between actual and transferred points
in the two images and is minimized by applying the
Levenberg-Marquardt iterative algorithm as implemented
by MINPACK’s LMDER routine [18], initialized with the
least squares estimate from the LMedS inliers. To safe-
guard against point mismatches, the non-linear refinement
is performed using only the point features that correspond
to inliers of the LMedS homography estimate.

Having presented the basic 3-frame chaining operation,
it is straightforward to extend it to handle a sequence of
more than three views. For example, in order to track the
plane in a new image p # , the homography u computed in
the previous step between frames p G and p J becomes the



new t for the triplet p G , p J and p # . Note also that the epipo-
lar geometry of frames p G and p J has been computed during
the previous iteration, therefore only the epipolar geometry
between frames p�J and p¬# needs to be estimated during this
step. A final remark concerning the extension of the chain-
ing operation to more than three frames is that the estima-
tion of u can benefit from point trajectories that are longer
than three frames: If, for example, a four-frame point trajec-
tory is available for images p � , p G , p J and p # , the constraints
generated by the triplet p � , p J and p # can be combined with
those arising from p G , p J and p # . This variant of chaining
from multiple triplets can be carried out by maintaining a
small moving window of past frames.

3.2 Reducing the DOFs of Plane Tracking

In the following, the basic method of the previous section
will be refined, aiming to derive a model involving fewer,
therefore easier to estimate, degrees of freedom (i.e. free
variables). As already mentioned, the entire group of all
possible homography matrices between two images lies in
a subspace of dimension 4, spanned by the 4 primitive ho-
mographies of Eq. (1). Knowledge of those homographies
allows any other homography � to be expressed as a linear
combination encompassing 4 scalars ] $ (see Eq. (2)). This
implies that when the primitive homographies for frames p G
and p�J have been computed, the rows |^�$ of matrix u in
Eqs. (7) depend on four rather than nine parameters. There-
fore, the process described in section 3.1 can be slightly
modified to estimate the coefficients ] $ making up u in-
stead of directly estimating the latter. In other words, both
the linear and the non-linear estimation processes that have
been described above are performed with four rather than
nine unknowns. This reduction in the dimensionality of
the problem is of utmost importance since fewer degrees of
freedom entail less computation time for the homography
(particularly for the non-linear refinement) as well as more
accurate estimates. It has been found experimentally that
the execution time for plane tracking using the formulation
involving ] $ is by an order of magnitude shorter than that
required when estimating u directly. Space considerations
prevent us from deriving here the exact form of Eqs. (7) and
Eq. (8) after introducing the coefficients ] $ .
4 Camera Tracking

In this section, ��$@­ � and �P$I­ � will be used to denote re-
spectively the tracked plane homography and the epipole inp � for the image pair p�$ and p � . Assume also that �j�)­ G has
been supplied and, using the method outlined in section 3,
the plane homography � G!­ J has been estimated from the
matching triplets among images p � , p G and p J . Recalling

that these homographies are, by computation, scale com-
patible with the corresponding epipoles, Eq. (3) yields the
image projections of a 3D point � as �®�¯��G�­ �)����a�dh�PG!­ �
and ��� �o����G�­ J!����agdh�PG!­ J , implying that �S�±°���� � �§d7² � .

Therefore, a consistent set of projective camera matrices in
canonical form for the three views is given by [13, 2]:³ � %'& � G�­ � n�� G!­ � *5� ³ G %'& ´
n � *l� ³ J %4& � G!­ J n�� G�­ J *l� (10)

where ´ denotes the �2��� identity matrix. Since it is custom-
ary to express the camera matrices relative to the first imagep � , application of an appropriate 3D projective mapping can
transform Eqs.(10) so that

³ � becomes equal to & ´/n � * . In-
deed, right multiplication of the camera matrix & µ1n Q * by
the ¶{�k¶ matrix � given by��% � µ�x � � µ�x � Q� � 3 � (11)

makes the former equal to & ´/n � * . Therefore, to make
³ �

equal to & ´
n � * , the projection matrices in Eq. (10) should
be right multiplied by the matrix given by Eq.(11) forµ·%¸��G�­ � and Q %¸�PG�­ � , which, taking into account that� x �� ­ $ � � ­ $§%¯�P$I­ � and ��G!­ J/���¬­ G/%'���)­ J , yields after some
algebraic manipulation³ � %'& ´
n � *:� ³ G %4& � �)­ G nw� �¬­ G *l� ³ J %4& � �)­ J n�� �¬­ J *l� (12)

