
FORTH-ICS/TR-339 July 2004

Design of a 32x32

Variable-Packet-Size

Buffered Crossbar Switch Chip

Dimitrios G. Simos

Abstract

Switches and routers are the basic building blocks of most modern interconnections and
of the Internet, aiming at providing datapath connectivity, while solving output contention, the
major problem of distributed, multi-party communication. The latter is accomplished through
buffering, access control, flow control, or datagram dropping. Modern high-end switches are called
upon to provide aggregate throughputs in the terabit per-second range, which greatly challenges
both their architecture and implementation technology.

The aim of this work is to prove the feasibility of a novel buffered crossbar organization,
operating directly on variable-size packets. Such operation, combined with distributed scheduling,
removes the need for internal speedup, thus fully utilizing the incoming throughput.

We proved the feasibility of this novel architecture by fully designing such a 32x32 buffered
crossbar, in the form of an ASIC chip core, providing 300 Gbit/sec of aggregate bandwidth
in 0.18 µm technology, or higher throughput in more advanced technologies. The design was
synthesized, placed, and routed, using a hierarchical ASIC flow, resulting in a 420 mm2, 6 Watt
core in 0.18 µm CMOS technology. In 0.13 µm CMOS, area would be reduced to 200 mm2, and
power consumption to 3.2 W. Power estimation showed that the majority of power is consumed
in driving cross-chip wires, while memories and logic are minority consumers.

Hierarchical ASIC flows are difficult to use, but became necessary due to the large size of the
design. We present the detailed system design (block diagrams as well as critical circuit details),
followed by a detailed description of the design flow, including its numerous intricacies and the
lessons that we learnt. In particular, we describe the choice of a hierarchy that is appropriate
for effective placement, routing, and timing behavior. The final placement and routing showed
that the synthesis tool had underestimated the design area by 30%, due to the dominance of long
(end-to-end) wires in this design.

i

ii

iii

Design of a 32x32

Variable-Packet-Size

Buffered Crossbar Switch Chip

Dimitrios G. Simos

Computer Architecture & VLSI Systems (CARV) Laboratory
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)
Science and Technology Park of Crete

P.O. Box 1385, Heraklion, Crete, GR-711-10 Greece
Tel.: +30-81-391660 Fax: +30-81-391661

email: simos@ics.forth.gr

Technical Report FORTH-ICS/TR-339 – July 2004

Copyright 2004 by FORTH

Work performed as a M.Sc. Thesis at the Department of Computer Science,
University of Crete, under the supervision of prof. Manolis Katevenis

Abstract

Switches and routers are the basic building blocks of most modern inter-
connections and of the Internet, aiming at providing datapath connectivity, while
solving output contention, the major problem of distributed, multi-party commu-
nication. The latter is accomplished through buffering, access control, flow control,
or datagram dropping. Modern high-end switches are called upon to provide ag-
gregate throughputs in the terabit per-second range, which greatly challenges both
their architecture and implementation technology.

The aim of this work is to prove the feasibility of a novel buffered crossbar
organization, operating directly on variable-size packets. Such operation, com-
bined with distributed scheduling, removes the need for internal speedup, thus
fully utilizing the incoming throughput.

We proved the feasibility of this novel architecture by fully designing such a
32x32 buffered crossbar, in the form of an ASIC chip core, providing 300 Gbit/sec
of aggregate bandwidth in 0.18 µm technology, or higher throughput in more ad-
vanced technologies. The design was synthesized, placed, and routed, using a
hierarchical ASIC flow, resulting in a 420 mm2, 6 Watt core in 0.18 µm CMOS
technology. In 0.13 µm CMOS, area would be reduced to 200 mm2, and power

iv

consumption to 3.2 W. Power estimation showed that the majority of power is
consumed in driving cross-chip wires, while memories and logic are minority con-
sumers.

Hierarchical ASIC flows are difficult to use, but became necessary due to the
large size of the design. We present the detailed system design (block diagrams as
well as critical circuit details), followed by a detailed description of the design flow,
including its numerous intricacies and the lessons that we learnt. In particular,
we describe the choice of a hierarchy that is appropriate for effective placement,
routing, and timing behavior. The final placement and routing showed that the
synthesis tool had underestimated the design area by 30%, due to the dominance
of long (end-to-end) wires in this design.

v

Acknowledgments
This work was performed at and financially supported by the Institute

of Computer Science (ICS) of the Foundation for Research & Technology -
Hellas (FORTH), Heraklion, Crete, Greece, partly through project 002075
”SIVSS” of the European Union FP6 IST Programme. The CAD tools were
provided by the University of Crete, through Europractice.

Besides these organizations, I would also like to thank all those people
who helped me throughout this work. First of all, I would like to thank my
supervisor, prof. Manolis Katevenis for defining the chip architecture after
originally observing that a buffered crossbar can operate directly on variable-
size packets. Also, more importantly, his priceless suggestions on organizing
and carrying out a project, and his simple yet scientific way of thinking and
teaching, became valuable guides for me during the last few years. I deeply
thank him for that.

I would also like to thank the rest of the Packet Switch Architecture
group at ICS-FORTH for their help: Dr. Ioannis Papaefstathiou and prof.
Dionysios Pnevmatikatos for their suggestions and observations on all the de-
sign stages of the chip –their experience in the development of large projects
proved invaluable; Nikolaos Chrysos and Georgios Passas, for our conver-
sations and their help during the last 2 years; Giorgos Kalokairinos for his
support.

Also, I give my thanks to Dr. Christos Sotiriou for his suggestions on the
back-end flow; Vassilis Papaefstathiou for our valuable hardware-oriented
discussions during our breaks; and Michalis Ligerakis for his help.

I would also like to thank Dr. Ioannis Papaefstathiou, prof. Aggelos Bilas,
Aggelos Ioannou, Nikolaos Chrysos, Olga Dokianaki, and Evriklis Kounalakis
for their corrections on parts of this thesis report.

Thanks are also due to all my friends, especially to: Dimitris Zaharakis,
Katerina Iskioupi, Thom Kleitsakis, Haris Kondylakis and Dimitris Chris-
telis. Your support will never be forgotten.

I also thank my brothers, Panos and Vassilis, and, last but not least, my
deepest thanks go to my parents, Giorgos and Sevasti, for their support all
these years: nothing would have been accomplished without your contribu-
tion; I therefore dedicate this work to you.

vi

Contents

1 Introduction and Motivation 1
1.1 Queueing Architectures . 1
1.2 Related Work . 6

1.2.1 Unbuffered Crossbar Implementations 6
1.2.2 Buffered Crossbar Implementations 7

1.3 Contributions of this Work . 8
1.4 Motivation: Large-Scale CICQ Switch Feasibility 9

1.4.1 Transistor sizes . 10
1.4.2 On-Chip Memory . 10
1.4.3 Chip/Wafer Sizes . 11
1.4.4 Power Consumption 11

2 Switch Organization and Operation 12
2.1 Introduction . 12
2.2 Internal Architecture . 12

2.2.1 Crosspoint Blocks (Crosspoints) 14
2.2.2 Output Schedulers . 17
2.2.3 Credit Schedulers . 19
2.2.4 Line Card Logic . 22

2.3 Conclusions . 24

3 Logic Synthesis 25
3.1 Introduction . 25
3.2 Synthesis Flow . 25
3.3 Flat vs. Hierarchical Synthesis 26
3.4 Synthesis Results . 28
3.5 Post-synthesis Verification & Conclusions 29

4 Placement and Routing 31
4.1 Flat vs. Hierarchical Placement & Routing 31
4.2 Choosing a Hierarchy Organization 33
4.3 Placement and Routing Flow 35
4.4 Column Placement and Routing 38
4.5 Credit Scheduler Placement and Routing 38

vii

CONTENTS viii

4.6 Adding Another Level of Hierarchy: Top Level Placement and
Routing . 39

4.7 Chip Packaging and Placement and Routing Results 41
4.7.1 Chip Packaging . 41
4.7.2 P&R Results . 43

4.8 Conclusions: Dealing With Large and Regular Designs 44

5 Power Consumption 46
5.1 Crossbar Switch Power Consumption Estimation: Work Done

Sofar . 48
5.2 Power Analysis Flow: RTL vs. Gate Level vs. Post-P&R . . . 49

5.2.1 Gate Level Power Estimation 50
5.2.2 Post-P&R Power Estimation 51

5.3 Switch Power Consumption Breakdown 52
5.4 Conclusions . 54

6 Conclusions and Future Work 56

A Organization of a 4-input WRR Scheduler 58
A.1 Introduction to Scheduling Policies 58
A.2 Weighted Round Robin Scheduling 59
A.3 4×4 Output Scheduler Organization 60
A.4 WRR Output Scheduler Implementation 62

B Power Estimation Tutorial 64
B.1 Gate Level Power Estimation 64
B.2 Post-P&R Level Power Estimation 66

C Cadence Encounter Tutorial and Scripts 67
C.1 Setting the Environment . 67
C.2 Placement & Routing Stages 68

C.2.1 Design Import . 68
C.2.2 Floorplaning & Pin Assignment 68
C.2.3 Medium Effort Placement 70
C.2.4 Trial Routing . 71
C.2.5 Clock Tree Synthesis 73
C.2.6 Timing Driven Placement 75
C.2.7 Timing Driven Final and Global Route 75
C.2.8 Timing Reports and Design Optimizations 77

D Switch Synchronization Details 80
D.1 Introduction . 80
D.2 The Metastability Problem . 80
D.3 Synchronizer Requirements . 82
D.4 1-bit Synchronizer Design . 83

CONTENTS ix

E Power Optimization Techniques 84
E.1 RTL Power Optimization . 84

E.1.1 Glitch Minimization 84
E.1.2 Exploitation of Resource Sharing 85
E.1.3 Dynamic Power Management 86

E.2 Gate Level Power Optimization 88
E.2.1 Technology-independent Techniques 88
E.2.2 Technology-dependent Techniques 89

F LFSR Random Number Generators 93
F.1 Traffic Analysis . 93
F.2 Hardware Random Number Generators 94
F.3 Non-uniform Number Hardware Sequence Generation 96

G Thesis Overview 97

List of Figures

1.1 Conceptual Derivation & Taxonomy of Queueing Architectures 2
1.2 Output Queueing Architecture 3
1.3 Input Queueing Architecture 4
1.4 Combined Input Output Queueing or Internal Speedup Archi-

tecture . 5
1.5 Combined Input Crosspoint Queueing (CICQ) Architecture . . 6

2.1 32×32 Crossbar Switch Block Diagram 13
2.2 Supported Packet Format . 14
2.3 Crosspoint Block Diagram . 15
2.4 Crosspoint Organization . 15
2.5 1-bit Synchronizer Circuit . 17
2.6 RR Output Scheduler Block Diagram 18
2.7 RR Output Scheduler Organization 19
2.8 Credit Format . 20
2.9 RR Credit Scheduler Block Diagram 20
2.10 RR Credit Scheduler Organization 21
2.11 Line Card Block Diagram . 22
2.12 Line Card Packet Transmission FSM 23

3.1 Generic Synthesis Flow . 27
3.2 Synthesis Hierarchy Organization 28

4.1 Routing Global Wires in Hierarchical Designs 32
4.2 Switch Internal Organization: Block Interfaces 33
4.3 Column Orientation Alternatives 34
4.4 Memory Layout . 35
4.5 Placement and Routing Flow 36
4.6 Final Crosspoint Column Layout 39
4.7 16-column Higher Level P&R 40
4.8 Final Switch Core Layout . 41
4.9 Wire Bond and Flip Chip BGA Packaging Solutions 42

5.1 Dynamic Power is Dissipated Even If the Output does not
Change . 46

5.2 Components of Power Dissipation 47

x

LIST OF FIGURES xi

5.3 General Gate Level Power Estimation Flow 51
5.4 Power Consumption Breakdown of the 32x32 Buffered Cross-

bar Switch . 52
5.5 Power Consumption Percentage Breakdown of the 32×32 Buffered

Crossbar Switch . 52
5.6 Buffering of Long Input Lines. 53
5.7 Module Power Activity in Worst-Case Steady-state Operation 54

A.1 Priority Queue WRR Scheduling Example 60
A.2 4-Input WRR Output Scheduler Block Diagram 60
A.3 WRR Output Scheduler Internal Organization 62
A.4 WRR Output Scheduler Chip Layout 63

B.1 Power Savings vs. Power Estimation per Design Level 64
B.2 Detailed Gate-Level Power Estimation Flow 66

C.1 Chip Overview . 69
C.2 Clock Tree Example . 74

D.1 The Problem of Communicating Across Clock Domains 80
D.2 Flip-Flop Timing Specification 81
D.3 Long Delay and Metastability Due to Data Conflicts 81
D.4 The 2 Flip-Flop Synchronizer 83

E.1 Path Balancing and Depth Reduction Power Optimization . . 85
E.2 Exploitation of Resource Sharing Power Optimization 85
E.3 Pre-computation Power Optimization 86
E.4 Clock Gating Power Optimization 87
E.5 State Assignment Power Optimization 88
E.6 FSM Decomposition Power Optimization 89
E.7 Retiming Power Optimization 90
E.8 Technology Mapping Power Optimization 90
E.9 Technology Library Primitive Characteristics 91
E.10 Buffer Insertion Power Optimization 91
E.11 Dual-voltage Gate Power Optimization 92

F.1 IP Packet Length Distribution 94
F.2 4-bit Leap-forward Linear Feedback Shift Register (LFSR) Or-

ganization . 95

G.1 Project Timeline . 97

List of Tables

3.1 Synthesis Results . 29
3.2 Per Input/Output/Crosspoint Logic Costs 30

4.1 Placement and Routing Results 43

G.1 Thesis Code Size . 97

xii

Chapter 1

Introduction and Motivation

One important feature of crosspoint queued switches, which had not received
much attention until recently, is the ability to route directly variable size
packets, without the need to segment them at the ingress and reassemble
them at the egress; this feature, combined with other crosspoint queueing ad-
vantages, allowed us to design a fairly large (32×32) buffered crossbar switch
operating at nearly 10 Gbit/sec link speeds, with no internal speedup. The
design was synthesized and placed and routed by following a standard hier-
archical ASIC flow, which resulted in a 420 mm2, 6 Watt chip in a 0.18µm
technology. In this chapter we briefly present the most important Output
Queueing architectures, along with their corresponding advantages and dis-
advantages. We introduce Crosspoint Queueing and we present previous
work carried out in this field. Finally, we show roadmaps for current and fu-
ture technologies which prove that large-scale crosspoint queueing will soon
overcome its main drawback sofar, memory complexity.

1.1 Queueing Architectures

In order to introduce the reader to buffered crosspoint queueing, we first
have to look into the various queueing architectures that have emerged up
to now. Single-stage switches can be classified by their switching fabric and
buffer architectures. The switching fabric is the physical connection within a
switch between the input and output ports; it can be proved that all switches
need a crossbar inside their switching fabric [1]. Usually packets need to be
queued in buffers when short-term overloading occurs, where the sum of input
rates for a single output port exceeds the outgoing link rate; hence, buffer-
ing characterizes all kinds of switches. In Figure 1.1 we can see a concep-
tual derivation and taxonomy of all types of queueing architectures, namely
“Output Queueing (OQ)”, “Input Queueing (IQ)”, “Combined Input Output
Queueing (CIOQ - Internal Speedup)”, “Shared Buffer”, “Block Crosspoint
Queueing” and “Crosspoint Queueing (CQ)”; all architectures presented in
this figure are being demonstrated on a 8 × 8 switch - 8 inputs and 8 out-

1

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

puts. In this introductory section, we will analyze OQ, IQ, CIOQ, CQ, and
the not-illustrated combination of “Combined Input Crosspoint Queueing
(CICQ)”.

Queueing
Block Crosspoint

Queueing
Crosspoint
Queueing

Possibly Input
/ CIOQQueueing BufferShared

Output

Figure 1.1: Conceptual derivation & taxonomy of Queueing Architectures.

Traditional OQ is depicted in Figure 1.2. It is the reference switch archi-
tecture, as it is capable of delivering the best possible performance achievable;
this stems from the fact that, in the absense of head-of-line (HOL) blocking
at the ingress and internal blocking, minimum delay is guaranteed. HOL
blocking occurs when a packet at the head of a queue that is destined to a
congested output has to wait and possibly block other packets destined to
uncongested outputs. Unfortunately, this “ideal” architecture is infeasible in
the case of medium-to-large switch sizes and high link speeds, as it requires
large memory throughput, hence it is expensive, or even not implementable:
for a N port OQ switch, the buffer memory must operate N times the link
speed in order to avoid packet loss; this event can happen when all input

CHAPTER 1. INTRODUCTION AND MOTIVATION 3

ports transfer packets to a single output port 1. This “hot-spot” case occurs
very often in client/server applications, where a popular server is connected
to a single switch port and client requests arrive to the other N − 1 ports [2].
This speedup problem, combined with the fact that link speeds are increas-
ing much faster than memory speeds, makes pure OQ architecture infeasible
for gigabit rate networks. Furthermore, another disadvantage of the OQ
architecture is the inefficiency of the buffer space partitioning: some mem-
ories may remain “almost” empty, whereas others might be “almost” full,
although we have “paid” much in memory. This feature characterizes all
switch architectures, apart from the Shared Buffer one.

M 2

out 1 out 2 out 4out 3

in 1
in 2
in 3
in 4

M 1 M 3 M 4

Figure 1.2: Output Queueing (OQ) architecture: a 4×4-switch example is
illustrated.

Input Queueing (IQ - see Figure 1.3) uses buffers at the ingress to store
incoming data. These buffers must have a constant throughput of 2, and
can have a single queue, or multiple queues; in the latter case the architec-
ture is called “Advanced Input Queueing” or “Virtual Output Queueing”. IQ
switches with a single queue per input were studied and shown by Karol et al.
[4] to have a limiting throughput of around 60% of their incoming through-
put for Bernoulli packet arrivals with uniformly selected output ports. This
limited throughput is due to HOL blocking at the input queues. There are
two solutions to this problem: speedup the switching fabric 2, or implement
Virtual Output Queues (VOQs) at the ingress line cards; the latter solution
has proved to be the most feasible one; as a result, most architectures based
on IQ are of the VOQ-IQ style.

Unfortunately, if an unbuffered crossbar is used as the switching fabric of
a VOQ-IQ switch: (a) synchronous operation is imposed; and (b) crossbar
schedulers are inefficient, as it is hard to implement high throughput global
schedulers. Synchronous operation has the result that: (i) variable-size pack-
ets have to be segmented into fixed-size cells before entering the crossbar and
then reassembled at the egress; (ii) all cells have to be synchronized to a com-
mon internal clock, thus expensive synchronization circuits have to be used.

1Consider, for example the case when all inputs wish to write to the same output: in
the OQ example presented in Figure 1.2, memories must have write throughput of 4 and
read throughput of 1; note that if we economize on write throughput, like “Knock-Out”
architecture [3] does, then we risk to have to drop some packets on some situations.

2Later on we will see that fabric speedup in IQ switches is needed for scheduling reasons,
as well.

CHAPTER 1. INTRODUCTION AND MOTIVATION 4

Furthermore, crossbar schedulers: (i) find it difficult to operate in very short
cell times, as they cannot offer both high throughput and low latency; and
(ii) it is hard to offer weighted fair queueing (WFQ) QoS [1]. Scheduling in
VOQ-IQ switches is difficult because matching scheduling algorithms require
complete “knowledge” of the input-to-output port head-of-line transmission
requests 3.

N

input

data

grant

req

buffer
memory

input

data

grant

req

buffer
memory

2

N

input

data

grant1

req

buffer
memory

Scheduler
&

Bufferless
Switching

Fabric

21

Figure 1.3: Input Queueing (IQ) architecture.

These problems can be overcome in two ways: (a) by using internal
speedup and a traditional unbuffered crossbar switching fabric; and (b) by
using a buffered crossbar as the switching fabric, but with no (or little) need
for speedup. In the case that the switching fabric and schedulers are run
at a higher speed, we have the Interal Speedup or Combined Input Output
Queueing (CIOQ) switch (see Figure 1.4). Notice that most of the times
the buffers at the ingress will be almost empty, while the ones at the egress
almost full. Memory throughput still remains constant (1 + s, where s is the
speedup factor), but this speedup factor, usually two to three in commercial
products, actually limits the line rate, compared to the case when another
architecture that did not require speedup was used instead.

The other solution is to add buffers to the crosspoints (shown in Fig-
ure 1.5); this organization is called Combined Input Crosspoint Queueing
(CICQ). By this organization, information entering on different inputs can
be destined to any output, as it does not have to be delivered to that output
right away; it can be buffered to the corresponding crosspoint buffer instead.
As a result, scheduling decisions need not be correlated to each other. Hence,
no central scheduler is needed: input transmissions are independent of each
other and independent of output transmissions. The N 2 buffers needed in
the case of a N × N switch cannot be too large, due to implementation in-
feasibility. Instead, small buffers can be used, “backed up” by larger ones at

3Two of the most well known such scheduling algorithms are Parallel Iterated Matching
(PIM) by Anderson et al. [13] and iterated SLIP (iSLIP) by McKeown [12].

CHAPTER 1. INTRODUCTION AND MOTIVATION 5

(sN x sN)

output
queue

S > 1

1

output 1

1 input
queue

S > 1

input
queue

S > 1

input 2

input N

1
input 1

input
queue

S > 1

output
queue

S > 1

1

output
queue

S > 1

1

output 2 output N

Scheduler
&

Switching Fabric

Figure 1.4: Combined Input Output Queueing (CIOQ) or Internal Speedup
architecture: speedup factor is s.

the input line cards, in a VOQ organization. Backpressure ensures that no
crosspoint buffer will overflow.

Due to the fact that the schedulers operate independent of each other,
no synchronized decisions are imposed; hence fixed-size cell operation and
synchronization to a common clock are not needed any more. Furthermore,
the loosely-coupled input and output schedulers, although not solving the
matching problem in a short-term way 4, can find very efficient long-term
solutions to the crossbar scheduling problem, and are capable of offering
advanced QoS, without the need for speedup. Egress buffering is also not
needed, because no packet reassembly is required and no output queue can
be built up, as there is no internal speedup.

To summarize, by adopting the CICQ architecture: (a) scheduling is
simplified; (b) there is no need to mutually synchronize the line cards and to
segment and reassemble packets, as direct operation on variable-size packets
is trivially supported ; (c) no internal speedup is required; and (d) very little
(or no) memory is needed at the egress.

The major drawback of the CICQ architecture is the need to partition
the switching fabric memory into N 2 (in the N × N case) buffers that must
be located at the crosspoints. This characteristic prevented designers from
adopting this organization in the case of medium- or large-scale switch so-
lutions. In a later section we show that sub-micron technology transistor
downscaling and new memory technologies have eliminated this drawback.

As a conclusion, provided that an Advanced Input Queued (VOQ) switch

4As an unbuffered crossbar would do.

CHAPTER 1. INTRODUCTION AND MOTIVATION 6

in N

V
O

Q
s

SC
H

E
D

U
L

E
R

 &
 M

U
X

SC
H

E
D

U
L

E
R

 &
 M

U
XV

O
Q

s
V

O
Q

s SC
H

E
D

U
L

E
R

 &
 M

U
X

M

M

M M

in 1

out 1 out 2

M M

in 2

M M

M

out N

Figure 1.5: Combined Input Crosspoint Queueing (CICQ) architecture:
small buffers at each crosspoint are “backed-up” by larger VOQs at the
ingress line cards.

had a buffered crossbar as its switching fabric, scheduling would be simpler
and packets would not have to be segmented and reassebled; as a result, no
speedup would be necessary. In this work, we design, simulate, synthesize
and place and route such a (medium-scale) buffered crossbar switch, and
demonstrate its feasibility.

1.2 Related Work

In this subsection we present the most important unbuffered and buffered
crossbar switch implementations that have emerged during the last few years.
The aim is to show the progress that has taken place in this field, as well as
highlight the special characteristics of our switch architecture.

1.2.1 Unbuffered Crossbar Implementations

Various researchers have designed and implemented unbuffered crossbar switches
in the past.

Heer et al. [16] “Self-routing Crossbar Switch” was a 12 port, 2 Gbit/sec
per-port unbuffered switch implementation, running internally at 125 MHz
and consuming 2.5 W of power. The overal area of the pad-limited design
was 64 mm2, whereas the core area for the switching matrix, control logic
and memories was about 25 mm2 in a Siemens 0.25 µm tecnology.

McKeown et al. designed a 320 Gbit/sec, fixed-size packet, input queued
switch, with an unbuffered crossbar switching fabric and a sophisticated
scheduler, back in 1996, called “Tiny Tera” [11]. The switch had 32 input

CHAPTER 1. INTRODUCTION AND MOTIVATION 7

ports, operated at almost 10 Gbit/sec link speeds, distinguished 4 classes of
service and efficiently supported multicast traffic. The switch did not suffer
from HOL blocking, due to the use of Virtual Output Queues at the in-
put buffers, whereas the scheduling algorithm was iSLIP [12]. The crossbar
switch comprised of 1-bit crossbar slices and packets were segmented and
sent through the crossbar in 64-bit chunks.

1.2.2 Buffered Crossbar Implementations

Yoshigoe and Christensen simulated the idea of a “Parallel-Polled Virtual
Output Queued (PP-VOQ)” buffered crossbar switch [14], with crosspoint
memories of 1500 Bytes. The simulations, although of great value, did not
take into account: (a) small/large RTT values; and (b) complicated and
realistic enough traffic patterns. The same authors also proved the feasibil-
ity of a 24-port 10 Gbit/sec per-port FPGA implementation of a crossbar
switch [15]. The input and output scheduling was plain Round-Robin, but
by the use of a new Round-Robin Poller design. Target technology was the
Xilinx [9] Virtex II series of FPGAs. The overall design was placed on a bus
motherboard, with 6 line cards and one crossbar card attached to it. The
crossbar card consisted of four crossbar slices, each of which communicated
with the line cards, via the motherboard, through 24 “Rocket I/O” [10] tran-
ceivers (3.125 Gbit/sec each). Memory and VOQ datapath was 16 bits wide
and crosspoint buffer occupancy was transmitted over a dedicated parallel
interface from the crosspoints to the line cards. The auhors also implied that
larger switches would be feasible in the future, due to larger amount of fast
I/O circuits present in modern FPGAs. The switch did not support direct
routing of variable-size packets, which was implied in [14].

Kariniemi et. al. [17] developed a 4×4, 5 Gbit/sec ATM buffered crossbar
switch on an FPGA, for cable TV backbone networks. Internal SRAMs
varied in size, from 32 to one KByte, due to the various ATM rates supported,
with a total memory size of 1.12 Mbits.

One of the most important buffered crossbar implementations came from
IBM Zurich [18]. It was a 4 Tbit/sec incoming throughput switching fabric
(but 2.5 Tbit/sec incoming throughput switch), single-stage, combined input
(with VOQs) and crosspoint queued (CICQ) switch, that supported long
Round Trip Times (RTT), with line rates of 10 to 40 Gbit/sec (OC-192 to
OC-768). Owing to the size of the switching fabric and the number of line
cards, the switch was distributed over multiple racks, which could be as far
as hundreds of feet apart; totally, 40 switching fabric and 64 interface chips
were used. The switch supported 8 classes of service (priorities), but data
entering the switch was still segmented into fixed-size packets of 64 or 80
Bytes, resulting in a line rate speedup of 1.6, in order to compensate for the
switch packet header and segmentation overhead (hence the 4 Tbit/sec and
2.5 Tbit/sec difference). The chips were fabricated in a 0.11 µm technology
and standard cell design methodologies were used. RTT supported could

CHAPTER 1. INTRODUCTION AND MOTIVATION 8

be as large as 64 packet cycles between the line cards and the switch core,
and each crosspoint memory was 2 × RTT large, supporting both unicast
and multicast traffic, which translated into at least 8 KBytes each. The
same authors also stated that a die size of 250 mm2, a pin count of 1000
signal I/Os (totally 1500-pin package), and a single-chip power consumption
of under 25 W are cost-effective borders for current state-of-the-art CMOS
technologies 5.

Today, FPGA vendors provide buffered crossbar switch solutions based
on their latest FPGA models and I/O protocols, such as Altera [5] [6] and
Xilinx [7] [8]. Such switch proposals however, lack scalability and enable
designers to develop switches of sizes up to 16×16; larger switches can be
built by slicing the datapath to more than one FPGAs. Needless to say,
the bottleneck in this case is the large (O(N 2)) memory overhead, which
inherently characterizes the buffered crossbar architecture.

Katevenis et al. [19] designed and simulated various speedup-less buffered
crossbar sizes operating directly on variable-size packets, under complex and
realistic Internet backbone traffic patterns and under different Round Trip
Time (RTT) values 6. The results showed that a crosspoint buffer size of
MaximumPacketSize + RTT × LineRate is sufficient in order to achieve
full output utilization 7. Also, the organization proposed outperformed most
iSLIP-based unbuffered switches, with speedup factors up to 2, and per-
formed very close to the ideal OQ architecture, both in delay and throughput
terms.

1.3 Contributions of this Work

The major contributions of the project within which this work was performed
are: (a) to the best of our knowledge, it is the first ASIC core design of a
buffered crossbar switch directly supporting variable-size packets; (b) the
switch supports quite long RTT values efficiently; and (c) our performance is
closer to ideal Output Queueing than that of alternative current designs, as
proved in [19]. The contribution of this thesis is the design of the ASIC core,
from block diagram level, through RTL description, synthesis, placement,
routing, timing optimization, verification, and power estimation. The pur-
pose of this thesis was to prove the feasibility of single-chip buffered crossbar
switch designs in current and future CMOS technologies. In this thesis we
describe the internal organization of the switch chip, showing its simplicity.
Furthemore, we present the exact synthesis, placement and routing, power

5These figures were taken into account in our buffered crossbar switch, too: the 32×32
buffered crossbar switch designed in this work has an extrapolated area of 190 mm2 and
consumes 26.2 W in a 0.13 µm technology.

6Traffic generation is analyzed in detail in [29].
7For example, for a 1500 Byte maximum packet size (TCP/IP), 10 Gbit/sec link speed

and 400 nsec RTT, crosspoint buffer must be 2 KBytes.

CHAPTER 1. INTRODUCTION AND MOTIVATION 9

estimation, and timing optimization flows based on the available tools, fol-
lowed by fairly detailed tutorials; lastly, we provide guidelines which should
be kept in mind when designing very large chips, such as design partition-
ing, hierarchy organization, important synthesis advices and place & route
common problems and solutions.

1.4 Motivation: Large-Scale CICQ Switch Fea-

sibility

As mentioned earlier, the result of this work was the ASIC-flow implementa-
tion of a 32×32 buffered crossbar switch, supporting directly variable-packet-
sizes, and resulted in a 420mm2, 6 Watt chip in a 0.18µm technology. This
proves the feasibility of the concept: using a non-state-of-the-art technology
(0.18µm), a single-chip, multiport (32×32) switch can be designed and im-
plemented today. There are, however, two points worth mentioning: (a) the
area is so large, that fabrication will only be possible with the largest wafer
available today and yield will probably be unacceptably low; (b) the switch
can handle easily today’s traffic protocols (10/100 Mbps Ethernet packet
sizes, that is, up to 1500 Bytes), but with “only” 2 KBytes of embedded
SRAM per crosspoint, it lacks sufficient support for Gigabit Ethernet. Note
that Fast Ethernet (100 Mbps) is currently the most used Ethernet standard,
but Gigabit Ethernet is also starting to be used in backbone networks and 10
Gbps Ethernet is also emerging. Both support very large packet sizes, called
“Jumboframes”, with length of up to 9 KBytes.

In order to support such long packet sizes, without segementation and
reassembly, each crosspoint memory would have to be approximately 10
KBytes. Traditional SRAMs of such size have an area density of 12mm2

per Mbit[31], resulting in memory requirements of around 1.1mm2 for each
such memory! To make matters worse, such large on-chip SRAMs have ap-
proximately 0.3 mW/MHz power consumption, resulting in 90mW for each
of them and 2.9 Watts for the average worst-case scenario of a 32×32 switch,
where 32 memories are active all the time 8 ; the respective values for 2
KByte SRAMs are 0.28mm2, 33 mW per-memory and 1W worst case power
consuption.

As a result, feasibility of multiport switches, supporting future bottom-
layer protocols and technologies is a very important issue. In this section we
will examine various ways to overcome area limitations, by adopting emerg-
ing memory technologies. Transistor and chip sizes, as well as chip power
consumption are also taken into account in this technology roadmap analy-
sis. The latter seems to be another bottleneck in current and future ASIC
designs, as it determines chip performance and, most importantly, its cost.

8In section 5.3 we explain why this is the worst-case typical-operation scenario.

CHAPTER 1. INTRODUCTION AND MOTIVATION 10

1.4.1 Transistor sizes

Transistor sizing has been improving for the past 30 years according to the
“Moore’s Law”, which states that transistor density is doubling every 15-20
months. Although this law is somewhat philosophical and has changed a
little bit since it first appeared by Gordon Moore, it still remains the main
source for roadmap analyses, one of which appeares in [36].

Transistor down-sizing affects technology size, which is 90 nm today and
will fall to 65 nm by 2007 and 45 nm by 2010 9. The above roadmap actually
implies that logic becomes denser and denser, which means smaller chips.
Technology downscaling will allow densities of 220 MTransistors/cm2 at 80
nm (2005) to 450 MTransistors/cm2 at 57nm (2008). A switch chip like
the one presented will have an extrapolated area of 200 mm2 at 130 nm,
which becomes 110 mm2 at 90 nm and 80 mm2 at 80 nm technology, even
reaching 50 mm2 in the year 2008.

1.4.2 On-Chip Memory

The switch chip designed for this work has a total of 1024 SRAM memo-
ries (32 × 32), one in each crosspoint. This large memory count, along with
memory size (2KBytes), has been the main bottleneck in multi-port buffered
crossbar switches, as it is an inherent characteristic of the buffered crossbar
architecture. One technology that can overcome this limitation is Embedded
DRAM (eDRAM). eDRAM offers many advantages, compared to conven-
tional on-chip SRAM: (a) it is 1.5x to 4x denser[39], thus enabling smaller
die sizes; (b) although active power is comparable for both types of memories,
eDRAM draws orders of magnitude less standby current than a respective
SRAM; (c) eDRAMs provide very wide I/O, although their random access
times still lack those of conventional SRAMs (e.g. 90 nm fast eDRAMs
can run at exess of 300 MHz[40, 41], whereas embedded SRAMs have al-
ready passed the 500 MHz “barrier”); (d) eDRAMs store larger amount of
charge per cell than SRAMs, thus having minimal Soft-Error Rate per bit,
whereas SRAMs need specific error checking and correction (ECC) hardware
to overcome error limitations, with impacts on area and performance. One
potential disadvantage is increased eDRAM cost[42], which is due to: (a) 20%
increase to standard 6 Metal Layer process, due to increased mask number
required (incremental processing cost); and (b) 5-10% cost increase, due to
more complicated testing required. Nevertheless, incremental processing and
test costs, like the ones mentioned, are offset by improved silicon yield, as
eDRAMs are easily repaired when manufactured.

As a result, a 10 KByte eDRAM-per-crosspoint 32×32 switch will be
feasible in the very near future. Furthermore, taking into account that in the

9Note that advertisements may state that smaller technologies have been implemented
in the laboratory, but it can take 2 to 3 years until the first companies reach actual
production.

CHAPTER 1. INTRODUCTION AND MOTIVATION 11

switch designed for this thesis, memory area accounted for approximately
70% of the total chip core area, the use of eDRAMs of the same size would
lower chip size by approximately 50%, thus improving potential yield.

1.4.3 Chip/Wafer Sizes

Despite the tremendous technology improvements that will take place in the
next 15 years, companies seem to have agreed on a standard upper wafer
diameter limit of 300mm, which may grow to 450mm after nearly a decade.
ASIC chip sizes also seem to limit themselves to 570mm2. Having the tremen-
dous downsizing caused by transistor technology and a possible adoption of
new memory architectures in mind, overall yield will certainly increase, thus
making large crossbar switch chips even more feasible and cost-effective.

1.4.4 Power Consumption

Power consumption is possibly becoming one of the most critical elements in
hardware design today, as it can be the limiting factor of design performance.
Projections show [36] [37] that in a few years: (a) power delivery and dis-
sipation will be prohibitively high; (b) power density (W/cm2) will grow to
enormous figures 10. This results in large power/ground wiring requirements,
sets packaging limits, caused both by technology barriers, as well as cost11,
and impacts on signal noise margins and reliability. As a result, power con-
sumption must always remain as low possible, in order to avoid expensive
packaging and cooling solutions.

10Today, high-performance processors consume above 100 W (i.e., the 2 CPU, 2 MB
L2 cache IBM Power4 consumes 115W in a 3.8cm2 die) and have power densities near a
nuclear reactor, increasing linearly every year.

1150W/cm2 for forced-air cooling and 120 W total power consumption; today’s power-
dependent pricing is about 1$ per Watt.

Chapter 2

Switch Organization and
Operation

2.1 Introduction

In this chapter we present the organization and operation of the 32×32 cross-
bar switch. We decided to use 2 KBytes of memory per-crosspoint; this agrees
with the results presented in [19] and translates into 1500 Bytes for a max-
imum packet size, plus 500 Byte times for the Round Trip Time; the latter
corresponds to 400 nsec in 10 Gbit/sec link speeds, which is the line rate
assumed both in [19] and in this work. The remainder of this chapter is
as follows: first we present the switch “block-level” interface, determining
the input/output signals needed and outlining the main functional blocks.
Then we discuss switch internal block organization; we particularly describe
the organization of the Crosspoint, Output Scheduler and Credit Scheduler
sub-modules, followed by the enqueue logic, which we developed in order to
test the operation of the switch.

2.2 Internal Architecture

A top level block diagram of the switch can be seen in Figure 2.1. Switch
interface has thirty-two 32-bit wide input data lines, 32 “Start Of Packet”
and 32 “End Of Packet” input lines, thirty-two 32-bit wide data output
lines and thirty-two 16-bit wide credit output lines. Apart from the obvious
necessity of the data input and output lines, and the credit output lines, we
also have to inform the switch that a new packet is about to be transmitted
from the line cards to the fabric, as well as inform the fabric about the end
of a packet transmission; this is accomplished by asserting the corresponding
“Start Of Packet” (sop) or “End Of Packet” (eop) signal for one clock cycle.

The switch core is divided into three parts: Crosspoint modules (XPs),
Credit Schedulers (CSs) and Output Schedulers (OSs). Each crosspoint in-
cludes a 512×32 (2 KB) SRAM, along with clock synchronization and mem-

12

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 13

output 2

32
XP XP XP XP

CRS

32

1,1
XP XP XP XP

1,2 1,3 1,32

line in 1

1
CRS

2,1 2,3

2

2,32

32
XP XP XP XP

CRS
32

32,1 32,2 32,3 32,32

OS 1

credit
pulses

32

32

credit
pulses

32

32

credit
pulses

32

32

line out 1

credit
pulses

32

32

XP
outputs outputs

XP
outputs

XP
outputs

XP
32 3232 32

line out 2 line out 3

OS 2 OS 3 OS 32

line out 32

2,2

16
credit

eop
sop

sop
eop

line in 2

credit

16output 32

LINE

LINE

CARD 1
LINE

CARD 2

CARD 32

sop
eop

line in 32

credit

16

output 1

Figure 2.1: 32×32 crossbar switch block diagram: the switch consists of 32 × 32 =
1024 crosspoints, and 32 output and credit schedulers. Line card logic is located
outside the switch core.

ory enqueue/dequeue logic. A 32×32 switch needs 32×32=1024 XPs, thus 16
Mbits of memory. Credit Schedulers contain mechanisms for collecting and
sending credit information to the input line cards, whereas Output Sched-
ulers are responsible for selecting eligible flows that can send their packets
to the chip outputs. Both the Credit and Output Schedulers implement
the plain Round Robin discipline. Other scheduling disciplines, being fairer,
could also be supported (i.e. [34]).

We place the clock domain boundaries in the crosspoint modules; thus,
elastic buffers at the chip inputs are eliminated, which reduces latency and
power consumption, as each word of packet payload is only written once into
and read once out of a memory during its transition through the chip [19].
Note that the only control information that has to traverse two different
clock domains in the switch organization presented, is the “new packet”
arrival notification pulse. What is more, the two clock domains must operate

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 14

in almost the same frequency, as the input and output links have the same
speed. These observations significantly simplify crossbar design, as such 1-bit
synchronization circuits are very simple and efficient.

Before explaining the three main switch components in more detail, it
should be noted that the switch supports directly TCP/IP packets, of sizes
40-1500 Bytes. Packet size must be a multiple of 4 and, if this is not the
case, the input line cards have to fill the remaining bytes of the last word
and accordingly increase the size of the packet. The only other information
needed for the switch to operate is an output destination 32-bit multicast bit-
mask, which is sent just before the actual packet; this information is padded
by the line card logic and the positions of the “1” indicate the crosspoints in
which the packet is destined to or, equivalently, the outputs that the packet
must be sent to. Destination bit-mask and packet size are accompanied by
a “time of transmission” value and a “packet serial number” in the payload,
both of which were added for debugging and statistic purposes (see Figure
2.2).

0

destination
bit−mask transmission

time of

31 0 31 0 31
size

packet
serial number

packet packet
data

31016

packet payload

Figure 2.2: Supported packet format: apart from packet size (16 bits), a
time of transmission (32 bits) and a packet serial number (32 bits) value was
padded for statistic and debugging purposes. Packet payload follows. Notice
the 32-bit mask added at the begining of the packet.

2.2.1 Crosspoint Blocks (Crosspoints)

Crosspoints (XPs) are responsible for storing/retrieving packets into/from
their corresponding buffer memories. Figure 2.3 shows the top-level block
diagram of the crosspoint: a 32-bit wide packet data bus enters each cross-
point, along with the sop and eop signals. Each crosspoint receives a deq

signal from the corresponding column output scheduler and sends to the
output a 32-bit data_out value. Notice the two different clock domains:
the clock domain controlled by clk_wr contains the writing circuits, while
clk_rd handles the data reads.

Crosspoint organization is shown in Figure 2.4. Each XP has a 32-bit
wide input datapath, along with two control signals: a “Start Of Packet”
(sop) signal, which must be asserted for one clock cycle during the trans-
mission of the first packet word and an “End Of Packet” (eop) signal, which
is asserted during the transmission of the last packet words. The sop signal
informs XP logic that a new packet is being sent. Each crosspoint looks indi-
vidually at a 32-bit destination bit-mask, described in the previous section,

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 15

reset

CROSSPOINTsop

eop

line in data out

deq

3232

clk_wr clk_rd

Figure 2.3: Crosspoint block diagram.

and accordingly decides if the certain packet should be handled by it or not.
The eop signal informs the crosspoint logic that the data enqueueing must
stop.

to next

synchronized

wrData

wrAddr

enqueue

32

32

32

one−bit
synchronizer

my_pck data outdeq

data in

eop

sop

R
S

my_pck
XP

MEM

9

dequeue

9

write clock
domain

read clock
domain

to column output scheduler

wr_en rd_en

rdAddr

rdData

"column" XP

Figure 2.4: Crosspoint organization: notice the two clock domains; they meet
in the memory and in the 1-bit synchronizer circuit.

Both sop and eop signals are needed in order to reduce the complexity of
the switch core. In fact, in order to remove those 64 signals, we would have
to include some line-card and the packet enqueue control logic inside the
switch, which would add to its area and complexity. On the other hand, if
those logic blocks were placed inside the switch, credits would not have to be

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 16

sent to the line cards, which would decrease the number of I/O ports needed.
Although the last argument is very important in the case of medium- to
large-scale buffered crossbars (as chip I/O throughput is limited and has to
remain low for pin count, power consumption, and pricing reasons), a clever
organization of credit logic can remove this initially predicted overhead 1.

In particular, in order to remove the eop signal, extra logic would have
to be added inside the switch, which would detect the sop arrival, send
the enqueue signal to the corresponding crosspoint, capture and decrement
the packet’s size, and deassert the enqueue signal when the packet is written.
During most of the stages of this work, this logic was actually included in the
switch, but its necessity proved worthless, as with just a little I/O throughput
overhead 2, this logic was easily omitted from the fabric. Note that only 32
such “enqueue logic” blocks were used, as we only needed one per switch
row: every crosspoint that actually enqueued a packet would “listen” to the
eop signal generated by that logic; the rest would just ignore it.

When both sop and the corresponding bit of the bit-mask are asserted,
the crosspoint logic must perform a packet enqueue to the SRAM. This is
carried out by setting a latched signal, called my_pck, which in turn asserts
the SRAM’s write enable and increments the 9-bit enqueue address counter.
When eop signal arrives, the enqueue FSM deasserts write enable and stops
the enqueue pointer from incrementing.

We must also forward the my_pck signal to the corresponding output
scheduler, informing that a packet is being enqueued to one of the 32 cross-
points connected to the column’s scheduler. This event wakes up the output
scheduler if the output link has been idle. We thus feed this new-packet-
arrival signal to a simple 1-bit synchronizer, which is depicted in Figure 2.5.
The signal sets an RS flip-flop and its output Q is sampled by a series of
three D flip-flops clocked by the output clock domain (clk_rd). When the
pulse is received, an acknowledgment signal travels back, which resets the RS
flip-flop. The synchronization delay is 5 clock cycles, far less than the min-
imum packet size (40 Bytes) enqueue time, which, in the case of our 32-bit
datapath, corresponds to 10 cycles. Note that the two clock frequencies are
always close to each other, which is always the case in switches, since they
have the same input and output throughput. Synchronizer design is briefly
presented in the Appendix.

Packets are enqueued/dequeued in a 512×32 (2 KByte) Two-Port Reg-
ister File SRAM from Virtual Silicon Technology [43]. This memory has
a 32-bit port for read and an independent 32-bit port for write; read and
write addresses are 9 bits wide (see Figure 2.3). The independent read and
write cycles are timed with respect to their own clocks, namely clk_rd and
clk_wr respectively. It should be noted that during a read cycle, the output

1This organization is thoroughly presented in a following section.
2
Not high chip I/O overhead, though, as “End Of Packet” transmission is carried out

at most every “minimum-packet-size” time, which is 10 clock cycles in our 32-bit datapath;
hence fast and expensive tranceivers are not needed.

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 17

clk_in

my_pck

synchronized
my_pck

clk out

bit_d0 bit_d1 bit_det

positive edge detector

bit_d2 bit_d3

ack signal

RS Flip−Flop

Figure 2.5: 1-bit synchronizer circuit.

bus values are held if read enable is not asserted. This read enable feature is
used to save RAM power without the need for external clock gating.

The last part of the crosspoint logic is the dequeue sub-module. Whenever
the output scheduler decides to dequeue a packet from the specific crosspoint,
it asserts the deq signal, which fires the dequeue FSM corresponding to that
output; read enable is asserted and dequeue pointer is then incremented. The
deq signal remains asserted for the time needed to fully dequeue the packet,
and is controlled by the output scheduler dequeue logic.