Suppose now that by employing the plane tracker for the
image triplet p!G , p!J and p¬# , the homography ��JE# induced
by the tracked plane has been estimated. If

³ J were equal
to & ´
n � * , a projection matrix for p # consistent with the pro-
jection matrices of the previous three images would simply
be & � J�­ # n�� J�­ # * . Here, the former should be right multi-
plied by the matrix given by Eq.(11) for µ�%V� �¬­ J andQ %¯� �)­ J , to account for the fact that the employed coordi-
nate system coincides with that of p � . Thus,

³ # is equal to& � J�­ # � �¬­ J n�� J!­ # � �¬­ J ac� J�­ # * , which in turn is simplified
to & � �)­ # n�� �¬­ # * . Clearly, the procedure for obtaining

³ # just
described, can be generalized to incorporate the projection
matrix

³ $ corresponding to any image p�$ with 0�¹y¶ . Hith-
erto, knowledge of the plane homographies has permitted
the direct recovery of a set of consistent projective camera
matrices, without the need for 3D structure estimation and
resectioning.

In order to relieve the camera tracker from the compu-
tational overhead associated with their estimation, the cam-
era intrinsic calibration parameters are assumed here to be
constant and known, either as a result of a self-calibration
algorithm or of an off-line, grid based calibration method
[17]. Given the �=�º� camera intrinsic calibration matrix » ,
a projective camera matrix can be upgraded to Euclidean by
right multiplication with the ¶{�K¶ matrix defined as� » ���¼ � » 3 � � (13)



where ¼ is such that the coordinates of the plane at infinity

in the projective reconstruction are given by ½ ¼ �b� 3!¾ � . Fol-
lowing this, the 3D translation and rotation corresponding
to the Euclidean camera matrix can be estimated with RQ
decomposition [13].

A rough representation of 3D scene structure in the form
of a point cloud can be built-up incrementally as new image
triplets become available. More specifically, when the cam-
era matrices for a new image triplet have been estimated,
the 3D coordinates of points that became visible in the new
triplet can be recovered with the aid of a triangulation algo-
rithm [12]. The main problem that needs to be addressed
by all triangulation algorithms is the fact that the 3D lines
defined by the camera optical centers and the correspond-
ing image projections are skew, due to mislocalized image
corners and errors in the estimates of camera matrices. In
this work, 3D structure recovery is achieved by exploiting
the knowledge of the camera intrinsic parameters in order
to express two back-projected 3D lines in an Euclidean co-
ordinate frame. Then, a 3D point is reconstructed as the
midpoint of the minimal length straight line segment whose
endpoints lie on the skew back-projected lines [9]. Since
an image triplet gives rise to three different image pairs,
the reconstructed point is taken here to be the centroid of
the three 3D points reconstructed from the triplets’ image
pairs. To avoid reconstructing points arising from tripletsA@�2�X� � ��� �5� F involving spurious matches, the projection
matrices of Eq. (10) are used to compute the corresponding
trifocal tensor using a closed form formula [11]. Then, point
matches �2�{��� from the first two views are used together
with the computed tensor to predict the position of the cor-
responding point � �:� in the third view. Point triplets for
which the distance between the actual and predicted third
view projections exceeds a certain threshold, are eliminated
from further consideration.