2.2.2 Output Schedulers

The output schedulers are responsible for: (a) selecting the next eligible flow
from a certain crosspoint of the same column; (b) initializing the transmission
of packets to the specific switch output; and (c) sending a credit back to the
line cards. A flow is called eligible if the corresponding crosspoint contains
packets that are waiting to be sent. If there are more than one eligible flows,
the output scheduler has to select one of them; this selection can depend
on the flow priority (possibly its weight - i.e. in Weighted Round Robin
scheduling), or on a plain round robin policy. In this work we did not aim
at implementing new and sophisticated output scheduler policies, but rather
use a plain round robin scheduler: the output scheduler maintains a list of
the eligible flows and after serving one flow, it selects the next eligible flow
of the list 3. The output scheduler knows which flows are eligible or not
through the synchronized my_pck signals it receives from the crosspoints of
the same column. Since the synchronization delay is 5 clock cycles and a
packet transmission lasts for 10 cycles, we claim that the scheduler supports
cut-through operation (with a 5 cycle overhead): when all 32 crosspoints

3In the first stages of this thesis, we developed a Weighted Round Robin output sched-
uler with “smart comparator usage” for a 4×4 crossbar switch, that would be implemented
in an FPGA. This scheduler is examined in the Appendix.

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 18

of a column are empty and a minimum-size packet arrives to one of them,
only 5 clock cycles are needed to initialize its dequeue to the switch output,
whereas the time needed for the packet to be written to the crosspoint is 10
clock cycles.

Output scheduler block diagram can be seen in Figure 2.6, while its orga-
nization is presented in Figure 2.7. The scheduler has thirty-two 32-bit data

deq

32

32
line out 1

32

32

32

line out 2

line out 3

line out 4

line out 32

data out
32OUTPUT

SCHEDULER

clk_rd
reset

3232 32

my_pck
synchronized credit

signals

Figure 2.6: RR Output Scheduler block diagram.

inputs, which originate from the column crosspoint memories’ data outputs.
32 synchronized my_pck signals are also sent from the crosspoint synchroniza-
tion logic. The output scheduler sends 32 credit signals back to the switch
inputs and a 32-bit deq bus to the column crosspoints. The dequeue signals
act as read enable for the crosspoint memories.

In order to produce the list of eligible flows, the scheduler maintains
thirty-two 6-bit packet counters 4, which are incremented each time a syn-
chronized my_pck signal arrives and decremented when the selected packet is
being dequeued; when these counters are equal to zero, the flow is ineligible.
The 32-bit eligibility mask that is created in this way enters a Round-Robin
Priority Enforcer, which is responsible for selecting the next eligible flow (its
output is a 32-bit value, with one bit equal to “1” and 31 bits equal to zero).
This 32-bit crosspoint selection bus is sent to the column crosspoints and at
the same time the specific packet counter value is decremented. When the
first packet word is dequeued from the crosspoint and arrives at the sched-
uler, the packet size is stored, in order to allow the scheduler to know when
it should stop dequeueing. If, while one packet has been almost dequeued,
there exists at least one eligible flow in the same column, the scheduler has
to start pre-scheduling, in order to choose the next eligible flow and not miss
any clock cycles in between. Hence, back-to-back operation is achieved.

4Six bits are sufficient because each crosspoint buffer can store at most 50 (minimum-
size) packets.

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 19

data out

signals
deq

eligibility 6−bit
packet counters

Round
Robin
Pr. Enf.

32

eligibility
mask

XP 1,x

XP 2,x

XP 3,x

XP 32,x

output
MUX

32

32

32 deq

deq

deq

deq data out

data out

data out

pck_fin

flow_sel

data out
(to switch output)

pck size
counter

+/−

+/−

+/−

+/−

+/−

32

(from crosspoint column)
synchronized

my_pck
(outside output scheduler)(to credit schedulers)

credit signals crosspoint column

Figure 2.7: RR Output Scheduler organization: crosspoint memories are illustrated
for clarity; they do not belong to the output scheduler.

2.2.3 Credit Schedulers

Credit schedulers are responsible for: (a) collecting the credit signals from
the output schedulers; and (b) sending them back to the line cards; there is
one line card per row. Since it is the line cards’ responsibility to recover the
receiving clock (as happens with outgoing packet data), credits are sent in
respect to the output clock, hence no synchronization circuitry is required.

The credit format should satisfy one constraint: it should contain the
absolutely necessary information that the line card should know, in order
to save I/O bandwidth (package pins and expensive I/O pads). In order to
remove as much logic possible from the switch core, we decided that the line
cards should perform all necessary credit computing operations. For error
resilience purposes, the credit schedulers adopt a QFC-like [30] approach:
instead of sending the information that “the next packet has just left from
crosspoint . . . ” 5, they just send “the total, cumulative number of packets
that have left up to now from crosspoint . . . , modulo 2k, is equal to . . . ” [19].
As a result: (i) we do not need to send one credit for every packet; and (ii)
even if some credits get lost, the next arriving credit carries cumulative in-
formation from past ones, too 6. Line card logic is responsible for concluding

5This information could have the form of a 5-bit encoded crosspoint (i.e. output)
number, but one such credit loss would have undesirable effects.

6We just have to ensure that at least one credit will safely arrive for every 2k departing

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 20

that the credit number just received is different from the previously stored
corresponding value, hence a new credit has arrived. Credit format is shown
in figure 2.8. It is 16 bits wide, with the most significant 7 bits reserved for
future use (possibly 2 bits for error checking purposes, plus 3 bits for sup-
porting up to 8 distinct priorities). The next 4 bits contain the actual credit
value (number of packets sent from the corresponding crosspoint), while the
5 least significant bits refer to the crosspoint’s ID.

4

������������������������������������

������������������������������������

�����
�����
�����

�����
�����
�����

������������������������������������

������������������������������������

������
������
���

��
��
�

	�	�		�	�		�	�		�	�	

�
�

�
�

�
�

�
�

�����������������������������������

�����������������������������������
015

value
credit counter crosspoint ID

2 error checking bits)
RFU (possibly 3 priority &

8

Figure 2.8: Credit format.

Figure 2.9 shows the credit scheduler block diagram. Each credit sched-
uler module receives a 32-bit credit mask, referring to dequeues from the
correspoinding row crosspoints, and sends a 16-bit credit bus to the respec-
tive line card logic.

32

SCHEDULER

CREDIT

reset

credit
out credit pulse

clk_rd

16

Figure 2.9: RR Credit Scheduler block diagram.

Credit scheduler internal organization is shown in Figure 2.10. The sched-
uler maintains 32 4-bit “sent-packet” counters, which contain the number of
packets that have been dequeued from the respective row crosspoints. Ob-
viously this counter wraps around when 16 packets have been dequeued and
the 17-nth credit has just arrived.

Each time a credit arrives, the respective credit counter sets its output
credit_change bit, informing the scheduler that its value has just changed.
The 32-bit credit_change_mask value is connected to a Round Robin Prior-
ity Enforcer, which selects the next (changed) credit value that will be sent to
the line cards. This is indicated by its 32-bit output, credit_choose_mask,
which, except for selecting the credit value that will be sent to the line cards,
is also responsible for resetting the credit_change flag of the corresponding
counter.

packets, i.e. before the counter wraps around.

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 21

ID

Robin
Round

Pr. Enf.

32

credit

mask
change

5

RFU
32

16

values
counter
credit

32

32

32 to 5
ENC

credit
output

(to switch output)

credit_choose_mask

credit_pulse_mask
(from crosspoint row)

+

+

+

+

4−bit pack counters

4

4

7

5

row crosspoint

Figure 2.10: RR Credit Scheduler organization.

Assuming that credit switch outputs will use about 1/8 of the bandwidth
of every switch packet data input/output 7, each 16-bit credit value will need
4 clock cycles in order to be sent to the line card 8. As a result, scheduling is
carried out in 4-cycle intervals. Since scheduling time is 4 clock cycles, the
scheduler needs 4 × 32 = 128 clock cycles to send all 32 credit values.

Credit signals can arrive at any time from the output schedulers, with
the extreme of all 32 bits of the credit_pulse_mask being set in one clock
cycle. In this case, credit_change_mask is all “1” and one credit counter
value is selected to be sent. Due to the fact that the next credit signals
will come at least one minimum-packet transmission time after this event
(10 clock cycles), no counter can overflow sooner than 170 clock cycles have
passed; hence, the scheduler has enough time to send all 32 credits before
any counter wraps around.

Last of all, it should be noted that if the credit_change_mask is all
zeroes, meaning that no credit has been received for at least the last 128
clock cycles (nearly 13 packet-times), the credit scheduler sends the stored
credit counter values. In this way, the line card logic can check if the credit

7This is desirable in order to save package pins and I/O tranceiver pads.
8In one cycle, 32 packet data bits are received/sent, hence if credits use 1/8 of this

bandwidth (4 bits per cycle), 4 cycles are needed for the transmission of the 16-bit credit
value.

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 22

value has changed since last time and thus perform error checking.

2.2.4 Line Card Logic

The switch presented sofar could be tested in two ways: (a) by feeding the
simulator with trace files containing real or generated traffic; and/or (b) by
designing a simple line card and feeding the switch with traffic from the line
card’s traffic generator. During the initial stages of the switch design, we
used traces generated from the simulator which was written in C++ and is
thoroughly presented in [29] and [19]. The trace files consisted of packet sizes
and the exact time they were arriving at the switch inputs. Later on, the
credit logic designed in the simulator changed from the one we used and, as a
result, in order to test and verify the switch operation, we designed a Verilog
model of the line card.

Line card block diagram is presented in Figure 2.11. Each line card is

to switch row

32

16

reset
clk_wr

LINE

CARD

LOGIC
eop

sop

line out

credit in (from switch cr. output)

Figure 2.11: Line Card block diagram

responsible for sending packet data (32-bit line out bus), and the “Start Of
Packet” (sop) and “End Of Packet” (eop) signals to the respective switch
row. Feedback information from the switch is packed in the 16-bit credit
bus that is sent through the corresponding switch credit scheduler to the
line card block. Line card constists of two parts: (a) packet construction
and transmission logic; and (b) credit processing logic. These two parts are
completely independent, as a credit can come at any time, regardless of the
state of a possible packet transmission. The two parts are discussed in more
detail in the next two subsections.

Packet Construction and Transmission Logic

As each line card has multiple (32) Virtual Output Queues (VOQs), 32 FIFO
queues are maintained; these contain the size of each packet that has just
begun transmission from the line card to the switch. A 32-entry “empty
crosspoint buffer size” array is also used, in order to store the empty space
of each crosspoint buffer of the corresponding switch row. The packet trans-
mission FSM is shown in Figure 2.12. This FSM is in the IDLE state if no
packet can/has to be constructed and sent. When the enq signal is set, the

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 23

!pck_fin &

XMIT

IDLE
PREP
VOQ

XMIT
BM

PL
XMIT

TS

PCK SN
XMIT

enq

!pck_fits

pck_fin &
!pre_schedule

!pck_fin &
!pre_schedule

pck_fits

pre_schedule

Figure 2.12: Line card packet transmission FSM.

FSM goes to VOQ_PREP state. If the new packet’s size fits into the corre-
sponding crosspoint buffer, pck_fits is asserted, packet size is enqueued in
the respective FIFO, the specific crosspoint buffer size is decremented by
the pck_sz value and the corresponding packet counter is incremented. The
next four states are responsible for sending to the switch the packet bit mask
(XMIT_BM), packet length (XMIT_PL), a timestamp (XMIT_TS) and the packet’s
serial number (XMIT_PCK_SN); packet format is shown in section 2.2. In order
to support back-to-back transmission (pre_schedule is asserted), the FSM
goes to the VOQ_PREP state before the packet’s last word is sent to the switch,
and the preperations for a new packet transmission start.

Credit Processing Logic

In this behavioral module, a 32-entry credit array is maintained in order to
store the previous credit counter values. These values are compared with
the newly received ones: if they differ, then we have a new credit for that
particular VOQ. As a result, a FIFO dequeue has to be performed, the new
credit value must be stored and the empty space of that particular crosspoint
has to be incremented by the packet size stored in the head of the FIFO.

Switch Verification

The switch is tested by using the Cadence [20] NCLaunch tool. Three types
of traffic are sent: (a) all minimum-size packets (40 Bytes); (b) randomly
selected packets; and (c) only maximum-size packets (1500 Bytes). Packets
are sent either back-to-back, or with a random interpacket delay. We use
two test scenarios: (a) all inputs send packets to all outputs randomly; (b)
all inputs send packets to a specific output; obviously, the scenario that puts

CHAPTER 2. SWITCH ORGANIZATION AND OPERATION 24

more stress on the switch core is when smallest size packets are sent back-
to-back to a specific output. In that case, the crosspoint buffers of that
switch “column” are filled with 40-Byte packets and the output scheduler
has to make a decision in 10 clock cycles, which is the transmission time of
a minimum-size packet. In this way, we achieve back-to-back operation.

2.3 Conclusions

In this chapter we presented in detail the switch and line card internal orga-
nization and operation. Crosspoint logic should be as small as possible, as
the O(N2) crossbar complexity could prove, in the later design stages (syn-
thesis and placement & routing), to be a prohibitive implementation factor.
By minimizing the logic at the clock domain boundaries, synchronization be-
comes easy and simple. Furthermore, no packet segmentation and reassembly
is required, by directly supporting variable-size operation and with padding
a 32-bit destination bit-mask at the beginning of each packet header. Output
and credit schedulers are as simple as possible, whereas their aggregate size
is orders of magnitude smaller than total memory area; hence, more complex
policies can also be supported, without significantly affecting the total switch
core area.

Chapter 3

Logic Synthesis

3.1 Introduction

Logic synthesis is one of the most important phases of the design flow in state-
of-the-art circuits. It aims at transforming the HDL (usually Verilog HDL
or VHDL) description of the circuit into a technology-dependent, Gate-Level
netlist. Through this process, the hardware designer defines the environ-
mental conditions, contraints, compile methodology, design rules and target
libraries, in order to achieve certain design goals set by the initial specifica-
tions. The Gate-Level representation of the circuit is the input file to the
Place & Route tool, which is described in the next chapter.

The tool we use for the logic synthesis of the switch is Synopsys Design
Compiler (DC) [46], the most widely used synthesis tool. Design Compiler
optimizes logic designs for speed, area and wire routability. From the defined
goals, DC synthesizes the circuit and tailors it to a target technology. The
rest of this chapter is as follows: first we present the two ways the synthesis
procedure can be carried out, flat and hierarchical, and compare them. We
then describe the synthesis flow we followed for the 32×32 buffered crossbar
switch, accompanied by our synthesis results. Later on, we will compare
these results to the placement & routing ones and useful conclusions will be
drawn. Finally, we briefly talk about post-synthesis verification.

3.2 Synthesis Flow

The synthesis flow that we follow can be seen in Figure 3.1. We initially
read the design under synthesis; this enables DC to load all design instances
into memory and report possible HDL errors. Next we set initial design
constraints, such as: (a) maximum circuit area, or zero if ultra “size” mini-
mization has to be performed; (b) circuit clock(s); (c) maximum transition
time of specific nets; (d) maximum capacitance of nets, etc. Circuit area
and clock cycle specification are usually enough in order to synthesize most
circuits. Design must then be checked. This enables Synopsys to report mis-

25

CHAPTER 3. LOGIC SYNTHESIS 26

takes which usually have to do with wrong module instantiations, or interface
mismatches. After this “check design” phase is complete, we optimize the
design, by setting again the appropriate values for the different constraints.
Usually, we wish to minimize circuit area and increase operating frequency.
Some nets may also have to be constrained in terms of capacitance or tim-
ing, but these decisions can usually only be taken into account after actual
chip layout is defined. As a result, the latter has to be almost defined be-
fore synthesis commences. After this final phase, we analyse the reports of
the tool and check for unmet constraints. If such exist, the designer usually
has to: (a) rewrite HDL code, in order, for example, to meet certain tim-
ing constraints; (b) modify the constraints themselves, which unfortunately
may result in a slightly different design; (c) change compile attributes, for
example, change tool optimization priorities; (d) ungroup (i.e. remove any
hierarchy from design blocks), in order to offer the tool the ability to handle
larger modules and possibly produce better analysis and optimization results;
unfortunately, we cannot completely remove the hierarchy in the case of very
large designs. Last of all, we can analyze power consumption and perform
power optimizations. Synthesis power estimation is presented in chapter 5,
while power optimization techniques can be found in the Appendix.

3.3 Flat vs. Hierarchical Synthesis

Flat designs contain no subdesigns and have only one structural level; they
only contain library cells. Design Compiler does not optimize across hi-
erarchical boundaries; therefore, by removing the hierarchy within certain
designs, timing results can be improved. Removing of hierarchy is called
ungrouping. Through this task, subdesigns of a given level of hierarchy are
merged into the parent design.

Although flat synthesis usually provides the best results, this approach
cannot be followed in the case of large designs. This is because, at the pres-
ence of a large number of multi-instantiated modules, ungrouping will build
every instantiated module from scratch, thus needing large computational
resources. In such cases, a hierarchical approach is proposed: each module
is synthesized, fully optimized, and saved as a separate design. Then, it is
loaded back to the tool and linked into the higher hierarchy module. Synop-
sys will then only have to deal with identicaly-synthesized module instantia-
tions, which will reduce execution time. One disadvantage of the hierarchical
approach is that the tool cannot perform low-level optimizations, after the
higher-level design is synthesized. Such optimizations are useful when, for
example, the designer wishes to optimize the design for power consumption.
In that case, cells that are located at non-critical paths are usually replaced
by others that are smaller, hence consume less power, but are slower. Such
optimizations cannot be performed inside low-hierarchy blocks directly at
the top-level of a hierarchical design.

CHAPTER 3. LOGIC SYNTHESIS 27

Check

Design
Read in

timing goals
and realistic
Set attributes

Errors

Optimize

results
Good

Done

Fix
errors

Rewrite HDL code,
Change constraints,

Ungroup design blocks
Modify compile attributes,

Start

design

Figure 3.1: Generic synthesis flow.

Synthesis hierarchy organization followed can be seen in Figure 3.2. We
synthesize low hierarchy blocks, like crosspoints, output and credit schedulers
in a flat manner. This is decided in order to achieve maximum optimization
on those blocks; the latter is required because, due to the large instantiation
number of these blocks (1024 crosspoint and 32 output and credit sched-
uler modules), lack of optimization can eventually limit the design goals.
These low hierarchy blocks are then grouped into higher hierarchy modules:
32 columns include 32 crosspoints and one output scheduler module each,
whereas one credit module is used to group the 32 credit schedulers. These
groupings are performed in the RTL, but can also be carried out success-
fully through the Synopsys environment, by using the group command. As
a result, the top design module consists of merely 32 column and one credit
module.

It should be noted that during the Placement and Routing (P&R) design
stage, we observed that the tool could not successfully perform P&R of these

CHAPTER 3. LOGIC SYNTHESIS 28

Module

Buffered
Crossbar Top

Module

Approach (link)

Approach

Hierarchical

(ungroup)

Flat

Buffered
Crossbar Top

Module

Crosspoint
Column

flat
CSXP

flat

OS flat

Credit
Hier.

module

32 crosspoints

32 crosspoint
columns

32 credit
schedulers

Alternative (Final)
Hierarchy
Approach
(group)

16 Column
Module

16 Column

Figure 3.2: Synthesis hierarchy organization: crosspoint modules (XP), out-
put schedulers (OS) and credit schedulers (CS) were synthesized in a flat
manner. Each crossbar column was synthesized by linking 32 cosspoints and
one output scheduler module. The 32 credit scheduler modules were linked
into a higher hierarchy module, as well. The 32 crosspoint columns and the
credit module were linked into the top hierarchy module. Later on, it was
realized that placement and routing would be performed easier if we added
another level of hierarchy, by grouping the 32 columns into two sets of 16;
this procedure required circuit resynthesis and is illustrated on the left side
of the figure.

33 modules; this was mainly due to the large size of files handled by the tool.
As a result, we decided to go back to the synthesis stage and regroup the 32
columns into 2 sets of 16; P&R would therefore be performed hierarchically
into these 2 modules, which would connect to the credit block in the top-
level. This grouping was carried out through the Synopsys environment, by
using the group command.

3.4 Synthesis Results

The synthesis process is completed relatively easily and timing contraints
are met, while circuit area is kept to a minimum. Timing constraints are of
the greatest importance, as we opted for a clock frequency of 300 MHz (3.35
nsec clock cycle); we were constrained to 300 MHz due to the fact that it was

CHAPTER 3. LOGIC SYNTHESIS 29

the maximum operating frequency of the 2-port SRAMs we had. Hence, we
achieve 300 Gbit/sec incoming switch throughput (32 inputs of 9.6 Gbit/sec
link throughput). Synthesis results can be seen in Table 3.1.

Module Gates Flip-Flops SRAM Area Area
(number (K) (K) 2-port 0.18µm 0.13µm
of instances) (bits) (mm2) (mm2)

XPD (1024) 65.0 91.0 9.30 4.2
XPM (1024) 16 M 286.00 130.0
OS (32) 68.0 9.7 3.25 1.5
CS (32) 27.5 6.4 1.45 0.6

Total 162.7 107.1 16 M 300.00 136.3

Table 3.1: Synthesis results: total numbers shown, including all instances.
XPD, XPM, OS and CS refer to crosspoint datapath, crosspoint memories,
output schedulers and credit schedulers respectively. Memory area is com-
puted from datasheets [43].

Although wiring area is not yet included 1, it is evident that circuit logic
area occupies 5% of the total chip core area, leaving the rest 95% for the 1024
memories. 0.13µm results are computed by extrapolation. The extrapolated
area of 140mm2 shows that the 32×32 buffered crossbar switch is feasible.

An interesting aspect of any switch architecture is its cost in a per-input,
per-output and per-crosspoint basis. Those costs are shown in Table 3.2. In
order to produce these results, we design four different switches based on the
proposed architecture (4×4, 8×8, 16×16 and 32×32) and average the gate
and flip flop sums per input, output and crosspoint, accordingly. Since in
each input and output port there is a scheduler whose complexity depends
on the numbers of its inputs, the per-port complexity depends on the actual
number of the input ports of the switch. The per-input cost corresponds to
the costs of the CS modules, the per-output cost consists mainly of the cost
of the OS, whereas the crosspoint cost includes the costs of the XPM and
XPD. As this table clearly demonstrates, the per-input and per-output costs
are not significant. Moreover, although the figures of the crosspoint costs
seem relatively high, the table indicates that large switches, based on the
proposed architecture, can be easily implemented in today’s state-of-the art
high density technologies.

3.5 Post-synthesis Verification & Conclusions

Post-synthesis verification is possibly the most important phase of the syn-
thesis flow. It aims at testing whether the initial RTL design has the same
behaviour as the Gate-Level netlist produced by the synthesis tool. In most

1But is included in the placement & routing results presented in the next chapter.

CHAPTER 3. LOGIC SYNTHESIS 30

Gates FF
per-input 27 x i 2.5 x i
per-output 70 x i 10 x i
per-crosspoint 63 70

Table 3.2: Per input/output/crosspoint logic costs; i in the number of the
input ports of the switch.

of the cases the initial results are not the same, and the designer has to care-
fully investigate the reason for the erroneous behaviour of the Gate-Level
netlist. Usual mistakes happen when the circuit does not reset correctly, a
mistake that can pass unseen from the HDL compiler & simulator, but, of
course, the actual circuit will not work correctly.

Our synthesized Gate-Level netlist is imported back to the Verilog com-
piler (Cadence NCLaunch [20]) and is tested within the same environment
as the initial RTL design. The final netlist proves to behave correctly. The
netlist is now ready to be imported to the Place & Route tool for the final
phase of the design process.

Chapter 4

Placement and Routing

In this chapter we explore the Placement and Routing (P&R) process fol-
lowed when implementing the 32×32 buffered crossbar switch examined in
the previous chapters. This process was a major part of this thesis, both in
time and effort terms. Although the chip is “regular”, as shown in the next
section, it proves too large for the available P&R tool to handle in a flat
manner; as a result, we have to resort in a hierarchical P&R process, which
poses many difficulties, in terms of choosing the optimal hierarchy organiza-
tion that will reduce interface cost and result in a regular final chip aspect
ratio. The rest of this chapter is as follows: at first we compare flat versus
hierarchical P&R and present the exact flow followed in our case. Next, we
examine the various hierarchy organizations proposed during the P&R pro-
cess and propose our final organization, followed by a thorough presentation
of the P&R process for the major hierarchy components of the switch. Last
of all, we present our post-P&R area and power consumption results.

4.1 Flat vs. Hierarchical Placement & Rout-

ing

The 32×32 crossbar chip is a highly regular chip, consisting merely of 32
identical “rows” and 32 indentical “columns” (see Figure 2.1). P&R can be
therefore be quite straightforward, in the presence of a tool destined for “hand
design”: the designer places each crosspoint at specific positions and wires
are routed through each row and column. Because such a tool does not exist,
we have to use automatic P&R tools. It should be noted that automatic P&R
tools offer some freedom for user-defined logic cell/block placement, but such
a process is difficult when carried out for a large number of logic cells/blocks.
Furthermore, the tools we can use have gate limitations in their automatic
P&R algorithms, as a result we follow a hierarchical P&R approach. Last,
the number and size of instances must also be taken into account, as the
presence of a large number of complicated instances (which means timing
and layout file complexity) can pose great difficulties in the P&R process.

31

CHAPTER 4. PLACEMENT AND ROUTING 32

(b)

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���
���

�
�
�
�
�
�
���������������������������

��������������������������

	�	�	�	�	�	�	
�
�
�
�
�
�

��������������������������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�
�������������������������������

������������������������������

������������������������������

���������������������������������
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�
�

BLOCK

LOW
HIERARCHY

BLOCK

LOW
HIERARCHY

(a)

Figure 4.1: Routing global wires in hierarchical designs: hierarchy prevents
the P&R tools from routing global wires through lower hierarchy components,
unless the designer has explicitly stated so.

We perform hierarchical P&R by placing and routing the lower hierarchy
blocks, then importing them to the upper hierarchy level; as a result, the P&R
tool treats lower-level blocks as black boxes with specific interfaces, as is the
case with memories. Unfortunately, this approach poses some disadvantages,
compared to completely flat P&R:

• hierarchy hinders the algorithms that perform global (area, timing)
optimizations, which means that hierarchy components must be fully
optimized before porting them to the upper hierarchy level

• area is added in the total design, since every block in the hierarchy must
have dedicated power rings, in order to terminate the power (VDD) and
ground (VSS) lines that traverse the chip horizontally (which provide
power and ground connections to the standard cells) 1

Another hierarchy-related point is that we often wish to allow wires to travel
on top of or through the low hierarchy components, which helps the P&R
tool to cope with timing violations that might be caused by otherwise being
forced to route wires up and down the low hierarchy blocks, as seen in Figure
4.1. The latter can be accomplished in two ways: (a) place and route the low
hierarchy blocks at lower metal layers (e.g. up to metal 5), so that higher
hierarchy wires can travel on top of these blocks; and (b) provide feedthroughs
in low hierarchy components, thus letting wires travel through each block.
Both these solutions are worse than what would be used in a completely flat
process, where the tool’s advanced algorithms can find the optimal solution.
It should be noted that the exact position of the input/outputs (I/O) can
also affect our decisions.

1Power and ground lines are in metal 1 and 2, as a result these lines cannot be routed
through the black boxes present (such as memories at the lowest level of hierarchy).

CHAPTER 4. PLACEMENT AND ROUTING 33

32 credit schedulers

OS

XP 1

XP 2

XP 3

XP 4

XP 5

XP 32

32

line in 1
32

32

32

32

32

32

32

line in 2

line in 3

line in 4

line in 5

eop
sop

sop
eop

eop
sop

eop
sop

eop
sop

line in 32
eop
sop

32

32

32

32

32

32
C

O
L

U
M

N
 2

C
O

L
U

M
N

 3

C
O

L
U

M
N

 4

C
O

L
U

M
N

 3
2

16 16 16 16 16 16

credit pulses

32 32 3232

32 data outputs

32 credit outputs

32
 li

ne
 in

pu
ts

CRS 1 CRS 32CRS 4CRS 3CRS 2

Figure 4.2: Switch internal organization: block interfaces.

4.2 Choosing a Hierarchy Organization

As can be seen in Figure 4.2, each switch column has thirty-two 32-bit data
inputs, 64 single bit sop and eop inputs, one 32-bit data output and thirty-
two 16-bit credit outputs; these amount to 1088 inputs and 48 outputs. From
the figure it is evident that input lines have to connect to every switch column;
as a result, in order to avoid long and unwanted data lines, we come up with
the two strategies mentioned in the previous section: (a) place and route
each column up to a lower metal layer, so that data lines can travel over
every column; and (b) pass all data lines through every column from the RTL
level, using dummy wires. We conclude that the latter solution is preferrable,
because, as we are aiming at the smalest possible column area, solution (a)
will most probably be not as “area-aware” as solution (b). This is because,
if we follow solution (a), each column will be placed & routed up to metal
layer 5, leaving the (highest) metal layer 6 unrouted by local column wires;
hence, column area optimization will not be accomplished.

Another interesting point is memory orientation. As shown in Figure 4.4,
memory interface lies on the three of the four sides of the memory, with data
lines lying on the south side of its surface. This initially leads us to place
every memory with its long side on the “x-axis”, which results in a fairly
“low” and “wide” column (see Figure 4.3(a)).

CHAPTER 4. PLACEMENT AND ROUTING 34

(b)

13000 um 28000 um

line in line out

credits

FINAL CHIP ASPECT

data out

1100 um

FINAL CHIP ASPECT

400 um

data out

credits

line in line out

data out

credits

line outline in

900 um

FINAL CHIP ASPECT
RATIO: 3.6 x 1.4 mm

(a) (c)

RATIO: 2.9 x 1.4 mm

13500 um

RATIO: 1.3 x 2.9 mm

Figure 4.3: Column orientation alternatives: Case (a) has the worst aspect
ratio, almost 1:3 and was thus abandoned. Case (b), although having better
and acceptable aspect ratio (1:2), was unroutable. Case (c) proved to be
easy to route, without making the aspect ratio any worse. Chip core aspect
ratios can be seen in the bottom of the figure.

As a result, data lines enter the column from the west sides (and exit from
the opposite side), credit signals exit from the north side, leaving the south
side for data outputs. Fortunately, the P&R tool we use, Cadence Encounter,
offers the ability to manualy place hard blocks (memories) and even soft
blocks, like our designed modules, although not so exact, as is the case with
hard blocks. Unfortunately, this organization leads to an aspect ratio of 1:3
for the whole chip core, which is obviously not prefferable. By placing the
memories with their “small” side on the x-axis (see Figure 4.3(b)), although
resulting in an aspect ratio of 1:2, will also result in very long columns,
which makes P&R difficult, if not impossible, as long wires have to traverse
the whole column height; the tool will thus have to buffer strongly these
wires, which adds to the total column area and core power consumption.

On the other hand, the placement of Figure 4.3(c) seems to be the best
alternative present. In this organization, the 32 columns are divided in 2
and placed with their “small” sides on the x-axis. As a result, total column
width is approximately 900 µm and the corresponding height 14000 µm,

CHAPTER 4. PLACEMENT AND ROUTING 35

in

dequeue
pointer

11

335 um

880 um

11 enqueue
pointer

32 32

data
out

data

Figure 4.4: Memory layout: all signals connect to the lower 1/3 of the mem-
ory (noted with the dotted line). Memory is placed & routed up to metal
layer 4.

which results in a 15000µm×29000µm switch core, with total area 420 mm2

and aspect ratio of 1:2.

4.3 Placement and Routing Flow

We place & route the switch chip core with Cadence Encounter [20]. P&R
flow followed can be seen in Figure 4.5. It comprises of various stages, some of
them being optional, although important for new design cases; we present a
comprehensive P&R tutorial in the Appendix. At first the design is imported
to the tool. The files needed are technology dependent and are either given by
the technology vendor (in our case Virtual Silicon UMC 0.18µm [21]) or are
produced by the synthesis tool (in our case Synopsys Design Compiler). The
vendor provides the P&R tool with (a) technology library - .lib files, which
contain the exact electrical characteristics of the library standard cells, (b)
layout - .lef files, which include standard cell actual layout, pin placement
and metal layer usage and (c) verilog - .v files, containing the interface of
every standard cell. The same vendor also provides the memory models, so
the memory timing library - .tlf file was also included. From the synthesis
tool point of view, the only information needed to be passed on to the P&R
tool is the Synopsys technology mapped - .v Gate-Level representation of the
design.

After importing the design, the designer has to Floorplan the various
verilog modules and/or black boxes in the actual chip. Modules can be either
“softly” placed, that is the tool can alter their shape, or “hard” placed,
in which case their shape cannot change significantly or at all during the
placement phase. Power rings are created and block rings are added for
power/ground termination purposes. Input/Output pins are also placed in
this stage: from the switch layout provided in Figure 4.2, it seems obvious to

CHAPTER 4. PLACEMENT AND ROUTING 36

No

Design
placeable?

NanoRoute)

placement
High effort,timing driven

success?

Clock tree synthesis

routeable?
Design

Medium effort trial route

Medium effort trial placement

−I/O placement
−black box placement
−row utilization

Floorplaning

−technology library files − .lib
−layout files − .lef
−timing library files − .tlf
−standard cell HDL files − .v
−design HDL gate level netlist files − .v

Design import

CTS

violations?
Timing

Finish

High effort timing driven
routing (WROUTE or

Yes

No

Yes

No

Yes

No

Yes

Figure 4.5: Placement and Routing Flow followed. Some stages (pad place-
ment, crosstalk checks, DFT) were omitted, as we opted in demonstrating
the feasibility of the idea, not manufacture an actual chip.

place all input pins (data and sop / eop signals) on the west side of the chip,
data output lines on the south side and credit outputs on the north side.
Note that decisions carried out in this stage are of the greatest importance,

CHAPTER 4. PLACEMENT AND ROUTING 37

and need thorough “paper-design”, as they affect the whole design process
and the final result, both in area and in timing terms. The most important
decisions are, of course, chip exact layout, utilization percentage (i.e. amount
of “empty” row space among standard cell rows used for wiring) and I/O
placement. Utilization value was not given explicitly, as we are aiming at a
predefined size of the module under P&R; so we state utilization implicitly
by specifying the exact sizes of all the modules.

Low effort Trial Placement comes next. During this stage, the tool tries
to place the standard cells and/or black boxes of the design and produces
the initial placement results, that will provide us with information regarding
design size errors and wrong utilization decisions, as well as an estimation of
net length. The tool uses heuristic algorithms and tries to improve placement
results (net length) for about 15 “trial rounds”.

Next comes a medium effort Trial route phase, in which the tool tries to
route the previously placed design. This phase will let us know whether the
design is routable and in which locations on the actual chip wire overflows
occur. The latter can be due to lack of space for wire routing among standard
cells and/or black boxes and is the result of optimistic utilization decisions or
wrong placement of black boxes or I/O pins in the floorplan stage. If the tool
does not provide us with good and promising results, we have to go back to
the floorplaning stage and “give some space”, or rearrange the blocks/pins.
During this phase, an initial timing check of the design can be carried out,
although the clock signal is not yet placed and routed. This enables us to
check wrong placement desicions, which have resulted in extra and needless
wiring.

When trial routing is complete, we move to the Clock Tree Placement
phase. During this stage the P&R tool reads the clock specification file and
tries to place and route the clock tree (or trees, in our case) in the design.
This is carried out with buffer insertions and thorough computations of the
tree node weights, so as to minimize clock skew (uncertainty) produced by
unbalanced clock tree placement.

After the clock tree placement and routing, we perform a highly detailed
Timing Driven Placement, which possibly moves some standard cells to new
positions, according to the timing contraints we have imported at the initial
stage of the process and taking into account the clock tree and the register
positions.

This phase is followed by the most important Final Route phase, which
is the most time- and resource-consuming part of the whole P&R process.
Setup and hold times of registers are taken into account and, having in
mind the operating frequency constraint, the tools tries to buffer wires and
resize standard cells in order to minimize clock skew. If the clock frequency
requirements are not met after this phase is complete, we have to perform
in-place optimizations; should they fail, we have to go back to the initial
stages and re-floorplan the module, which means changing row utilization
and/or moving black boxes to new positions.

CHAPTER 4. PLACEMENT AND ROUTING 38

4.4 Column Placement and Routing

As mentioned earlier, after thorough investigation of various column place-
ment and routing organizations, we came up to a solution that seemed to be
nearly optimal; this was accomplished by organizing all 32 memories of each
crossbar column into 2 columns of 16 each and placing the memories with
their “small” sides on the x-axis (see 4.3(c)).

By this organization, the input lines enter the column from the west side,
the data outputs are located on the south side, and the credit outputs come
out from the north side of the column. The input line feedthroughs (data
input lines and sop and eop signals) exit the column’s east side, in order to
enter the next column’s respective west inputs. Note that all inputs and the
east outputs are the internal interface of the crosspoint modules, whereas
data and credit outputs come from the output scheduler module.

After placing the memories “by hand”, we also had to restrict the output
scheduler module placement to the lower half of the column; this was carried
out because it was noted that if there were no restrictions imposed on the
module placement, the tool could not place the output scheduler’s standard
cells cleverly enough, in order to avoid timing violations. In such cases the
designer must “assist” the tool, either by restricting the area (up to a rea-
sonable size, of course), changing I/O pin placement or even changing the
timing requirements themselves.

Finally, we should note that the credit signals, which originate from the
output scheduler module, have to be routed across a long way, until they
output the column module. As a result, if we do not locate “by hand” the 32
output credit pulse registers of each column at the column’s northest position
(right “below” the credit outputs), the tool is unable to meet the timing
goals. Actually, this problem is faced in conjunction with the respective
credit scheduler inputs, which are located in another component on top of
the crossbar columns (see Figure 4.2). A final placed and routed view of the
column can be seen in Figure 4.6.

4.5 Credit Scheduler Placement and Routing

As mentioned earlier, there exist 32 credit schedulers in the crossbar chip
and are responsible for sending in a round-robin manner the credit values to
the line card schedulers. There are also two alternatives in this P&R process:
flat and hierarchical. Flat P&R of the credit schedulers proves to be a very
time consuming task, as it has to be carried out during the final stage of the
P&R, in which case the tool has to handle all 32 column instances and the
flat credit schedulers as well. As a result, large layout, netlist and timing
files have to be processed by the tool, and at the same time, the 32 credit
scheduler blocks have to be placed & routed in a flat manner. As a result,
we decide to P&R the credit schedulers in a very narrow “line” and then

CHAPTER 4. PLACEMENT AND ROUTING 39

Figure 4.6: Final crosspoint column layout: The picture is rotated 90o clock-
wise for space reasons. The output scheduler is located on the left (actual
bottom) half of the column, with the data output bus coming from the west
(actual south) side. Notice the line in/out metal 6 feedthroughs, that connect
to the corresponding line in data inputs of the adjacent column. Dequeue
pulse registers were manually located on the east (actual north) column side,
in order to avoid inter-block timing violations (their outputs, credit pulses,
connect to the credit schedulers, which will be placed on the right (actual
north) side of the columns.

“hand-place” that block just above the column blocks (see Figure 4.2).
By following this organization, the credit scheduler input signals (1024

credit signals) enter the block from the south side, while the credit outputs
(32 16-bit buses) come out from the north side. We also have to place the
credit scheduler modules “by hand” at specific positions inside the “line”
block and restrict those modules, in order to prevent the tool from moving
standard cells of the 32 modules at far located positions.

Credit scheduler P&R is thus straighforward and is completed easily, also
meeting the timing requirements. The credit input pulse registers must be
placed as close to the credit scheduler block inputs possible and the tool
manages to comply with this requirement, without human intervention. As
a result, the credit scheduler input registers and the column credit pulse
output registers (destination and source respectively) are located very close
to each other, thus meeting the clock requirements of these adjacent blocks.
Note that those requirements are not met with the initial column placement
decisions and are only solved by placing “by hand” the credit pulse output
registers, as mentioned in the previous subsection.

4.6 Adding Another Level of Hierarchy: Top

Level Placement and Routing

After organizing the switch core in 32 column modules and one module con-
sisting of credit schedulers, we realize that the tool cannot handle the place-
ment and routing of so many and so large instances within a respectable
time. This has to do primarily with the machine that was used to P&R the

CHAPTER 4. PLACEMENT AND ROUTING 40

chip 2 and the large size of timing and layout files that have to be analysed
by the tool in the final stage. Note that these files are crucial in determining
whether timing will be met in the final chip.

Figure 4.7: 16-column higher level P&R: Data inputs can be seen connecting
to all 16 columns via feedthroughs.

As a result, we conclude that if we add another level of hierarchy in the
column organization, the problem will be solved. Organizing the columns in
higher levels of hierarchy is an easy task and is carried out by grouping them
during the synthesis procedure by using the Synopsys group command. A
reasonable hierarchy choice is to group the 32 columns in 2 pairs of 16 each,
placing and routing these two blocks separately and then combining only
three highest hierarchy blocks (two groups of 16 columns and one block of
credit schedulers). This task is carried out successfully; a 16-column resulting

2The only machine we can use has 4 SPARC processors, 400 MHz each, and 3 GB RAM.
Use of a faster machine can possibly produce faster results, but hierarchical approach will
most probably be anavoidable.

CHAPTER 4. PLACEMENT AND ROUTING 41

block can be seen in Figure 4.7, while a final chip core layout is shown in
Figure 4.8.

Figure 4.8: Final switch core layout: Core aspect ratio is 1:2. Data inputs are
fed from the west side of the chip, while credit and data outputs come from
the north and south side respectively. The two higher-level 16-column blocks
are also visible. Two adjacent columns are also visible, with data lines of
input 12 passing through them. Core dimensions are 14×30 mm (420mm2).

4.7 Chip Packaging and Placement and Rout-

ing Results

4.7.1 Chip Packaging

The most important result of the P&R process is, of course, the total chip
core area, which usually has to be as small as possible, in order to decrease
manufacturing cost and improve yield. Having final chip core area and pack-
age type, die area can be computed. There are times, however, when chip
core area cannot be brought to a minimum, as the chip I/O pins/pads are
so many or so large, that the core is pad-limited ; this is because: (a) the
bonding pads have to be placed at some minimum distance from each other,

CHAPTER 4. PLACEMENT AND ROUTING 42

but the periphery of the core cannot fit this requirement; (b) the tranceiver
circuits (SERDES) that have to be used occupy periphery larger than that
of the core. The opposite situation is called core-limited and means that the
core is large enough to eventually determine die area.

Note that depending on the number of I/O signals and chip periphery
length, some packaging technologies may result in a pad- and others in a core-
limited chip. For example, one of the most popular package types used today
for ASICs is Ball Grid Array (BGA) [38]. BGA can be either Wire Bond or
Flip Chip. In Wire Bond BGA, I/O pins have to be placed at the chip core
periphery, as shown in Figure 4.9(a), and then connected to bonding pads
through special I/O cells. Bonding pads are then connected via bond wires
to the BGA package balls. Pads cannot be placed too close to each other:
today’s values are 70µm pitch for single-row and 40-50µm staggered pitch if
two rows are used. This places restrictions on the maximum number of I/Os
that the chip can fit, as they are proportional to its periphery; bonding pad
number is also proportional to die area square root. As a result, although this
packaging method is cheap, it cannot be used when we have large number of
I/Os. Furthermore, bonding wires are relatively long (3-5 mm) and therefore
the connections have high inductance. Flip Chip BGA 4.9(b) can be used
instead: Although more expensive, this method allows much more I/O pins
to be connected to the (flipped) chip core, which saves die area in pad-limited
designs. Signal inductance is also limited, as interconnect length is an order
of magnitude less than that of Wire Bond BGA.

Macro Blocks

Core Logic

Die

Package

PCB
Traces

BGA
Package

Balls/Pins

(b)

Traces
Package

70 um

I/O Cells

Core Logic

Die

Package

PCB
Traces

BGA
Package

Balls/Pins

Bonding Pads

Bond
Wires

Package
Traces

(a)

I/O Cell/Bump

Figure 4.9: Wire Bond (a) and Flip Chip (b) BGA packaging solutions: if
the chip proves to be pad-limited in a Wire Bond approach, turning into Flip
Chip may prevent the core area increase that would have to be adopted if
(a) was used.

In the case of the 32×32 buffered crossbar switch, fast and relatively
large I/O tranceivers (SERDES) have to be used, as input and output data
link speed is nearly 10 Gbit/sec, whereas credit output link speed is 1/4 of

CHAPTER 4. PLACEMENT AND ROUTING 43

the former, namely 2.5 Gbit/sec. If 3.125 Gbit/sec tranceivers (2.5 Gbit/sec
useful rate) are used, then 4 and one uni-directional tranceivers are needed for
every data line and credit line respectively. Thus, we need (32+32)×4+32 =
288 uni-directional tranceivers for the whole chip, in addition to 64 traditional
wires for the sop and eop signals. If the 32×32 buffered crossbar switch chip
is to be placed in a Wire Bond package, then all tranceiver modules will have
to placed on the core periphery. Taking into account that a uni-directional
3.125 Gbit/sec tranceiver has an approximated area of 500×500µm in a 0.18
µm technology 3, then periphery length must be 144 mm. From the results
presented shortly, chip core dimensions are 1.4 × 3cm, thus its periphery is
88 mm. As a result, our design is pad-limited. Use of the alternative Flip
Chip packaging method might eliminate this phenomenon.

4.7.2 P&R Results

The 32×32 buffered crossbar chip we place & route has a total area of 420
mm2, with an aspect ratio of around 1:2 (1.4×3 cm). Area results, as well
as gate and flip-flop count per module can be seen in Table 4.1.

Module Gates Flip-Flops SRAM Area Area
(number (K) (K) 2-port 0.18µm 0.13µm
of instances) (bits) (mm2) (mm2)

XPD (1024) 68 91.0 9.5 4.3
XPM (1024) 16 M 286.0 130.0
OS (32) 100 9.7 4.0 1.8
CS (32) 50 6.4 2.0 0.4
Clock Tree Buffering 7 0.7 0.3
Long Wire Optimization Buffering 38 1.5 0.7
Wiring/Hier. Overhead 116.3 53.0

Total 263 107.1 16 M 420.0 190.5

Table 4.1: Placement and routing results: total numbers shown, including all
instances. XPD, XPM, OS and CS refer to crosspoint datapath, crosspoint
memories, output schedulers and credit schedulers respectively. Memory
area is computed from its datasheet [43]. Optimization buffering includes
buffers added after the post-route optimization phase. 0.13µm area results
are computed by extrapolation.