By trading some speed for increased accuracy in camera
tracking, structure information can be used in a local bundle
adjustment framework for evenly distributing the camera
tracking error among consecutive images belonging to the
same sliding time window. Assume that a narrow window
of ¿ past frames in some of which À Euclidean 3D points� � , ÁX%Â3b� ���EÀ are visible is maintained and let Ã $ andÄ $ be the estimates of camera orientation and position for
frame 0 . Then, the Euclidean projection matrix

³ $ is equal
to »Å& ÃK$Æn Ä $@* . Bundle adjustment amounts to estimating
the motion parameters ÃK$ and

Ä $ , 0�%Â3b��� �"¿ so that the
sum of squared image distances between reprojected and
detected, actual image points is minimized, namelyÇ�È 9É ¥ ­ Ê ¥ÆËZ $�[\� Z � ��A ³ $ � � �2� $� F G Ì ÈNÍEÎ ³ $ %e»Ï& Ã $ n Ä $ *��

(14)
where ��A@�2�� \F denotes the Euclidean distance between

the inhomogeneous image points represented by � and   ,
and � $� is the detected projection of point Á in image 0 ,0k%·3b� ���E¿ . Rotation matrices ÃK$ are parametrized us-
ing an axis-angle representation; a parametrization based
on quaternions is also possible. To keep the computational
overhead of the minimization low, observe that Eq. (14) is
minimized with respect to the 3D motion only and not the
3D structure. The minimization of Eq. (14) is performed
with the aid of a non-linear least squares algorithm [6] that
is initialized with the motion parameters computed directly
from the tracked plane homography. Finally, since the pro-
jective camera matrix for p $ will be needed for determining
the camera motion of subsequent frames, it is recomputed
as the product of the Euclidean camera matrix amounting
to the refined camera motion by the inverse of the matrix in
Eq. (13).

5 Using a Quasi-Metric Virtual Plane

As explained in section 4, camera tracking requires a
3D plane to be tracked over an image sequence. Although
planes abound in man-made environments and fully auto-
matic methods exist for detecting them [16], it would be
preferable if the proposed method did not rely on the as-
sumption of a physical 3D plane being present in the scene.
To achieve this, recall that any plane is adequate for camera
tracking as long as it can be tracked along the whole se-
quence. In order for plane tracking to commence, the plane
homography induced among the first two frames of the se-
quence must be available. Apart from this requirement,
however, no other information regarding the plane must be
supplied. The tracked plane can actually be a virtual one,
i.e. not corresponding to a physical 3D plane present in the
scene. All that is needed is that the plane’s homography
is compatible with the underlying epipolar geometry. The
rest of this section describes how can such a virtual plane
be selected.

Let ��$E�º� �$ �Ð0�%L35��� ���!�"q be a set of matching point
pairs in the first two frames. The virtual plane can be cho-
sen so that it approximates the set of available point matches
as much as possible. In other words, the virtual plane is sit-
uated “in-between” the 3D space points giving rise to the set
of available point matches. Assuming that the epipolar ge-
ometry corresponding to the two images has been estimated,
we therefore seek the planar homography � for which the
contribution of the parallax term in Eq. (3) is as little as
possible. It has been explained in section 2 that any planar
homography defined between two images can be expressed
as the linear combination of the four primitive homogra-
phies of Eq. (1). The sought � is thus computed from the
coefficients Ñ � ��Á�%'3:��� ���!�E¶ minimizing#Z� [\� A@Ñ � � � F^� $ �e� �$ �10o%435����� �!�Eq (15)



Each of the available point matches provides two indepen-
dent linear constraints for the Ñ � , therefore N matches yield
an overdetermined system from which the Ñ � can be esti-
mated using robust least squares. The LMedS robust esti-
mator is again employed to find the Ñ � corresponding to the
homography minimizing Eq. (15) for at least 70% of the
available matches; the estimated Ñ � are then refined by ap-
plying least squares to the constraints corresponding to the
LMedS inliers. The plane computed in this manner is re-
ferred to as “quasi-metric” in [1] and gives rise to a projec-
tive reconstruction of space that is characterized by a small
amount of projective distortion.

6 Implementation and Experimental Results

A prototype of the proposed camera tracking method
has been implemented in C. The point features that are re-
quired as input have been extracted and matched automat-
ically with the aid of the KLT corner tracker [23]. Using
the resulting matches, the epipoles were computed by ap-
plying SVD on the fundamental matrices estimated using
an implementation of [28].