Note the area differences compared to the corresponding synthesis results
(shown in Table 3.1): Area is 40% larger, while gate count has increased by
60%. These discrepancies are due to: (a) wiring; (b) hierarchy overhead;
and (c) clock tree and optimization buffer insertion. It is reminded that each

3This result is an approximation taken from [27]: there, a single-chip bi-directional

3.125 Gbit/sec tranceiver circuit is 1 × 1mm in 0.18 µm.

CHAPTER 4. PLACEMENT AND ROUTING 44

column had to be fully optimized before importing it to the top-level core. As
a result, in most cases the tool added buffers in all hierarchy levels in order to
meet timing constraints; these buffers, although usually small, are numerous:
if we take into account only each column interface, then buffering each column
outputs adds almost 35000 buffers in the switch core, thus increasing its area
and power consumption 4.

4.8 Conclusions: Dealing With Large and Reg-

ular Designs

The P&R process presented in the previous subsections poses many differences
compared to flat P&R, which is usually followed in the case of small designs.
First of all, this process was imposed because of the large number of gates,
but, mainly, by the large number of black boxes (memories) which lie in the
switch. The latter results from the O(N2) complexity of the crossbar switch,
which is an inherent characteristic of the crossbar architecture. Hierarchical
P&R has itself many challenges, the most important being the correct deci-
sion of the hierarchy that must be chosen in order to help, not the designer,
but the tool, in performing quick and resource-aware P&R.

Wiring seems to be the most crucial factor of the hierarchical P&R pro-
cess. Wires that interconnect low-level modules must be taken into account,
in order to prevent the tool from using unneedlessly long wiring while con-
necting the modules. In our case, from the solutions investigated, manual
creation of feedthroughs within the modules seemed to be the most appro-
priate, as it led to straightforward layout with small area overhead. Another
important factor that must be taken into account is the final pin layout,
which inevitably influences the P&R process speed and success. It should be
noted that hierarchical decisions taken during P&R phase may not be the
same as the ones taken during synthesis. These hierarchical changes can be
performed both in the RTL and the Gate Level, the first having the disadvan-
tage that a slight change in hierarchy directly affects RTL, needing careful
and error-prone changes. In the Gate Level, hierarchy changes can be easily
carried out by using the Synopsys group command.

Of course, hierarchical P&R most often leeds to larger designs, as there is
area overhead that has to be added in order to P&R lower hierarchy blocks.
Unfortunately, in our case, we had to make a tradeoff between following hi-
erarchical P&R, because of the tool’s limitations, and producing the smallest
chip possible, as the design area (during synthesis) was already closing 300
mm2. Thus, the tremendous difference between the Gate Level area result
and the final placed & routed chip area result (300mm2 and 420mm2 respec-
tively), should not surprise us: a growth of 40-50% should be a rule of thumb
in large designs, especially when a hierarchical P&R approach is followed.

4Buffer insertion effect on power consumption is discussed in the next chapter.

CHAPTER 4. PLACEMENT AND ROUTING 45

Place & route flow is, undebatably, the most time consuming part of
the chip design, as: (a) it demands careful “hand” design and analysis of
the alternative organization ways; and (b) each stage is time consuming
and usually the designer has to restart the flow from the very beginning if
something goes wrong. This “back-and-forth” situation can be carried out
tens of times before the first promising results are reported; therefore, for
industrial designs, careful management of the project has to be performed
in order to meet time to market demands; the faster the design is designed,
verified and synthesised, the better.

Finally, it should be noted that the regularity of the design actually as-
sisted us, both by making hierarchy decisions easy and by helping the tool
with the P&R process, as the number of different modules in each level was
limited: For example, each “column” comprised of 32 identical crosspoint
modules and one output scheduler module, whereas the switch was made up
of 32 “columns” and one credit scheduler “line”. If there was no regular-
ity, P&R of such a large design would probably have been much more time
consuming.

Chapter 5

Power Consumption

Total power consumption is the sum of two different types of power: dynamic
and static [47]. Dynamic power is dissipated when the circuit is active, that
is, when the voltage on a net changes due to stimulus applied to the circuit.
Notice that because voltage on a net can change without necessarily result-
ing in a logic transition of the output, dynamic power can be dissipated even
when an output net doesn’t change its logic value (see Figure 5.1). Static
power is the power dissipated by a gate when it is not switching, that is,
when it is inactive or static. Static power can be dissipated in several ways;
the largest percentage results from the source-to-drain transistor subthresh-
old leakage caused by reduced threshold voltages preventing the gate from
completely turning off. Static power is also dissipated when current leaks be-
tween the diffusion layers and the substrate of a transistor; For this reason,
static power is often called leakage power.

D

A

B

C

Figure 5.1: Dynamic power is dissipated even if the output does not change:
Logic cell inputs A, B and C can switch from logic 0 to 1, and net D can
switch from 1 to 0, but the output will remain unaffected, althought dynamic
power was consumpted.

The dynamic power dissipation of a circuit is composed of two factors:
switching power and internal power. Switching power results from charg-
ing and discharging the load capacitance of an output cell 1 and equals to
PSW = pswfckCV 2

DD, where psw is the probability that a node will switch up
and down, fck is the clock frequency, C is the load capacitance and VDD is the

1Cells are complex or simple gates in which logic is transformed by synthesis.

46

CHAPTER 5. POWER CONSUMPTION 47

supply voltage. Internal power is any power dissipated within the boundary
of a cell. During switching, a circuit dissipates internal power by the charg-
ing and discharging of any existing capacitances internal to the cell. Internal
power includes power dissipated by a momentary short circuit between the
P and N transistors of a gate, called short-circuit power.

Switching power is the dominant (90% and relatively decreasing) com-
ponent in current CMOS technologies. Internal (mainly short-circuit) power
constitutes about 8% of the total power consumption, with an absolute de-
creasing trend; the rest 2% (although relatively increasing) comes from leak-
age (static) power. Although for circuits with fast transistion times (i.e. fast
clocks), short-circuit power consumption can be small, for slow-transition
ones the short-circuit power dissipation can account for as high as 30% of
the total power dissipated by the gate. Short-circuit power is affected by
the dimensions of the transistors and the load capacitance of the gate’s out-
put. If we ignore short-circuit and leakage power consumption, we observe
that for the same technology and same circuit working characteristics (i.e.
the same clock frequency, supply voltage and switching activity), switching
capacitance is the only factor that can be controlled and reduced (buffering
of long nets is a possible solution) 2. Short-circuit power dissipation is il-
lustrated in Figure 5.2: if we apply positive voltage at the input then, as
the signal transitions from low to high, the N-type transistor turns on and
the P-type transistor turns off. However, for a short time during the input
transistion, both P- and N-type transistors are switched on simultaneously.
During this time, current ISC flows from VDD to GND, causing the dissipa-
tion of short-circuit power (PSC). Figure 5.2 also illustrates where exactly

t

V

t

OUTIN ISC

ILK

ILK

N

P

CLOAD

ISW

VDD

GND

V

Figure 5.2: Components of power dissipation illustrated in the case of an
inverter: ILK, ISC , and ISW are leakage, short-circuit and switching currents
respectively.

dynamic (switching and short-circuit) power is dissipated.

2Capacitance limitation is also the key factor that has to be minimized in order to
avoid timing violations.

CHAPTER 5. POWER CONSUMPTION 48

In the following sections we will talk about the work carried out in mea-
suring and reducing switch (especially crossbar) power consumption, briefly
introduce the Gate Level and Placement & Routing power estimation flows,
and present the power estimation results of our 32×32 buffered crossbar de-
sign. In the appendix we talk about the most important power minimization
techniques that can be applied in the RTL and Gate Level design stages.

5.1 Crossbar Switch Power Consumption Es-

timation: Work Done Sofar

Various researchers have tried to come up with crossbar power consumption
conclusions, as well as discover the most power consuming components of
such devices. Ye et al. [44] performed Verilog RTL simulations on the four
most important switch fabric topologies (crossbar, fully connected, Banyan
and Batcher-Banyan) and introduced a framework to estimate their power
consumption 3. They divided a switch into four main parts (ingress and egress
packet processing units, arbiter and switch fabric) and analysed only the lat-
ter component. “Bit Energy” is also introduced; it comprises of the energy
consumed by a single bit travelling on switching nodes, in buffer memories
and on interconnection wires. They concluded that (a) interconnect con-
tention increases significantly switch power consumption 4; (b) for switches
with small number of ports, internal node switching dominates, while in
multi-port switches (beyond 32×32), interconnect power is the dominant fac-
tor. Their simulation results show that a 32×32 bufferless crossbar switching
fabric consumes approximately 300 mW, under uniform traffic conditions and
load almost 60%.

Wang et al. [45] developed an architectural-level power-performance sim-
ulator for switches and routers, called Orion. They introduced router power
models of the three most power consuming router building blocks, namely
memories, crossbars and arbiters. The authors applied their theoretical mod-
els to two commercial routers, the Alpha 21364 and the IBM Infiniband 8-
port 12X. Their most interesting (for the purposes of this work) result was
the power estimation of the Alpha 21364’s switching fabric, which comprises
of two 8×5 crossbars: the estimated average power consumption was about
700 mW, for 100% input load, whereas worst case power estimation is almost
double the figures of the average case. Their results were close to the esti-
mated values published by the companies that design these products. They
also came to the conclusion that: (a) crossbar and buffer memory power
consumption grow approximately linearly to the data arrival rate, as they
are both “datapath” components; (b) the larger the memory, the higher the

3Switch I/O consumption is not taken into account in their study.
4Nevertheless, a crossbar switching fabric does not suffer from internal blocking, hence

interconnect contention is negligible in our case.

CHAPTER 5. POWER CONSUMPTION 49

power it will comparably consume; (c) router links 5 consume a large amount
(almost double) of the switch core total power consumption. Based on the
above assumptions, we can conclude that our switch’s crosspoint datapath
power consumption will be at least 500 mW 6.

Various researchers have provided approximate I/O and power consump-
tion figures and predictions, in order to assist designers in performing efficient
power budgeting. According to [35], single-chip I/O power consumption fac-
tor is expected to grow, from 16% in the case of a 6 Gbit/sec 16×16 switch,
to 50% for a 64 Gbit/sec 32×32 switch. [18] states that any state-of-the-art
switch is severely limited by I/O pins and their power consumption: high-
speed and high-density SERDES (tranceivers) available in ASIC libraries
today give approximately 125 mW per 2.5 Gbit/sec useful bandwidth full-
duplex (3.125 Gbit/sec in 8B/10B encoding); as a result, a 4 Tbit/sec switch
would require about 104 pins and would dissipate roughly 256 W of I/O
power! This is obviously prohibitive for single-chip implementations: in or-
der to comply with Network Equipment Building Standards (NEBS) rules
[33], a single board must not dissipate more than 150-250 W, while single-chip
power dissipation must remain under 25 W to avoid hot spots and expensive
cooling solutions.

Last of all, [31] states that on-chip buffer memories (0.18µm) consume
5-10 mW in order to support sustainable Gbit bandwidth, while the same
figure for chip I/O power consumption grows to 40 mW/Gbps in 0.18µm and
25 mW/Gbps in 0.13µm. Thus, I/O throughput is 5 to 10 times higher than
on-chip buffer memory throughput in terms of power consumption, which
eventually limits the total achievable single-chip switch throughput: a single
switch chip with 64 10 Gbit/sec incoming links will have an approximate I/O
power consumption of 32 W in a 0.13µm technology. To make matters worse,
in order to limit package pin count, the designers would favor high-speed
links (e.g. 3.125 Gbit/sec SERDES/ tranceivers), which are large enough
(almost 1mm2 per 3.125 Gbit/sec tranceiver in 0.18µm [27]) to result in a
pad-limited chip core. Hence, I/O power consumption is possibly one of the
most important factors when designing single-chip switches; moreover, in a
buffered crossbar, special care should be taken for memory consumption, as
well.

5.2 Power Analysis Flow: RTL vs. Gate Level

vs. Post-P&R

Power analysis can be carried out in many design stages, the lowest levels
being RTL, Gate Level and post-P&R. The more “abstract” the circuit’s

5Links include expensive Serializer-Deserializer (SERDES) circuits; the term “tran-
ceiver” is usually used instead.

6The actual figure will grow, due to the extra logic included in each crosspoint; such
logic is not needed in the unbuffered crossbar implementations analyzed above.

CHAPTER 5. POWER CONSUMPTION 50

description is, the more imprecise the power analysis results are; hence, RTL
power estimation is considered erroneous, whereas the Gate Level and post-
P&R ones are more accurate. In this thesis we estimated the power con-
sumption on both the Gate Level and post-P&R level (on some design com-
ponents). In the remainder of this section we will briefly present these power
analysis flows, both in the Gate and post-P&R level.

5.2.1 Gate Level Power Estimation

The Gate Level power estimation is carried out by the Synopsys Power Com-
piler, which is included in the framework of the Synopsys Design Compiler
[47]. Synopsys Power Compiler uses various formulas and the information
modeled in the logic cell technology library, in order to evaluate the static
power of a design. Apart from using equations, Power Compiler uses two- or
three-dimentional lookup tables that contain power consumption values for
various output load capacitances and input transition times. Note that cells
often consume different amounts of internal power depending on which input
pin transitions take place or depending on the state of the cell; hence, inter-
nal power is state- and path- dependent. For example, in a cell with many
levels of logic (see Figure 5.1), a transition on an input signal that affects
many levels consumes more power than that of an input signal that affects
less levels; Power Compiler takes such differences into account. An exam-
ple of a cell with varying state-dependent internal power consumption is a
RAM, where different amounts of power is dissipated depending on whether
it is in read or write mode. Dynamic power is computed by the formula
mentioned in the introductory section; capacitance information is obtained
by the wireload model 7 specified by the user or the tool, as well as by the
technology library information for the gates connected to the net 8.

Cell internal power and net toggling (i.e. the frequency of the input
transitions) have a direct effect on the dynamic power of a design. Power
Compiler needs such information in order to perform power reporting or op-
timizations; net toggling is also called switching activity. Switching activity
can be given to the tool in two ways: (a) by specifying the toggle rate in terms
of static probability, in which case the results are probably inaccurate; and
(b) by measuring the switching activity under a certain simulation scenario
and back-annotating it to the power estimation tool; measurements can be
carried out on some or all design objects. Switching activity annotation is
performed by compiling and simulating the design within an HDL simulator
that can capture switching activity; in our case, Cadence Verilog XL [20]
verilog_toggle command was used. We can also include interconnect and
cell delay information into the annotation tool; this is carried out by loading

7A large wireload model, e.g. 80K, should thus be preffered upon a smaller one in
cases when the module under synthesis includes large amounts of wiring. This decision,
however, cannot be usually made unless physical layout decisions have been made.

8Capacitance information can be also back-annotated after physical design.

CHAPTER 5. POWER CONSUMPTION 51

the “Standard Delay Format” file (.sdf) written out by Design Compiler dur-
ing the synthesis phase. Furthermore, a library forward-annotation file, that
contains information from the technology library regarding the cells’ state-
and path-dependent power models, can be used; this file, as well as the sim-
ulator switching activity annotation result file, is written in the Switching
Activity Interchange Format, hence its extension is .saif. After switching
activity is annotated, it is loaded into the Power Compiler, read and ana-
lyzed. The power estimation flow is shown in Figure 5.3. In the Appendix,
we describe this procedure in detail.

power estimation & report

−Gate level netlist (.v)
−Net interconnect file (.sdf)
−Library forward−annotation file (.saif)

Capture switching activity
through HDL simulation

(e.g. verilog_toggle)

Back−annotation SAIF file

Power Compiler

Figure 5.3: General Gate level power estimation flow.

5.2.2 Post-P&R Power Estimation

The post-P&R power estimation is carried out after the circuit is placed
and routed. This kind of power estimation requires the same information as
the Gate Level one; that is, the net and cell delay file (.sdf), the library
annotation file (.saif) and, of course, the post-P&R netlist of the design
(.v). The latter file, as well as the Standard Delay Format (.sdf) file are
produced by the P&R tool; the .saif file is the same one that was used for
synthesis. The power estimation procedure is carried out in the Synopsys
environment by the Power Compiler tool, and the steps described in the last
section are followed.

CHAPTER 5. POWER CONSUMPTION 52

5.3 Switch Power Consumption Breakdown

We measure both Gate Level and post-P&R steady-state 9 power consump-
tion of the 32×32 buffered crossbar switch; in this section we present the
most accurate post-P&R results 10. Power estimation is carried out by send-
ing minimum-size packets (40 Bytes) back-to-back (100% load), from every
input to uniformly selected outputs. Packet payload is selected so as to
maximize net switching.

The power consumption breakdown can be seen in figures 5.4 and 5.5.

Total chip power consumption: 28.75 W

XPM
1

OS CS
0.40.5

OutputLineInput Line Wiring

0.6
Wiring3

Chip core power consumption: 5.75 W
SERDES power consumption: 23 W

0.25
XPD

Figure 5.4: Power consumption breakdown: XPD = crosspoint datapath,
XPM = crosspoint memories, OS = output schedulers, CS = credit sched-
ulers. All numbers are in Watt.

XPM
XPD

Input Line Wiring

CS

OS

Wiring

Output
Line

52%

10%

9%

7%

17%
5%

Figure 5.5: Power consumption percentage breakdown of the 32×32 buffered
crossbar switch.

Crosspoint datapath consumes 250mW of power, while output and credit
schedulers dissipate 500 and 400mW respectively. Crosspoint memories con-

9“Steady-state” power consumption differs from the absolute worst-case one; this is
analyzed shortly.

10Post-P&R power estimation is followed in order to measure the consumption of each
switch component. Power estimation of the total switch core, however, is carried out at
the Gate Level.

CHAPTER 5. POWER CONSUMPTION 53

sume 1W of power; this is measured from the memory datasheet [43]. Wiring
accounts for 3.6W of a total of 5.75W chip core power consumption; this
breaks down into 3W for the long input data lines and sop and eop sig-
nals that traverse the chip’s longest dimension, and 600mW for the output
data wires that traverse the switch columns. It is reminded that there are
thirty-two 32-bit input wires and 64(32 + 32) sop and eop signals. These
signals are fed into each switch column through high-metal layers. Because a
hierarchical P&R approach was imposed, each column should be optimized
before importing it into the top-level core; as a result, small buffers were
added at each column output, in order to avoid possible future top-level tim-
ing violations (see Figure 5.6). This inevitably increases input wire power

borders

32
line in

1 3

crosspoint
row 2 4 31 32

column

Figure 5.6: Buffering of long input lines: each 32-bit long input line is
buffered at the outputs of each column. For 32 such lines and their 64(32+32)
accompanying signals, approximately 32×32×32 = 32000 buffers are needed.
These contribute by 85% to total input wire power consumption.

consumption. From the 3W consumed for wiring, 2.5W are dissipated from
the buffers themselves, whereas the rest 500mW account for “net switch-
ing” power consumption (power dissipated during charging/discharging of
wires). If we could P&R the core in a flat manner, then less buffers would
be needed. In fact, after synthesizing and placing & routing a single 32-bit
input line of length 3cm (like the ones needed in this work), its power con-
sumption dropped from 3mW to 2.2mW , and a different buffering approach
was followed by the P&R tool (half the buffers were used, but with stronger
drive strengths); buffer to wiring consumption ratio remained the same. One
solution to decrease wiring power consumption would be to switch off the
wire from the last receiver crosspoint on; this can be accomplished by using
pipeline registers and disabling the path that does not have to be switched.
Adoption of this idea could decrease wiring power consumption of the long
horizontal wires considerably, but would increase switch latency, too. It
should be noted that this typical switch core steady-state consumption of
5.75W drops to 3.2W in a 0.13µm technology 11.

11This result is estimated by extrapolation based on the technology libraries.

CHAPTER 5. POWER CONSUMPTION 54

Note that, as also described in [19], worst-case instantaneous power con-
sumption occurs when all inputs receive multicast packets destined to all
outputs, in which case all 1024 crosspoint buffers perform write operations.
This situation can last up to 1.6 µseconds, which is the time needed to fill
up a 2 KByte buffer at 10 Gbit/sec link speed. Following that, backpres-
sure stops the incoming traffic, and buffer memories perform read accesses
only, one crosspoint memory per column (i.e. output) at a time. The read
power cosumption of crosspoint buffers corresponds to their read through-
put, which never exceeds 32 buffers operating in parallel. These buffers are
located on the diagonal of the switch. Write power consumption corresponds
to write throughput; the long-term average write throughput cannot exceed
read thoughput, since every byte that is ever written once, must also be read
once. Last of all, all 32 output and credit schedulers are functioning at all
times during the simulation. Worst-case steady-state scenario is illustrated
in Figure 5.7.

output schedulers

credit schedulers

crosspoints

Figure 5.7: Module power activity in worst-case steady-state operation: in
the scenario presented (all inputs send randomly minimum-size packets to
all outputs), all output and credit schedulers are active. On the other hand,
only one crosspoint placed on the diagonal is active per-row and per-column;
all others are “filled” with packets. Active modules are in grey.

5.4 Conclusions

It is evident that average power consumption is dominated by pad drivers and
SERDES; core consumption accounts for just 20% of the total chip consump-
tion. In turn, core consumption is dominated by long-wire drivers: driving
1024 input data wires across the chip width and 1024 output data wires to
the chip outputs (32 links x 32 bits/link = 1024 wires). Buffer memories
end up consuming, on the average, only 15% of the core power and 3-4% of
the chip power. The almost 30 W total switch power consumption shows the

CHAPTER 5. POWER CONSUMPTION 55

feasibility of our design, as with a medium-priced packaging technology, its
power dissipation will not cause any problems.

Chapter 6

Conclusions and Future Work

In this work we presented a novel buffered crossbar organization, and proved
its feasibility by designing a 32×32 speedup-less such switch core, with ag-
gregate incoming throughput of 300 Gbit/sec; final chip core area was 420
mm2 in a 0.18 µm and 200 mm2 in a 0.13 µm CMOS technology, while its
power consumption dropped just below 6 Watts (3.2 W in 0.13 µm). Tak-
ing into account that a similar switch would approximate 110 mm2 in the
emerging 0.09 µm technologies, we can claim that the adopted organization
can become the switching building block of the future.

The fact that output scheduling was distributed over every output, re-
moved the need for a very fast, complicated scheduler, that would control all
connection requests; as a result, speedup due to scheduling inefficiencies was
eliminated. Switch novelty stems from the fact that no packet segmentation
and reassembly (SAR) had to be carried out; hence no speedup due to SAR
had to be adopted, either.

We divided the switch into 2 clock domains: the use of 2-port SRAMs
at each crosspoint removed the need for elastic buffers at the switch inputs,
in order to synchronize all incoming data to a single local clock; the only
other synchronization needed concerned a single-bit control signal at each
crosspoint, and was dealt with an effective 1-bit synchronizer. The simple
and effective Round Robin policy was followed at both the output and credit
schedulers. The latter sends credits to the input line cards in a QFC-like
manner, thus compensating for possible credit losses.

We synthesized and placed and routed the switch by following hierarchi-
cal flows, which was due to the large number of memories (1024) and the
resulting chip size. Such flows are usually carried during the development
of large or complicated designs, and were completely new approaches to us.
Hierarchical flows posed some difficulties though, in particular choosing the
optimal hierarchy organization that would assist the tools in producing fast
results. P&R, being more complicated, error-prone, and time consuming,
covered almost half of this work’s duration.