The current implementation of the plane tracker per-
forms chaining based on constraints arising from three
frames at a time. Possible camera lens distortions (e.g.
radial distortion) are neglected. The intrinsic camera pa-
rameters (i.e. focal length, aspect ratio, principal point
and skew), were determined by using the auto-calibration
method described in [17]. This method exploits constraints
arising from a simplified version of the Kruppa equations
that is derived with the aid of SVD of pairwise fundamental
matrices. Throughout all experiments, the plane homogra-
phy between the first two images that is necessary for boot-
strapping plane tracking was determined as described in
section 5. ¿ in Eq. (14) is set to 5 and the minimization is
carried out using the NL2SOL algorithm [6], as implemented
by the DN2G routine in the PORT3 library from Bell Labs.
Compared to the Levenberg-Marquardt algorithm as imple-
mented by the LMDER routine [18], NL2SOL was found in
this case to converge faster while producing results of sim-
ilar accuracy. The NLSCON non-linear least squares rou-
tine [19] has also been evaluated and yielded results slightly
worse than those of DN2G. The jacobians of Eq. (9) and
Eq. (14) that are necessary for the non-linear minimizations
are computed analytically with the aid of MAPLE’s symbolic
differentiation facilities.

Rigorous performance evaluation of camera tracking for
an image sequence is difficult, due to the fact that ground
truth for the camera motion is usually unavailable. For
this reason, we have chosen to indirectly evaluate camera
tracking from the sequences resulting from augmenting
the original ones with artificial 3D objects. To achieve
this, the estimated camera trajectories were exported

(a) (b)

(c) (d)

Figure 1. (a) the first frame from the “house”
sequence (courtesy of the INRIA MOVI
Group), (b) and (c) top and side views of the
3D reconstruction and the camera trajectory
and (d) first frame of the original sequence
augmented with a virtual pine tree.

to the 3DSMax graphics package using MaxScript and
then the augmented sequences were generated with the
aid of 3DSMax’s rendering engine that used the origi-
nal sequence as a background. The positioning of the
artificial graphical objects into the scene was guided by
the structure information also provided by the camera
tracker. Sample augmented sequences can be found at
http://www.ics.forth.gr/cvrl/demos.html.
Due to space limitations, results from just one experiment

are included here; additional results can be found at the
above URL as well as in [15]. The reported experiment
was performed on the well known “MOVI house” image
sequence, consisting of 119 frames acquired by a fixed
camera as a model house on a turntable made a full
revolution around its vertical axis. This is equivalent
to the camera making a complete circular orbit around
the house. The first frame of the sequence is shown in
Fig. 1(a), Figs. 1(b)-(c) illustrate different views of the
VRML 3D model recovered using the proposed method
on odd numbered frames and Fig. 1(d) shows a frame of
the original sequence augmented with a virtual pine tree.
In Figs. 1(b)-(c), the 3D camera locations are indicated
with red pyramids whose apexes are located on the camera
optical centers, the green curve connecting the optical
centers corresponds to the recovered camera trajectory
whereas the white dots illustrate the reconstructed 3D



points cloud. As can be seen from them, the estimated
trajectory is very close to being a full circle. The average
running time of the proposed tracking method for each
image frame was 317 ms on an Intel P4@1.8 GHz running
Linux. Most of this time is spent in the bundle adjustment
of Eq. (14) and does not include the time required for
matching between 200 and 330 points between successive
frames. The aforementioned cycle time is expected to
decrease considerably by employing an implementation of
bundle adjustment which explicitly takes into account the
sparseness of the matrices involved in the minimization of
Eq. (14). For comparison, note that the time required by
existing commercial products such as 2D3’s boujou for
batch camera tracking on such sequences is in the order of
several minutes for the whole sequence.

7 Conclusions

This paper has presented a method for automatic camera
tracking across an image sequence acquired without mod-
ifying the imaged environment. The method is based on
tracking a virtual 3D plane, a task involving the estimation
of a quadruple of plane parameters that is achieved using
a combination of linear and non-linear optimization tech-
niques operating on sets of corner matches. Knowledge of
the homographies induced by the same 3D plane across the
whole sequence permits the direct recovery of the camera
projection matrices and thus of the Euclidean camera 3D
motion, which is later refined through a local bundle ad-
justment process. The proposed method is causal and has
reasonable computational requirements, permitting an effi-
cient implementation on commodity hardware. Although
not statistically optimal in the MLE sense, the results of the
proposed method are of very satisfactory accuracy for vari-
ous types of image sequences.
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