Multiple priority support is a usual feature of commercial switches. To
support multiple priorities under the proposed architecture and maintain full

56

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 57

efficiency (no HOL or buffer hogging) we need L∗2KB of buffer space, where
L is the number of priorities. For example, if 8 priorities were used, then
our implementation would need 8 × 2× 1024 = 16MBytes of total memory,
which will be only feasible in future CMOS and/or memory technologies.
Fortunately, as Chrysos et al. [24] have shown, only two 2KByte buffers are
needed per crosspoint: through simulation, and assuming 8 priority levels,
the 2× 2KByte per-crosspoint proposed system performs almost identically
to the 8×2KByte per-crosspoint ideal system under realistic traffic, whereas,
even under highly irregular traffic, average delay of any priority level is not
increased by more than 75%, compared to the ideal system. If this organi-
zation is adopted, then 8 priorities will only need 32 Mbits of total SRAM
memory, divided into 2048 2Kbyte SRAMs, which is feasible in current state-
of-the-art CMOS technologies (0.13/0.09µm).

Also, another interesting point is the fact that, in fast networks, maximum
packet size has been increased from 1500 Bytes, to almost 9 KBytes. This
poses significant difficulties in case the proposed organization is followed,
due to the fact that buffer size equals RTT + MaximumPacketSize; hence,
under medium RTT values, each buffer would have to be almost 10 KBytes,
as a result, a 32×32 single-priority, buffered crossbar would need 80 Mbits
of distributed, on-chip SRAM memory, in order to operate efficiently under
heavy load. This memory area is too large, even if we take into account the
technology downscaling fashion. Embedded DRAM (eDRAM) is a possible
solution as, being up to 4 times denser than conventional SRAM, could lower
chip area to normal sizes. eDRAM adoption would, of course, impact on the
crossbar organization, as well.

Appendix A

Organization of a 4-input WRR
Scheduler

As noted in chapter 2, during the initial stages of this thesis we investi-
gated the design and implementation of a 4×4 buffered crossbar switch that
would be downloaded in an Altera FPGA. The number of input/output ports
(switch size) was bounded by the memory requirements, as 32 KBytes are
needed for a 16-crosspoint switch. Operating frequency was specified to 50
MHz, hence the switch would have link speed of 1.5 Gbit/sec link. Although
this attempt was later abandoned (and replaced by the more “ambitious”
32×32 buffered crossbar ASIC chip design & implementation), a 4-input
Weighted Round Robin output scheduler was designed, in order to select the
appropriate flow among the 4 crosspoints of each column of the 4×4 switch.
In the next sections we will briefly present various scheduling policies that
are being used in network traffic management circuits, followed by a short
introduction to Weighted Round Robin (WRR) discipline. Finally, we will
present the internal organization and operation of our 4-input WRR output
scheduler.

A.1 Introduction to Scheduling Policies

In this subsection we will assume N flows and P priorities; each flow has one of
these P priorities [31]. The simplest scheduling discipline is the strict (static)
priority scheduling, where each flow 1 belongs to a certain static priority
level. The scheduler’s goal is to serve the highest-priority eligible flow. This
discipline is very easy to implement by using a priority enforcer/encoder.
Unfortunately, the strict priority scheduling scheme suffers from a starvation
issue: if flow i is not policed or regulated and becomes persistent (i.e. always
has a non-empty, eligible queue), then all levels below i will be starved; that
is why we have to ensure that all levels but the last (lowest priority) one will
be be policed or regulated.

1Each flow may be an aggregate of many sub-flows

58

APPENDIX A. ORGANIZATION OF A 4-INPUT WRR SCHEDULER59

The other extreme of priority scheduling is plain round robin (equality)
scheduling, which was actually the only scheduling discipline used in the
32×32 buffered crossbar switch presented in this thesis. In plain round robin,
the scheduler visits each eligible flow, regardless of its priority or persistency;
hence, all flows have the same priority. Round robin scheduling can be im-
plemented in two ways: (a) by using a circular priority encoder/enforcer and
(b) by using a linked list of the eligible flow IDs. Method (a) needs simple
circuitry (round robin priority enforcers), while efficient organizations exist
for small, medium, or large number of flows. Implementation (b) has the
difficulty of where to reinsert a flow that was ineligible and has just become
eligible, with most of the possible solutions leading to unfairness.

A.2 Weighted Round Robin Scheduling

Last of all, there is a way to serve each flow according to its priority, but
with a round robin manner as well. If each flow had a weight, that would
correspond to its priority, then the round robin policy could be changed
by the following way: assume that we maintain a (varying) set of eligible
flows and we associate a value, called “Next Service Time” (NST) with each
of them. Then, in summary, the scheduler has to (a) find and serve the
(eligible) flow that has the minimum (earliest) NST, and (b) re-schedule for
a future time the flow just served.

When scheduling starts, each flow is possibly served randomly 2. When
a flow is served, the (virtual) time it will be served again is computed by
multiplying its weight 3 by the packet size that is being dequeued by the
flow and adding the result to its current “service time”. Thus, intuitivelly,
the flow will be served some (virtual) time in the future, relative to the
time it was being served and its priority (weight). An WRR scheduling
example is shown in Figure A.1, where 4 flows, A to D , with various weights
and eligibility statuses are being scheduled. Flow initial service order is
random. Last of all, it should be noted that according to the reinsertion
time of a flow that was ineligible and suddenly becomes eligible, as well as
the Next Service Time computation, many variants of WRR scheduling have
been examined in the past, with the most important being “Weighted Fair
Queueing (WFQ)”, “Self-Clocked Fair Queueing (SCFQ)”, “Worst-Case Fair
Weighted Fair Queueing (WF2Q)”, “Start-time Fair Queueing (SFQ)” and
“Virtual Clock”.

2In the case of multiple low-rate flows and less high-rate flows, unfavorable initilization
may cause large jitter to the latter; aggregation of low-rate flows and round robin service
inside them solves the problem.

3Sometimes the inverse value is used, called “Service Interval” (SI).

APPENDIX A. ORGANIZATION OF A 4-INPUT WRR SCHEDULER60

flow B SI

B

C

D

Eligibility
status

Weight
Factor

50

30

10

10

Interval (SI)
Service

20

33

100

100NO

YES

YES

YESA

Flow

A

0

A C B

105 20 4043

A B A

60

B A

76 80

A

100105 109

BC

120

A A B

140 142 175

B D

190

C

205 208

B B

241
service
time

(virtual)

eligible
becomes

ineligible
becomes

flow A SI

flow C SI
flow D SI

Figure A.1: Priority queue WRR scheduling example: Flows A to D have
weights 50%, 30%, 10% and 10% respectively; hence their Service Intervals
(SIs) are 20, 33, 100 and 100. Initial service is random. Notice that flow A,
which was served at (virtual) time 0, will be served again in time 0+20 = 20,
whereas flow B was served at time 10 and will be re-served at 10 + 33 = 43.

A.3 4×4 Output Scheduler Organization

Output scheduler block diagra can be seen in Figure A.2. The scheduler has
4 32-bit input data buses, accompanied by 4 synchronized “Start Of Packet”
(sop) signals. The block outputs a 32-bit data_out bus to the switch outputs,
as well as a 4-bit wide deq bus, which connects to the corresponding rd_en

signals of the column crosspoints’ memories.

WRR

32

32

32

32line_out 4

line_out 3

line_out 2

line_out 1

32
data_out

4 4

clk_rd

reset

sync
sop

deq

4−INPUT

SCHEDULER
OUTPUT

Figure A.2: 4-input WRR output scheduler block diagram.

Figure A.3 presents the WRR scheduler internal organization. Flow eligi-
bility flags are computed via 4 packet adders: if an adder equals zero, its flow
is ineligible. Packet counters are incremented by the synchronized sop signal
that the column crosspoint that enqueues the packet sends to the output
scheduler. This eligibility flag fires the FSM that controlls packet dequeues
and WRR operation.

APPENDIX A. ORGANIZATION OF A 4-INPUT WRR SCHEDULER61

The most important operation of the specific scheduler is the computation
of the minimum NST, among 4 values. This can be accomplished in two ways:
(a) by using 3 comparators, organized in a tree fashion, along with three 32-
bit multiplexors (top left of Figure A.3); (b) by using 6 comparators, which
compare all 4 NST values with each other (center of Figure A.3). Although
the first method needs only half the comparators compared to solution (b), it
also requires 3 2-input, 32-bit multiplexors, which are considered expensive
in this context; hence, we eventually used method (b). By comparing all
NST values (from now on called NST_1 to NST_4) with each other, 6 “less
than” signals are generated: NST_4 less than NST_3, NST_4 less than NST_2,
NST_4 less than NST_1, NST_3 less than NST_2, NST_3 less than NST_1 and
NST_2 less than NST_1. These signals, along with the 4 eligibility flags, are
fed into a combinational logic 3-level circuit, which chooses the next eligible,
minimum NST value. For example, the logic used for NST_4 is as follows:

if (NST_4 eligible)

if (NST_3 eligible AND NST_4 < NST_3) OR NST_3 ineligible, OR

if (NST_2 eligible AND NST_4 < NST_2) OR NST_2 ineligible, OR

if (NST_1 eligible AND NST_4 < NST_1) OR NST_1 ineligible, OR

then min_NST = NST_4

...

where min_NST is the minimum Next Service Time among the 4 flows. Three
similar if clauses are used for the rest of the flows. The flow_sel result
of the combinational logic curcuit is used to select (a) the line_out bus
that will be sent to the scheduler output, (b) the SI value that will be used
for multiplication with the packet’s size, (c) the NST register that will be
updated with the new NST value.

Four 16-bit registers are used to store the SIs; these values are multiplied
by packet size, in order to compute the NST of the flow currently being
dequeued. The multiplier has a two clock cycle latency and its exit is the
16x16 = 32−bit value that must be added to the previous NST of the specific
flow. After the NST is updated, all ineligible NSTs have to be brought to
the current NST, too (Weighted Fair Queueing policy).

Dequeueing stops either when the packet is fully dequeued (eop_deq)
and there is no other eligible flow, or when there still exist eligible flows,
thus next-flow minimum NST computation has to start before the currently
dequeueing finishes (pre_schedule).

Last of all, it should be noted that the 32-bit adder, the 16-bit multiplier
and the 32-bit comparators all have a 2 clock cycle latency, thus they all
need 40 nsec to produce a result. This constraint was imposed by FPGA
limitations.

APPENDIX A. ORGANIZATION OF A 4-INPUT WRR SCHEDULER62

32

CMP

CMP

CMP

CMP

CMP

+/− +/− +/−+/−

CMP

CMP

CMP

CMP

���� ��
��

��

	

�� �

��

����

��

��
��
��

��
�
!"

1

2

3

4

adder
32−bit

line_out 1

line_out 2

line_out 3

line_out 4

32

32

32

32

16

pck_sz

INTERVALS

32

flow_sel

32

min_NST

SERVICE
NEXT

TIMES

4<3

4<2

4<1
3<2

3<1

2<1

2

flow_sel

CL
3−level

update
NSTs

comparators
32−bit

16

SERVICE

flow_sel

2

mult
16−bit

2
flow_sel

(from column XPs)

(to column XPs)
deq [3:0]

sop_sync 1
sop_sync 2
sop_sync 3
sop_sync 4

(from column XPs)

32

(to switch output)
data_out

(from FSM)

4
counters
packet

Alternative

2<1

4<3

result

1

2

3

4

structure
comparator

eop_deq/
pre_schedule

dec

1
SI SI

3
SI

4
SI

2

2

elig. states

32

NST
min

32 32

32

32

32

32

Figure A.3: Weighted Round Robin (WRR) output scheduler internal or-
ganization. 6 comparators are used in order to compare all 4 Next Service
Times (NST) with each other. This comparison stage can be otherwise im-
plemented by using 3 comparators, in a tree order, and 2 32-bit multiplexors.
This organization is shown on the top left of the figure.

A.4 WRR Output Scheduler Implementation

We intended to download the WRR output scheduler (along with the rest
of the switch) in an Altera EP20K1500E FPGA (1, 500, 000 ASIC-equivalent
gates, 51, 840 Logic Elements, 442, 368 RAM bits), located on the Altera
SOPC Development Board [26]. Target operating frequency was 50 MHz;
this would result in a 4×4 crossbar switch with link rates of 1.5 Gbit/sec.

APPENDIX A. ORGANIZATION OF A 4-INPUT WRR SCHEDULER63

This attempt was later abandonded, since it was decided to move on the
design & development of the 32×32 crossbar switch, which was thoroughly
presented in the first chapters of this thesis. Nevertheless, we measured
output scheduler area and speed, in the case of an ASIC construction. Thus,
we followed the chip design flow presented in the previous chapters to design
an single output scheduler chip 4. Scheduler clock achieved was 100 MHz
5 , while chip area was 360×360 µm. The chip, along with the scheduler’s
major part physical placement, can be seen in Figure A.4.

Figure A.4: WRR output scheduler chip layout: total chip area is 360×360
µm (0.13 mm2).

4Multiplier, adder and comparator latency contraints were insignificant in the case
of the ASIC implementation, since almost double operating frequencies could be accom-
plished.

5This could result in a 4×4 3.2 Gbit/sec link speed crossbar switch.

Appendix B

Power Estimation Tutorial

Circuit power estimation can be carried out in all “detail” levels: system,
algorithm, RTL, Gate Level and post-P&R levels are possible candidates.
Although the largest power savings (nearly 75%) can be achieved at the
System Level, power can be saved during the rest design stages as well [22].
On the other hand, power estimation becomes more exact as the design
proceeds to its latest stages (see Figure B.1). In this chapter we will analyze

Gate
P&R

SiliconTransistor
Level

>75%

>50%

50−75%

25−50%

5−15%

10−20%

15−50%

15−40%

SavingsPower 3−5%

Accuracy Error 5−10%

Level
System

Level
Algorithm

Level
Transfer
Register

Level

Figure B.1: Power savings vs. power estimation per design level: in the early
design stages (system/algorithm/RTL) power reduction decisions are easily
made and power saving decisions can be significant. On the other hand, later
design stages (Gate Level/P&R) provide better power estimation results.

in detail the power estimation procedure followed in the two final stages of
the design process, namely Gate Level and P&R.

B.1 Gate Level Power Estimation

In order to perform Gate Level power estimation, we must first decide on the
accuracy of the desired estimation. If we want to analyze, not only cell power
dissipation, but interconnect consumption as well, we must synthesize the
circuit and write the interconnect and cell delay file (.sdf); this information
is read with the command $sdf_annotate. The Gate Level netlist (.v) is also
needed. Notice that, if we aim at estimating the consumption of a specific
design component, we can use the RTL description for the rest of the design,
and the Gate Level netlist for the specific component. This accounts for the

64

APPENDIX B. POWER ESTIMATION TUTORIAL 65

.sdf case as well. Last of all, the library forward annotation SAIF file must
be included, too (its format is .saif); this file is written from the Synopsys
environment with the command

lib2saif -output XX.saif

were XX.saif is the library output annotation file. Toggle region must be
also specified; in this way, the designer explicitely defines the component
under power estimation. Switching activity is captured with the command
$toggle_start and this process is finished with the command $toggle_stop;
switching activity report is written with the command $toggle_report.

The files mentioned above must be read and analyzed by an HDL com-
piler and simulator that supports switching activity computation, such as
verilog_toggle. These files must be included in the design’s testbench; for
example, in order to simulate a crosspoint column module called xp_col,
we need the files xp_col.sdf, tech_library.saif, as well as the compo-
nent’s Gate Level netlist xp_col_mapped.v. The .sdf and .saif files are
read wherever, in the testbench, the designer wants to compute the circuit’s
switching activity, with the following commands (this process is called SAIF
annotation):

$sdf_annotate("xp_col.sdf", bufXbar32x32_tb.bx.xp_col_inst_32, , "sdf_annot.log");

$read_lib_saif("xp_col.saif");

$set_toggle_region(bufXbar32x32_tb.bx.xp_col_inst_32);

$toggle_start;

...

... (t e s t b e n c h)

...

$toggle_stop;

$toggle_report("xp_col.rpt.saif", 1e-12, "bufXbar32x32_tb.bx.xp_col_inst_32");

$finish;

This procedure outputs the SAIF back-annotation file, which is then im-
ported to the Synopsys Design Compiler (Power Compiler). The design must
be annotated with the information written in the SAIF back-annotation file
before and after each compile of the design; for example, in the case of the
crosspoint column presented above, the Design Compiler script will look like
the following:

...

read_saif -input xp_col.rpt.saif -instance bufXbar32x32_tb/bx/xp_col_inst_32

compile -incremental

change_names -rules verilog -hierarchy

read_saif -input xp_col.rpt.saif -instance bufXbar32x32_tb/bx/xp_col_inst_32

report_power

...

Note the change_names command; it is invoked in order to prevent De-
sign Compiler from changing the design naming rules, from the “traditional”

APPENDIX B. POWER ESTIMATION TUTORIAL 66

Verilog format to Synopsys internal naming conventions. For example, Syn-
opsys internal naming conventions might change a bus name, from XX[] to
XX_1, XX_2 etc. Failing to do so has the result that Synopsys will not recog-
nise those nets’ toggling behavior 1. Incremental compile ensures that Design
Compiler will only make changes that will not affect the previously achieved
contraints. The process described above is presened in Figure B.2.

toggle_report

Library
SAIF
file file

DC
sdf

Annotate Gate−level
simulation

dc_shell> read_saif

SAIF

file
design

back−
annotation

Gate−level

dc_shell> lib2saif
dc_shell> read_lib

Technology

library

Testbench

design

Verilog simulator

sdf_annotate
read_saif

toggle_start
toggle_stop

Figure B.2: Detailed Gate-Level power estimation flow.

B.2 Post-P&R Level Power Estimation

In order to perform post-P&R power estimation, we need the post-P&R
netlist of the module under estimation, as well as the net interconnect and
cell delay file (.sdf) from the same phase; the library forward annotation
file (.saif) remains the same. The procedure followed is exactly the same
as the one followed in the Gate Level power estimation.

1Depending on the Synopsys environment setup, name changes may not be needed.

Appendix C

Cadence Encounter Tutorial
and Scripts

As mentioned in chapter 4, P&R was carried out in the Cadence Encounter
environment. The tool is very memory-consuming, especially in the case of
large designs 1. In the following sections, we provide a quick tutorial on the
usage of the tool, accompanied by conclusions drawn during the P&R phase
of the switch design.

C.1 Setting the Environment

Cadence Encounter is run with the command encounter, after an include
script is executed. The tool is operated in two modes, command line and
graphics. The first is used to output the tool’s results after each operation;
those results are also written in log files (extension .logXX , were X is a file
serial number), whereas the commands executed are appended in command
files (extension .cmdXX). The graphics mode is used to offer the freedom to
the designer to observe the placed and routed design and physicaly alter it.

Before running the tool, it is crucial to have a concrete directory organi-
zation. This is due to the large number of different types of files needed to
import and use during the P&R phase. These directories are:

• /lef, with the layout header and technology files. Layout files contain
the real physical layout of all standard cells of the technology library.

• /lib, with the technology library file. This directory contains the elec-
trical characteristics (capacitance, timing) of all the standard cells.

• /tlf, with the timing library files of black boxes. When black boxes,
like memories, are used in the design, it is usual to describe their timing
characteristics by using such tlf files; lib files can be used instead.

1For example, in order to fully P&R in tight space constraints a 32-crosspoint switch
column, along with its output scheduler, time consumed was almost 8 hours.

67

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS68

• /verilog, with the verilog descriptions. This directory contains: (a)
the interfaces of all standard cells and/or black boxes; (b) the HDL
Gate-Level netlist of the design, which is written by the synthesis tool.
This HDL file must be uniquified by running the Encounter command
uniquifyNetlist. Unification simply changes multi-instantiated mod-
ule names into discreet ones.

• /save, where Encounter will save the design after each phase of its
execution. A rule of thumb is: (a) to save the whole design after each
phase is complete; (b) the name of the saved file and directory should
be design_name_AFTER_phase_name, where phase_name is a discreet
name for the phase that has just completed, like TRIAL_ROUTE.

The last two other files needed are related to the circuit clock(s): (a)
the .sdc file contains the clock net names and their frequencies; (b) the
.clockspec file refers to the first and also informs the tool about the elec-
trical characteristics of the clock net and of the buffers that the tool may use
when creating the clock tree. The .clockspec file is the only file imported
at a later stage. All other files must be imported during the initial stage of
the P&R process (Design Import phase).

C.2 Placement & Routing Stages

In this section we will present the exact flow followed during the P&R process
and also provide the reader with useful advices. In Figure C.1 we can see a
chip core, along with the most often used terms in this short tutorial.

C.2.1 Design Import

As mentioned earlier, in this stage all files needed by the tool are loaded into
memory. The tool loads the standard cell library and the design in memory,
as well as performs initial checks on the design. Obvious mistakes that have
not been corrected during the synthesis stage are reported during this phase.

C.2.2 Floorplaning & Pin Assignment

During this phase the design is floorplaned; this means specifying the exact
size of the chip core and the width of the power ring, putting certain black
boxes into certain locations etc. Initially, the designer has to decide upon the
size of the core, its utilization and the power ring width. The core dimensions
can be either explicitly stated, that is to give the exact dimensions of the
rectangle, or given by a row utilization number. In the latter case, the core
remains square and the utilization percentage defines its exact size. Row
utilization is entered as a percentage and determines the amount of unused
row space that will be put between adjacent rows. This space will be later

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS69

cell rows

������
���
������
���

������
���
������
��� ���������������������
���������������������

��
�
��
�

	�		�	
	�		�	

�

�

�

�
�����
���������������

��������������������

��������

��������������������

����������������������������

��������������������

������
������

������
������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

stripes

ring
power

black
box

ring/halo
block power

standard cells
(registers, gates)

chip core

standard

Figure C.1: Chip Overview: Chip core, rows, power ring, power stripes, black
boxes and standard cells are visible; routing is omitted.

used for wiring. Should the designer decide to use the second approach in
order to define the core size, care should be taken in case the design has a
lot of “wiring”, as is the case with switches. In that case, a row utilization
of 50% seems enough; in other cases, usual utilization figures are in the area
of 70%.

Floorplaning also involves setting the width of the power ring. The power
ring is made of two parallel metals, one of which carries the power, while the
other acts as the ground. The power rings should be wide enough to be able
to feed the whole circuit with power. In cases of large chips, power/ground
stripes should also be included. These traverse the chip in horizontal or
vertical parallel lines at certain distances from each other.

When black boxes are included, care must be taken. The designer usu-
ally wishes to place them at certain positions inside the core, so the tool
provides this freedom. Those black boxes have to be connected to the chip’s
power/ground lines and must be surrounded by a very narrow power ring
themselves. This is because the power lines which will be at the top and
bottom of each cell row need to be terminated and the black boxes would
obscur them from reaching the other end of the core. Last of all, black boxes
must be surrounded by a “block halo”, on top of their power rings, which

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS70

will prevent standard cells from being placed too close to them.
Pin assignment should also be carried out in this phase. This is accom-

plished through an Encounter embedded application, called “Pin Editor”.
Although the Graphical User Interface (GUI) of the application is staight-
forward, care should be taken in the assignment: before it starts, “group
bus” should be enabled, in order to make the assignment easier. Also, it
was noted that, although we chose to place some pins on the north, or east,
or west sides of the chip, the application put them all on the south side.
This bug is overcome by re-placing the wrongfully placed pins. Note that
the “preplace pin” opion must be always selected, as in the opposite case the
pins are not fixed and it was noticed that sometimes the tool moved the pins
to other sides of the chip during the later stages. After pin assignment is
complete, it must be saved with the command

saveIoFile XX.io

where XX.io is the pin assignment file and then immediately loaded with the
command

loadIoFile XX.io

in order to prevent the tool from “forgetting” the assignment. After the pin
assignment is saved, it can be loaded from the beginning of the design process,
along with the other design files (“setting the environment phase”); as a
result, concurrent P&R attempts will do not require new pin assignments.

C.2.3 Medium Effort Placement

After the design is flooplaned, an initial placement of cells and/or black boxes
has to be performed. This task is carried out automatically by Encounter
and provides the designer with the initial results of the P&R process, which
must always be taken into account. The tool reports initial net length, which
includes the length of all wires connecting the placed standard cells and tries
to improve this result, by running the medium effort placement algorithm for
about 15 times. If the design fits into the area provided by the floorplaning
phase, medium effort placement is successful; otherwise the tool will inform
the designer about the violations. Another form of violation is the “black
box” one, and is created when a black box is wrongfully placed by the designer
outside the chip borders, or when the block halo does not exist and standard
cells are located too close to the black box. Medium effort floorplaning is
run with the Encounter shell command

amoebaPlace

while placement can be checked with the command

checkplace

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS71

A possible medium effort report might look like the following text:

<CMD> amoebaPlace

Extracting standard cell pins and blockage

Pin and blockage extraction finished

Extracting macro/IO cell pins and blockage

Pin and blockage extraction finished

*** Starting "Amoeba(TM) placement v0.254.2.15 (mem=244.1M)" ...

Options: gp=mq-medium dp=medium

Options: congestDrivenI75 congestDrivenQ congestDrivenR1

*info: there are 2 cells with cell padding / block halo

#std cell=47808 #block=2 (0 floating + 2 preplaced) #ioInst=0 #net=52033 #term=156067 #term/net=3.00, #fixedIo=2624, #floatIo=0, #fixedPin=2368,

#floatPin=1

Total std cell len = 237.4733 (mm), area = 1.4628 (mm^2)

*info: identify 1 tech site => 1 tech site pattern

*info: estimated cell pwr/gnd rail width = 0.770 um

*info: average module density = 0.024

*info: AmoebaPlace has switched to wireLength driven mode for this low density design.

*info: density for module ’crs_pes_col_inst’ = 0.024

= stdcell_area 359808 (1462835 mu^2) / alloc_area 14715214 (59826174 mu^2).

*info: density for the rest of the design = 0.000

= stdcell_area 0 (0 mu^2) / alloc_area 12975183 (52751904 mu^2).

*info: identify 96 spare/floating instances which are grouped into 96 clusters.

*info: fixed term percentage = 5.906%

*info: fixed term center of gravity = (9751152 6169775) in coreBox (100320 100240, 35100320 19100240)

*info: partition deviation = 0.770

0|: Est. net length = 1.806e+08 (7.48e+07 1.06e+08) cpu=0:02:24 mem=890.3M

1-: Est. net length = 1.132e+08 (7.41e+07 3.91e+07) cpu=0:00:14.9 mem=890.3M

2|: Est. net length = 1.029e+08 (6.39e+07 3.91e+07) cpu=0:01:15 mem=890.3M

3-: Est. net length = 8.440e+07 (6.12e+07 2.32e+07) cpu=0:00:33.4 mem=890.3M

4|: Est. net length = 7.671e+07 (5.35e+07 2.32e+07) cpu=0:01:17 mem=890.3M

5-: Est. net length = 7.283e+07 (5.33e+07 1.95e+07) cpu=0:00:33.1 mem=890.3M

6|: Est. net length = 7.052e+07 (5.10e+07 1.95e+07) cpu=0:01:03 mem=890.3M

7-: Est. net length = 7.104e+07 (5.06e+07 2.04e+07) cpu=0:01:01 mem=890.3M

8|: Est. net length = 6.956e+07 (4.92e+07 2.04e+07) cpu=0:01:01 mem=890.3M

9-: Est. net length = 6.720e+07 (4.76e+07 1.96e+07) cpu=0:00:54.4 mem=890.3M

10|: Est. net length = 6.656e+07 (4.70e+07 1.96e+07) cpu=0:00:36.4 mem=890.3M

11-: Est. net length = 6.512e+07 (4.53e+07 1.98e+07) cpu=0:01:43 mem=906.6M

12|: Est. net length = 6.515e+07 (4.49e+07 2.02e+07) cpu=0:03:11 mem=916.1M

13-: Est. net length = 6.537e+07 (4.51e+07 2.02e+07) cpu=0:03:41 mem=931.2M

14|: Est. net length = 6.555e+07 (4.50e+07 2.05e+07) cpu=0:03:06 mem=952.0M

..+: Est. net length = 6.761e+07 (4.76e+07 2.00e+07) cpu=0:05:01 mem=1054.9M

*** cost = 6.761e+07 (4.76e+07 2.00e+07) (cpu for global=0:27:35) ***

*info: there are 2 cells with cell padding / block halo

Options: gp=mq-medium wireLengthDriven dp=medium

Starting fine tune place ...

CPU Time for Phases I and II = 0:00:21.8, Real Time = 0:00:22.0

Statistics of distance of Instance movement in detailed placement

maximum (X+Y) = 137.50 um

inst (crs_pes_col_inst/crs_32x32_RR_4/RR_pe_cr/PEnfAll/U52) with max move: (35087.6, 18075.1) -> (34956.2, 18069)

mean (X+Y) = 12.23 um

*** cpu=0:00:34.6 mem=1054.9M ***

Total net length = 5.992e+07 (4.238e+07 1.754e+07) (ext = 3.254e+07)

*** End placement (cpu=0:37:49, real=0:38:01, mem=1054.9M) ***

<CMD> checkPlace

*info: there are 2 cells with cell padding / block halo

Options: gp=mq-medium dp=medium

Check Place(new) starts ...

** Info: Total stdCell area is 5.535816e+08.

** Info: Total core area is 6.650000e+08.

** Info: Density is 8.324535e-01.

** Info: Placed = 47810

** Info: Unplaced = 0

We can see that the placement algorithm tries to fit all standard cells
and/or black boxes into the specified core area, while keeping net length to
a minimum, in order to minimize possible timing violations in later stages.

C.2.4 Trial Routing

Trial routing is carried out next. During trial routing, Encounter routes the
nets of the design and tries to minimize their length, or minimize the chip via
usage (vias add a lot to signal delays). From the trial route report, we can
see whether the the design is routable or not. If the nets are routed too close
to each other, crosstalk interference is introduced, and the tool reports this
violation in a “congestion distribution” table (the “-” lines refer to violated

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS72

routing). Too many and too strong violations of that kind make the design
unroutable and in that case the designer has to go back to the flooplaning
phase and change the area of the core, or the positions of the hand-placed
black boxes. Small violations (usually up to “-4”), on the other hand, might
be met during the optimization phases of the P&R process, so they should
not be taken into account. Trial route is executed by the shell command

trialRoute -maxRouteLayer X

where maxRouteLayer is the maximum routing layer we wish to used by the
tool 2. A possible output of the trial route phase follows.

<CMD> trialRoute -maxRouteLayer 6

*** Starting xroute (mem=312.5M) ***

options: glbDetour reduceNode obstruct2 obstruct4 spreadOut multiOuterRow moveTermZ fixAirConnect spacingTable pinAndObsSpacing multiVoidRow wid

eBlockageSpacing MSLayer

Number of redundant fterm=0

routingBox: (0 0) (37000560 22000160)

coreBox: (1000560 1000160) (36000360 20995520)

nrIoRowLo/Hi = 173/174 nrIoColLo/Hi = 123/123

Mem for trkArr = 446.2M, nrETrk used = 0.

Init all gpins ...

Number of multi-gpin terms=0, multi-gpins=0, moved blk term=1086/1086

Number of initial reassigned term = 0

Phase 1a route (0:00:14.8 1654.4M):

Est net length = 5.795e+07um = 3.872e+07H + 1.923e+07V

Suboptimal net = 2 out of 4738 (0.0% nets) (0.0% len over box)

Usage: (4.6%H 2.1%V) = (3.872e+07um 1.925e+07um) = (11531036 3141827)

Obstruct: 54606508 = 27303254 (70.0%H) + 27303254 (70.0%V)

OvInObst: 2228162 = 2220362/27303254 (8.13% H) + 7800/27303254 (0.03% V)

Overflow: 790340 = 635415 (5.44% H) + 154925 (1.33% V)

Number obstruct path=480 reroute=0

...

...

...

Phase 1f route (0:01:04 1730.4M):

Usage: (4.6%H 2.4%V) = (3.879e+07um 2.193e+07um) = (11547280 3576809)

OvInObst: 0 = 0/27303254 (0.00% H) + 0/27303254 (0.00% V)

Overflow: 1101 = 856 (0.01% H) + 245 (0.00% V)

Congestion distribution:

Remain cntH cntV

-4: 1 0.00% 0 0.00%

-3: 31 0.00% 0 0.00%

-2: 142 0.00% 1 0.00%

-1: 599 0.01% 244 0.00%

0: 172990 1.48% 61079 0.52%

1: 150670 1.29% 86077 0.74%

2: 44762 0.38% 32148 0.28%

3: 21519 0.18% 19627 0.17%

4: 22164 0.19% 13860 0.12%

5: 16793 0.14% 11306 0.10%

6: 19731 0.17% 8547 0.07%

7: 20861 0.18% 10747 0.09%

8: 18863 0.16% 7694 0.07%

9: 17268 0.15% 30224 0.26%

10: 16931 0.14% 346064 2.96%

11: 17222 0.15% 277659 2.38%

12: 15600 0.13% 5036916 43.09%

13: 14148 0.12% 4530174 38.76%

14: 14351 0.12% 27628 0.24%

15: 19822 0.17% 323453 2.77%

16: 16375 0.14% 1841 0.02%

17: 18400 0.16% 4238 0.04%

18: 23292 0.20% 426549 3.65%

19: 29309 0.25% 396033 3.39%

20: 10996138 94.08% 35873 0.31%

4000/4739 (84.41%) net (0:01:01 est=0:00:11.3 1961.4M)

Nr short=228 83%, med=13 5% medR=34 long=0, huge=0

Phase 1l route (0:03:05 1961.4M):

2Sometimes it is useful to route a design up to a lower routing layer, eg. up to metal
5, so as to allow long wires of the upper hierarchy level to be routed over it.

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS73

Number of deextended terms = 1086

Prep phase2 (0:00:00.0 1961.4M):

...

...

...

*** Completed Phase 1 route (0:35:35 1961.4M) ***

Phase 2a route (0:01:49 1961.4M)

Phase 2b route (0:01:45 1961.4M)

Total length: 6.070e+07um, number of vias: 23989

M1(H) length: 7.300e+00um, number of vias: 7

M2(V) length: 6.764e+06um, number of vias: 2925

M3(H) length: 1.833e+07um, number of vias: 5829

M4(V) length: 1.099e+07um, number of vias: 9178

M5(H) length: 2.046e+07um, number of vias: 6050

M6(V) length: 4.159e+06um

*** Completed Phase 2 route (0:03:34 1961.4M) ***

*** xroute (cpu=0:39:09 mem=1961.4M) ***

<CMD> saveDesign /proj/carv/users/simos/unix/MSc/bufXbar32x32/SOC_ENCOUNTER/bx_top/save/bx_top_AFTER_TRIAL_ROUTE.enc

*** Completed saveRoute (cpu=0:00:07.6 real=0:00:09.0 mem=1961.4M) ***

We can see the congestion distribution table, with minor horizontal and
vertical violations; experience showed that such small violations can be min-
imized in later phases. Trial routing involves two phases, and each phase
consists of many sub-phases; each phase tries to minimize congestion vio-
lations, obstructions and overflows. Especially phase 1.f shows the biggest
changes, compared to the improvements achieved between other concurrent
phases. If the design still includes large distribution violations after that
phase, it is certainly unroutable 3 .

C.2.5 Clock Tree Synthesis

The clock nets are by far the most important ones in a synchronous design;
hence, they are routed separately in the clock tree synthesis phase. Of course,
clock nets must be buffered inside the chip as evenly as possible, in order to
avoid clock skew (uncertainty - see Figure C.2).

The .clockspec file is included during this phase, so the tool knows which
types of buffers to use when producing the clock tree. Obviously, space must
be left inside the core, in order to place those buffers, so floorplaning should
not “stress” the core area. The tool produces full reports of the clock tree
depth and of the final clock skew. Clock tree synthesis is performed by the
following commands: first we have to specify the clock specification file,

specifyClockTree -clkFile XX.clockspec

Next we create the clock save directory, with the command

createSaveDir dir_name

Clock checks are then performed by running

checkUnique

3Note that routing violations are visible in the Encounter graphics mode, but the
designer must have selected that option.

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS74

registers
clock pin

clock tree

circuit

Figure C.2: Clock Tree Example

Last of all, the actual clock synthesis procedure is executed, with the com-
mand

ckSynthesis -rguide dir_name/XX.guide -report dir_name/XX.ctsrpt

where XX.guide and XX.ctsrpt are internal Encounter files 4

A sample output of the clock synthesis, though inevitably “cut” due to
space limitations, can be seen in the following text.

<CMD> specifyClockTree -clkfile xp_col_rd.clockspec

specifyClockTree Option : -clkfile xp_col_rd.clockspec

RouteType : FE_CTS_DEFAULT

PreferredExtraSpace : 1

Shield : NONE

PreferLayer : M2 M3

Avg. Cap : 0.157351 (ff/um) [0.000157351]

Avg. Res : 0.221429(ohm/um) [0.000221429]

M1 w=0.24(um) s=0.24(um) p=0.56(um) es=0.88(um) cap=0.146(ff/um) res=0.321(ohm/um)

M2 w=0.28(um) s=0.28(um) p=0.66(um) es=1.04(um) cap=0.153(ff/um) res=0.221(ohm/um)

M3 w=0.28(um) s=0.28(um) p=0.56(um) es=0.84(um) cap=0.162(ff/um) res=0.221(ohm/um)

M4 w=0.28(um) s=0.28(um) p=0.66(um) es=1.04(um) cap=0.153(ff/um) res=0.221(ohm/um)

M5 w=0.28(um) s=0.28(um) p=0.56(um) es=0.84(um) cap=0.162(ff/um) res=0.221(ohm/um)

M6 w=0.44(um) s=0.44(um) p=1.32(um) es=2.2(um) cap=0.129(ff/um) res=0.0932(ohm/um)

...

...

...

********** Clock clk_wr Pre-Route Timing Analysis **********

Nr. of Subtrees : 1

Nr. of Sinks : 2

Nr. of Buffer : 44

Nr. of Level (including gates) : 39

Max trig. edge delay at sink(R): xp_hier_col_2_inst/clk_wr 4992.4(ps)

Min trig. edge delay at sink(R): xp_hier_col_1_inst/clk_wr 4989.4(ps)

(Actual) (Required)

Rise Phase Delay : 4989.4~4992.4(ps) 0~5000(ps)

Fall Phase Delay : 5600.1~5679.3(ps) 0~5000(ps)

Trig. Edge Skew : 3(ps) 500(ps)

Rise Skew : 3(ps)

Fall Skew : 79.2(ps)

Max. Rise Buffer Tran. : 482.6(ps) 500(ps)

4Due to the large number of commands that must be executed, clock tree synthesis is
more prefferably run from the Enounter graphics mode.

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS75

Max. Fall Buffer Tran. : 471.7(ps) 500(ps)

Max. Rise Sink Tran. : 900.2(ps) 500(ps)

Max. Fall Sink Tran. : 628.5(ps) 500(ps)

Generating Clock Analysis Report bx_top_cts/bx_top_cts.ctsrpt

Generating Clock Routing Guide bx_top_cts/bx_top_cts.guide

Clock Analysis (CPU Time 0:00:00.2)

<CMD> saveClockNets -output bx_top_cts/bx_top_cts.ctsntf

<CMD> saveNetlist bx_top_cts/bx_top_cts.v

Writing Netlist "bx_top_cts/bx_top_cts.v" ...

<CMD> savePlace bx_top_cts/bx_top_cts.place

<CMD> saveDesign /proj/carv/users/simos/unix/MSc/bufXbar32x32/SOC_ENCOUNTER/bx_top/save/bx_top_AFTER_CLK_SYN.enc

C.2.6 Timing Driven Placement

After the clock tree is placed and routed, the placement stage is re-run, but
in a high-effort, timing driven mode. This allows the tool to possibly move
some standard cells to new positions, in order to achieve timing goals. An
example output of this process is shown below. We can see that, in this case,
the tool has actually moved some cells.

<CMD> amoebaPlace

*** Starting "Amoeba(TM) placement v0.254.2.15 (mem=241.3M)" ...

Options: gp=mq-medium dp=medium

Options: congestDrivenI75 congestDrivenQ congestDrivenR1

...

...

...

Starting fine tune place ...

CPU Time for Phases I and II = 0:00:22.6, Real Time = 0:00:23.0

Statistics of distance of Instance movement in detailed placement

maximum (X+Y) = 162.36 um

inst (crs_pes_col_inst/crs_32x32_RR_24/cr_choose_reg_1) with max move: (761.64, 17791.8) -> (617.76, 17773.3)

mean (X+Y) = 18.84 um

*** cpu=0:00:35.9 mem=1052.0M ***

Total net length = 4.134e+07 (3.025e+07 1.109e+07) (ext = 1.223e+07)

*** End placement (cpu=0:38:31, real=0:39:33, mem=1052.0M) ***

...

C.2.7 Timing Driven Final and Global Route

This is the last main phase of the P&R process. In this phase, the tool routes
once more the design and tries to use the minimum net length and number
of vias, choose the appropriate metal layer for each net, and possibly add
buffers or resize cells, in order to achieve unmet timing constraints. 5 The
designer can choose which final router the tool is going to use: WRoute or
NanoRoute. The latter is a new router and is actually suggested by Cadence,
as it is considered to be faster and better, although the author has observed
that WRoute has provided better results in some cases; hence, possibly both
must be tried. A limited output of the NanoRoute final router, along with
the commands executed, can be seen below 6:

5It is reminded that the time t needed to load a wire equals t = C∆V /I , where C is
the wire’s capacitance, ∆V the voltage drop/increase and I the current flowing through
the wire. Hence, for the same ∆V , time is reduced if (a) we allow more current to flow
through the wire, as a result the wire must be wider, in order to have small resistance; (b)
load capacitance is small; this can be achieved by buffering the net.

6Due to the large number of commands that must be executed, we suggest to run
NanoRoute in the Enounter graphics mode, than in the command line interface.

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS76

<CMD> getNanoRouteMode -quiet routeSiEffort

<CMD> getNanoRouteMode -quiet

<CMD> setNanoRouteMode -quiet drouteFixAntenna true

<CMD> setNanoRouteMode -quiet routeInsertAntennaDiode false

<CMD> setNanoRouteMode -quiet routeAntennaCellName default

<CMD> setNanoRouteMode -quiet routeWithTimingDriven true

<CMD> setNanoRouteMode -quiet routeWithTimingOpt true

<CMD> setNanoRouteMode -quiet optimizeBi true

<CMD> setNanoRouteMode -quiet optimizeGs true

<CMD> setNanoRouteMode -quiet optimizeFixSetupTime true

<CMD> setNanoRouteMode -quiet optimizeTargetSetupSlack 0.000000

<CMD> setNanoRouteMode -quiet optimizeFixMaxCap false

<CMD> setNanoRouteMode -quiet optimizeFixHoldTime false

<CMD> setNanoRouteMode -quiet optimizeTargetHoldSlack 0.000000

<CMD> setNanoRouteMode -quiet optimizeFixMaxTran false

<CMD> setNanoRouteMode -quiet optimizeDontUseCellFile default

<CMD> setNanoRouteMode -quiet routeWithSiDriven false

<CMD> setNanoRouteMode -quiet routeSiEffort min

<CMD> setNanoRouteMode -quiet siNoiseCTotalThreshold 0.050000

<CMD> setNanoRouteMode -quiet siNoiseCouplingCapThreshold 0.005000

<CMD> setNanoRouteMode -quiet routeWithSiPostRouteFix false

<CMD> setNanoRouteMode -quiet drouteAutoStop true

<CMD> setNanoRouteMode -quiet routeSelectedNetOnly false

<CMD> setNanoRouteMode -quiet routeFixPrewire false

<CMD> setNanoRouteMode -quiet drouteStartIteration default

<CMD> setNanoRouteMode -quiet envNumberProcessor 1

<CMD> setNanoRouteMode -quiet routeTopRoutingLayer default

<CMD> setNanoRouteMode -quiet drouteEndIteration default

<CMD> deleteSwitchingWindows

<CMD> cleanupDetailRC

<CMD> globalDetailRoute

globalDetailRoute

...

...

...

WRoute is run with the command

wroute -timingDriven

WRoute and NanoRoute perform Physically Knowledgable Synthesis - PKS,
that is, they both try to optimize design timing by actually changing some
standard cells (cell resizing), or adding buffers to nets, while having in mind
the actual physical layout of the design. Usually, after many optimization
attempts, the algorithm finishes and reports the “worst” path in therms of
timing. A possible report of that kind is shown below:

+---+

| Report | report_timing |

|------------------+----------------------|

| Options | |

+------------------+----------------------+

| Date | 20040417.162148 |

| Tool | pks_shell |

| Release | v5.9-s043 |

| Version | Apr 18 2003 19:47:51 |

+------------------+----------------------+

| Module | crs_pes_col |

| Timing | LATE |

| Slew Propagation | WORST |

| PVT Mode | max |

| Tree Type | worst_case |

| Process | 1.00 |

| Voltage | 1.98 |

| Temperature | 0.00 |

| time unit | 1.00 ns |

| capacitance unit | 1.00 pF |

| resistance unit | 1.00 kOhm |

+---+

Path 1: MET Setup Check with Pin crs_32x32_RR_32/cr_choose_reg_4/CK

Endpoint: crs_32x32_RR_32/cr_choose_reg_4/SE (^) checked with leading edge of ’clk_rd’

Beginpoint: crs_32x32_RR_32/cr_change_32_reg/Q (^) triggered by leading edge of ’clk_rd’

Other End Arrival Time 9.24

- Setup 0.11

+ Phase Shift 3.35

= Required Time 12.48

- Arrival Time 12.03

= Slack Time 0.45

Clock Rise Edge 0.00

+ Drive Adjustment 4.11

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS77

= Beginpoint Arrival Time 4.11

+---+

| Instance | Arc | Cell | Delay | Arrival | Required |

| | | | | Time | Time |

|---------------------------------------+---------------+--------------------------+-------+---------+----------|

| | clk_rd ^ | | | 4.11 | 4.56 |

| clk_rd__L1_I0 | A ^ -> Z ^ | BUFD16 | 2.49 | 6.60 | 7.06 |

| clk_rd__L2_I0 | A ^ -> Z ^ | BUFD16 | 1.01 | 7.61 | 8.07 |

| clk_rd__L3_I0 | A ^ -> Z ^ | BUFD16 | 0.15 | 7.76 | 8.21 |

| clk_rd__L4_I0 | A ^ -> Z ^ | BUFD16 | 0.10 | 7.86 | 8.31 |

| clk_rd__L5_I0 | A ^ -> Z ^ | BUFD16 | 0.21 | 8.07 | 8.52 |

| clk_rd__L6_I0 | A ^ -> Z ^ | BUFD16 | 0.39 | 8.46 | 8.91 |

| clk_rd__L7_I13 | A ^ -> Z ^ | BUFD16 | 0.63 | 9.09 | 9.54 |

| crs_32x32_RR_32 | clk_rd ^ | cr_sched_32x32_RR_SPC_31 | | 9.09 | 9.54 |

| crs_32x32_RR_32/cr_change_32_reg | CK ^ -> Q ^ | DFEPQ2 | 0.46 | 9.55 | 10.01 |

| crs_32x32_RR_32/RR_pe_cr | In[0] ^ | RR_prior_enf_cs_SPC_31 | | 9.55 | 10.01 |

| crs_32x32_RR_32/RR_pe_cr/U3 | A1 ^ -> Z ^ | NOR2M1D2 | 0.16 | 9.71 | 10.16 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar | In[0] ^ | CRS_0_SPC_31 | | 9.71 | 10.16 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U95 | A4 ^ -> Z v | NOR4M1D2 | 0.04 | 9.75 | 10.20 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U90 | A2 v -> Z ^ | NOR4D4 | 0.19 | 9.94 | 10.39 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U14 | A4 ^ -> Z v | NAN4M2D1 | 0.15 | 10.09 | 10.54 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U47 | A v -> Z ^ | INVD2 | 0.10 | 10.18 | 10.64 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U83 | A2 ^ -> Z v | NAN2D1 | 0.07 | 10.26 | 10.71 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U81 | A3 v -> Z ^ | NAN4M2D2 | 0.08 | 10.33 | 10.79 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U85 | A2 ^ -> Z v | NOR2D2 | 0.08 | 10.41 | 10.87 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U92 | A4 v -> Z ^ | NAN4M2D2 | 0.06 | 10.47 | 10.93 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U21 | A4 ^ -> Z v | NAN4M1D2 | 0.08 | 10.55 | 11.01 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U87 | A1 v -> Z ^ | NOR4D1 | 0.12 | 10.68 | 11.13 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U69 | A2 ^ -> Z ^ | AND2D2 | 0.15 | 10.83 | 11.28 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U38 | A ^ -> Z v | INVD1 | 0.08 | 10.91 | 11.36 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U74 | A3 v -> Z ^ | NOR4D2 | 0.13 | 11.04 | 11.49 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U73 | A2 ^ -> Z v | NAN2D2 | 0.08 | 11.12 | 11.57 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U15 | A3 v -> Z ^ | NOR3M1D2 | 0.12 | 11.24 | 11.70 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U116 | A3 ^ -> Z v | NAN3M1D2 | 0.10 | 11.34 | 11.79 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar/U11 | A3 v -> Z v | OR4D1 | 0.24 | 11.58 | 12.03 |

| crs_32x32_RR_32/RR_pe_cr/PEnfPar | OneDetected v | CRS_0_SPC_31 | | 11.58 | 12.03 |

| crs_32x32_RR_32/RR_pe_cr/U65 | A v -> Z v | BUFD20 | 0.13 | 11.71 | 12.16 |

| crs_32x32_RR_32/RR_pe_cr/U24 | SL v -> Z ^ | MUX2DL | 0.32 | 12.03 | 12.48 |

| crs_32x32_RR_32/RR_pe_cr | Out[4] ^ | RR_prior_enf_cs_SPC_31 | | 12.03 | 12.48 |

| crs_32x32_RR_32/cr_choose_reg_4 | SE ^ | SDFPQ1 | 0.00 | 12.03 | 12.48 |

+---+

Timing driven total CPU time = 620.930000 seconds. <PLC-530>.

Info: Writing "/dev/null" ... <PLC-601>.

Info: Written out 582720 gcells for 6 layers <PLC-601>.

Info: End routability analysis: cpu: 0:12:30, real: 0:12:38, peak: 387.36 megs. <PLC-601>.

...

...

...

Begin antenna checking ...

Layer H-Length V-Length Down-Via Violation (Antenna)

1st routing 189230 987 0 0 (0)

2nd routing 7714 918427 235465 0 (0)

3rd routing 1906908 366 128602 0 (0)

4th routing 150 195163 46695 0 (0)

5th routing 410392 51 4363 0 (0)

6th routing 333 138479 1752 0 (0)

2514730 1253475 416877 0 (0)

End antenna checking: cpu: 0:00:19, real: 0:00:20, peak: 94.87 megs.

End final routing: cpu: 0:17:20, real: 0:17:29, peak: 94.87 megs.

Begin DB out ...

Writing "crs_pes_col.wdb" ...

Written out 11 layers, 6 routing layers, 0 overlap layer

Written out 510 macros, 82 used

Written out 47975 components

47975 core components: 0 unplaced, 47975 placed, 0 fixed

Written out 1538 physical pins

1538 physical pins: 0 unplaced, 1538 placed, 0 fixed

Written out 49129 nets, 49033 routed

Written out 2 special nets, 2 routed

Written out 263166 terminals

Written out 232684 real and virtual terminals

End DB out: cpu: 0:00:00, real: 0:00:04, peak: 94.87 megs.

...

C.2.8 Timing Reports and Design Optimizations

Timing violations are obviously the most important ones in the whole design
process. Therefore, Encounter is able to report design timing violations,
both in pre- and post-routed clock design instances. In the first case, clock
is considered to be ideal. This report is generated in the very early design

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS78

stages, that is right after the trial route phase. In this way, the designer can
have a very early picture of the design’s timing violations, and thus conclude
on whether it is worth continuing the P&R process, or go back to earlier
stages. The same timing report can be generated after the global and final
routing phase and provides the designer with the actual timing violations that
possibly exist. In order to produce a timing violation report, the design must
first be RC extracted: at first, the designer has to define the RC extraction
model detail, with the command

setExtractRCMode -detail/-default -reduce 5 -noise

and then RC extraction is performed with the shell command

extractRC -outfile XX.cap

where XX.cap is the capacitance information output file. A possible output
of these two commands is shown below:

RC Extraction for instance crs_pes_col

RC Database Name : crs_pes_col.rcdb.gz

Detail Parasite RC Extraction for crs_pes_col

wire [660 220 20019570 169940] IOBox[0 0 20020560 170080]

bounrary [0 0 20020560 170080]

max_track=10

**WARN: Since cap. table file was not provided, it will be created internally with the following process info:

* Layer Id : 1 - M1

Thicknesss : 0.48

Min Width : 0.24

Layer Dielectric : 4.1

* Layer Id : 2 - M2

Thicknesss : 0.58

Min Width : 0.28

Layer Dielectric : 4.1

* Layer Id : 3 - M3

Thicknesss : 0.58

Min Width : 0.28

Layer Dielectric : 4.1

* Layer Id : 4 - M4

Thicknesss : 0.58

Min Width : 0.28

Layer Dielectric : 4.1

* Layer Id : 5 - M5

Thicknesss : 0.58

Min Width : 0.28

Layer Dielectric : 4.1

* Layer Id : 6 - M6

Thicknesss : 0.86

Min Width : 0.44

Layer Dielectric : 4.1

...

...

...

Nr. Extracted Resistors : 258800

Nr. Extracted Ground Cap. : 211830

Nr. Extracted Coupling Cap. : 2001384

Detail RC Extraction Completed (CPU Time= 0:01:25 MEM= 260.6M)

RC Extraction Completed (CPU Time= 0:01:25 MEM= 260.6M)

Last of all, the actual timing model is extracted by the command

genTlfModel

whereas, after these commands are executed, timing report can be generated
with the command

reportViolation -outfile XX.tarpt -num 50

APPENDIX C. CADENCE ENCOUNTER TUTORIAL AND SCRIPTS79

where XX.tarpt is the output file and -num 50 is the maximum number of
reported violations. In the case when violations still exist, the designer can
run “Post-route Optimization”, with the following command

runPostRouteOpt -allEndpoints -dfUseOpt 0 -dfAllPt 1 -ffUseOpt 0

-ffAllPt 1 -inAllPt 1 -outAllPt 1 -fdAllPt 1

-macUseOpt 0 -macAllPt 1

It is suggested to run the last command from the graphics mode, in order
to handle all possible optimization options in a more convenient way. It is
also noted that Encounter includes other optimization algorithms, as well;
depending on the design and its violations, the designer can try them, too.
During post-route optimization, the tool finds all violating paths and tries
to minimize each by cell resizing (thus area increases). By minimizing local
slacks, the tool also minimizes the up-to-now worst slack of the circuit. There
are times, however, when, after many attempts and running time, the tool
“gives up” for specific violating paths. A sample snapshot of a post-route
optimization process is shown below:

...

+---+

| xp_col |

|---|

| Cell area | Utilization | Worst slack | Local slack | CPU(s) Mem(M) |

|-------------+-------------+-------------+-------------+---------------|

| 99053.00 | 13.07% | -2.6842 | -0.0699 | 904 181 |

+---+

Critical Begin Point(s): os_32x32_RR_inst/deq_mask_reg_18/Q

<TOPT-515>.

Critical End Point(s): xpoint_14_x/TP512X32_inst/REN {TO_MACROS}

<TOPT-516>.

...

Note that if post-route optimization does not succeed in meeting all tim-
ing requirements, P&R process has failed. Also, it is interesting to note that
the tool’s global and final algorithms (WRoute and NanoRoute), as well as
the post-synthesis optimizer, can cope with very strict timing requirements,
even in cases when the initial timing analyses report violated slacks of even
15 nsec!

Appendix D

Switch Synchronization Details

D.1 Introduction

Switches are multi-clock ASICs. This is because, if the input links are fast
(i.e. more than 1 Gbit/sec), tranceiver circuits used also carry the other-end
transmitter clock; this clock is recovered by the tranceiver circuits located
at the switch inputs (see Figure D.1). If the links are long, then the phase

L
IN

E
 C

A
R

D
S

clk_s

clk_s

RCVR1

RCVR2

RCVR3

RCVR4

SWITCH
CORE

clk_s

clk_s

clk1

clk2

clk3

clk4

out1

out2

out3

out4

in1

in2

in3

in4

LC1

LC2

LC3

LC4

clk1_i

clk2_i

clk3_i

clk4_i

Figure D.1: The problem of communicating across clock domains: clocks clk1
to clk4 are the recovered versions of the initial line card (LC) clocks clk1 i to
clk4 i. Clock recovery is carried out by the switch tranceiver circuits. These
clocks differ from each other, due to phase variations, and they all have to
be synchronized to the switch core’s clock.

of the recovered clock, at the receiver (i.e. switch), can vary widely relative
to the phase of the transmitted clock (i.e. line card), at the other end. This
poses metastability issues.

D.2 The Metastability Problem

Figure D.2 shows a typical positive edge flip-flop timing specification. Input
data must be stable setup time (tSU) before the edge arrives and must remain

80

APPENDIX D. SWITCH SYNCHRONIZATION DETAILS 81

the unchanged hold time (tH) after it is latched. If these requirements are
met, the flip-flop will output the latched value after its propagation delay
(tPROP). If the new value arrives inside the setup & hold time window, then

PROP

tHtSU

new

newold

clock

input

output

t

Figure D.2: Flip-flop timing specification.

conflicts occur (see Figure D.3): the new output value may be delayed if it
arrives within the “long delay danger window” (W), whereas arrival within
the “metastability danger window” (w) may lead to unknown output; this
behavior is called metastability. Usually, the long delay window is 10 times
larger than the metastability one (W ≈ 10 × w). Because both long delay

(W = 10 w)

t SU+tH

t SU+tH

in 1

out 1

in 2

out 2

t PD

data conflict

conflict
terrible data

metastability

long delay

in 3

out 3

normal behavior

Clock
cycle

FF prop.
delay

Data arrival
time

Center of danger window

(a) (b)

metastability
danger window (w)

long delay danger
window

Figure D.3: Long delay and metastability due to data conflicts: (a) illustrates
the results of data arriving inside the setup and hold window. (b) shows the
relationship between the “long delay” and “metastability” danger windows.

and metastability are undesirable effects, the designer should be aware of the
combined window; from now on, we will use W for the whole window.

The probability that the arriving data enters metastability is a function of
the clock cycle T (or its inverse clock frequency FC), the width of the danger
zone, W , and the data arrival rate FD. If data arrives during every cycle,

APPENDIX D. SWITCH SYNCHRONIZATION DETAILS 82

then the probability p equals p(enter metastability) = W/T = W × FC .
When data arrival rate is FD, the rate R of entering metastability equals
R(entering metastability) = W×FC×FD. As an example, consider the “new
packet” notification pulse that traverses the two clock domains of the switch
presented in this work. In a 0.18µm technology, gate delay is approximately
60psec and W is estimated to be approximately 90psec; clock frequency is
300MHz (clock cycle 3.35nsec). If data must be synchronized every 10
clock cycles (as is the worst case with the “new packet” signal), then the
metastability rate equals R = W × FC × FD = 800KHz, that is, once every
1.25 nsec, which is unacceptably large.

After a metastability conflict occurs: (a) the output may send the correct
value after a long delay; or (b) the output may go to 1 or 0 in random. In
practice, the decision time of a synchronizer is exponentially distributed [32].
Thus, if a system is designed to wait a time, τ , before sampling the synchro-
nizer, the probability of synchronization failure decreases exponentially as τ
is increased. Given metastability at t = 0, the metastability probability at
t > 0 is e−t/τ . A failure exists if metastability remains during the next clock
cycle, too. Failure will be thus p(enter m.s.) × p(stil m.s. after T), and the
corresponding failure rate will equal

Rate(failure) = Rate(enter m.s.)×p(still m.s. after T) = W×FC×FD×e−T/τ

Mean Time Between Failure (MTBF) will then equal

MTBF = 1/Rate(failure) = eT/τ/W × FC × FD

Depending on the parameter τ , MTBF can be almost eliminated.

D.3 Synchronizer Requirements

From the above, it is evident that all recovered clocks have to be synchronized
to a common clock, clk_s. Switch outputs, on the other hand, can be
synchronized to the switch core clock clk_s; this reduces outgoing latency.

There is large number of possible synchronization solutions. The decision
on which to use depends mostly on the latency requirements and the syn-
chronization protocol used. Switches usually use elastic buffers at the inputs,
in order to synchronize the received multi-bit information (packet data) [31].
Elastic buffers are merely 2-port SRAMs with two asynchronous ports; a
read and a write pointer are used to select the read and write position in
the memory array; these two pointers are synchronized to their respective
clocks. Elastic buffers are large and complicated circuits, and require the
use of an SRAM in every synchronization boundary. The 32×32 buffered
crossbar switch would need one such elastic buffer at each input.

But since SRAMs were inevitably used at the switch crosspoints, choos-
ing to use 2-port versions would immediately solve the data synchronization

APPENDIX D. SWITCH SYNCHRONIZATION DETAILS 83

problem, without the need for elastic buffers. The only other information that
has to be synchronized is a control signal: the 1-bit “new packet” notifica-
tion pulse. This signal is produced at most every minimum-size packet time,
10 clock cycles. Since 1024 (32×32) such signals have to be synchronized,
the synchronization circuit has to be the simplest possible. Also note that
the various incoming clocks must have approximately the same frequency as
the switch core’s clock, as the switch incoming throughput is the same as
the outgoing one, and no speedup is required, due to the adopted architec-
ture; hence the synchronizer used must be able to efficiently deal with small
frequency and phase variations, while keeping its complexity to a minimum.

D.4 1-bit Synchronizer Design

The two flip-flop synchronizer is possibly the most efficient solution in such
pleisiochronous situations (see Figure D.4). Two flip-flops are used in order to

achnowledgment signal

bit_d0 bit_d1 bit_d2 bit_det

(synchronized to sender’s
input value

clock clk_in)

synchronized
value

positive edge detector

clk outreceiver’s clock

Figure D.4: The 2 flip-flop synchronizer.

allow the single-bit data a complete cycle for settling; hence, settling time is 2
clock cycles, whereas synchronization latency is 3 clock cycles. We decided to
use 3 flip-flops for settling, in order to be more redundant. The synchronized
signal is driven into a positive edge detector, which eventually lathes the
signal and outputs a complete pulse. This protocol is called “4-phase”, since
a complete cycle of the incoming pulse triggers one synchronization event.

Appendix E

Power Optimization Techniques

Low power consumption has become a crucial issue in IC design. In portable
devices, low power consumption has long been considered one of the main
design contraints. In high-performance processors, on the other hand, power
consumption was traditionally the secondary constraining factor; however,
this has changed due to the concerns on the cooling and packaging cost.
What is more, the increase in power consumption has resulted in higher
temperature, which in turn reduces reliability 1. Therefore, low power tech-
niques are important for current and future VLSI design. In this section we
will examine theoretically various methods which, if used correctly, can de-
crease a circuits’s power consumption. Some of these methods are adopted by
the Synopsys Power Compiler power optimization algorithms. The methods
presented can also be found in [25].

E.1 RTL Power Optimization

E.1.1 Glitch Minimization

A design’s structure in the RTL level can have a significant affect on inter-
block glitches. This seems logical when we face a circuit’s blocks as large
gates that connect to each other. Glitch propagation through these RTL
blocks can affect power.

Path Balancing and Depth Reduction

Glitch can be reduced if we balance signal paths, as well as by increasing
circuit depth 2. For example, in Figure E.1 we can see two implementations
of a 4-number adder. If all inputs arrive at the same time, in the case of

1Realiability is a crucial demand in switching devices: 5 minutes/year downtime is
considered to be a reasonable value.

2Of course, increasing the depth , increases the capacitance; on the other hand, reducing
the depth imposes the use of more registers, hence power is increased. Such tradeoffs will
be largely encountered in the following techniques as well.

84

APPENDIX E. POWER OPTIMIZATION TECHNIQUES 85

the chain adder of Figure E.1(a), adder 2 will compute twice every clock
cycle and adder 3 will compute 3 times per cycle. This results in useless
transitions that consume power. On the other hand, in the case of the tree
adder of Figure E.1(b), all paths are balanced, hence glitching is minimal.

(b)

Adder 1 Adder 2

Adder 2

Adder 2

Adder 2
A

B

C

D

OutAdder 3

D

C

B

A
Out

(a)

Figure E.1: Path balancing and depth reduction power optimization: case
(a) is an unbalanced chain adder, while (b) is a completely balanced, almost
glitch free tree adder.

E.1.2 Exploitation of Resource Sharing

Resource sharing is a tradeoff between area and performance, but it can
affect power consumption as well. Usually, when we share a unit, we need
multiplexors at its inputs, which results in increased power consumption. For
example, we can choose to use a parallel architecture (by duplicating the re-
sources) in case we need a high-throughput circuit, or a time-multiplexed
architecture for low-throughput circuits. As an example, in Figure E.2,
the parallel implementation (E.2(a)) approach consumes less power than the
time-multiplexed one (E.2(b)), because the latter involves using multiplex-
ors and due to the fact that the time-multiplexed approach destroys data
correlation.

O1Adder 1

Adder 2

B

A

C
Out

(a)

O1

OutAdder

(b)

C

B

A

Figure E.2: Exploitation of resource sharing power optimization: case (a) is
a parallel implentation, while (b) time-multiplexes input data, in order to
consume less area, but is not as power-aware as approach (a).

APPENDIX E. POWER OPTIMIZATION TECHNIQUES 86

E.1.3 Dynamic Power Management

The idea of dynamic power management is to shut down some blocks (ALUs,
registers) that are not performing valuable jobs all the time. There are 4
approaches to this idea.

Pre-computation

With pre-computation we compute some of the circuit outputs one or more
cycles earlier, in order to decrease the switching of the combinational cir-
cuit. This can be achieved by implementing predictor functions, which must
cover as many circuit states possible. This method can achieve as much as
60% power savings, but with small area overhead in pipelined circuits, and
is difficult to implement in sequential circuits. For example, the predictor
functions in the case of the comparator shown in Figure E.3 are very sim-
ple: If we compare the multi-bit numbers C & D, functions g1 and g2 are
g1 = C[n − 1]D[n − 1]

′

for C > D, and g2 = C[n − 1]
′

D[n − 1] for C < D;
as a result, g1 + g2 = (C[n − 1]XORD[n − 1])

′

. For equiprobable inputs,
XNOR power consumption is p(XNOR) = 0.5, so we achieve an average of
50% power reduction.

XNOR

R1

R2

en

C[n−1]

D[n−1]

D[n−2]

C[0]

D[0]

C[n−2]
R3

f

C > D

Figure E.3: Pre-computation power optimization: the result of the C > D
comparison is evaluated by first comparing the most significant bits of C and
D and then by comparing the rest. Power consumption savings can be as
much as 60%.

Gated Clocks

Clock gating can be directly implemented on our code. The designer finds
the cases when a specific subcircuit must remain idle and builds an activation
function. Gating is performed by AND-ing the real clock with the latched
output (in order to avoid glitches) of the activation function. Such techniques
can reduce the power consumption of FSMs by almost 30%. For testability

APPENDIX E. POWER OPTIMIZATION TECHNIQUES 87

purposes, we wish to have a way to bypass clock gating. It is also better to
locate the clock gating latches at the high hierarchy levels. Synthesis tools,
such as Synopsys, can automatically implement clock gating in circuits as
long as such an option is explicitely activated in the synthesis scripts and the
code contains always clauses of the form

always @(posedge clk)

if (enable)...

As an example, consider the FSM block diagram of Figure E.4. When acti-
vation function f is 0, the gated clock stops.

GCLK

state inputs

logic
Combinationalinputs

primary

f

clk

r e g i s t e r

Figure E.4: Clock gating power optimization: when activation function f is
0, gated clock is stopped; through clock gating, power can be reduced even
by 30%.

Extraction of Computational Kernels

Combinational circuits often “pass” through a relatively small set of states,
hence they have a “typical” and a “non-typical” behavior. Typical behavior
can be built by using small, fast and low power logic, called “computational
kernel”. Thus, the designer can use a parallel implementation, where the
“kernel” logic of the FSM will be executed often, while the rest of the FSM
logic will be seldom executed. This method achieves 20-50% power savings,
but adds less than 15% delay, while its area overhead, due to parallelism, is
around 20-70%.

Operand Isolation

This method is similar to clock gating, but is used in computational elements:
components that will perform redundant operations are isolated by the use
of control logic. This method achieves power savings of 15-30%, but its area
overhead is in the range of 5-25%, while the slack is 30-50% larger.

APPENDIX E. POWER OPTIMIZATION TECHNIQUES 88

E.2 Gate Level Power Optimization

E.2.1 Technology-independent Techniques

Combinational Circuits

Don’t Care Minimization Through this method the designer tries to
minimize the cost function of each node, that is, it is favourable to have a
small number of cubes that implement the function in the Karnaugh-map.
Also, by trying out different implementations of the function and by hypo-
thetizing on the node switching activities, an implementation can be found
that will minimize power, perhaps with an area overhead. Care must be
taken though, as this method does not always guarrantee power savings, so
it must first be ckecked thoroughly on paper or by special tools.

Sequential Circuits

State Assignment With state assignment, the designer attempts to
minimize the state-to-state transitions. The extreme case is to use one-
hot encoding, but with area and possibly power (as capacitance increases)
overhead. As a result, states must be encoded in conjunction with how often
the specific transitions occur; this means assigning state codes with small
transitions to states that are often active. For example, in Figure E.5 we can
see a 4-state FSM. We can derive a cost function C =

∑

i,j wijH(i, j) which
is indicational of the switching activity and area penalty of each case. By
correctly selecting state assignments, we can decrease the FSM cost C, from
1.2 to 0.8.

(b)

0.1330.066

S0
00

10
S0

0.066

0.066

11
S00.4

01
S0

0.1330.066

S0
00

10
S0

0.066

0.066

S00.4

S0

01

11

(a)

Figure E.5: State assignment power optimization: by carefully selecting state
encoding, the designer can minimize the cost function C =

∑

i,j wijH(i, j),
which indicates switching activity. Case (a) is a power-consuming state en-
coding selection giving C = 1.2, while (b) gives C = 0.8.

APPENDIX E. POWER OPTIMIZATION TECHNIQUES 89

FSM Decomposition With this technique, the FSM is divided into
one ore more sub-FSMs; this is done because not all the sub-FSMs will be
active at any time, hence some power management can be achieved. FSM
partitioning into sub-FSMs is carefully carried out in order to minimize inter-
FSM communication. The overhead of this method, an example of which can
be seen in Figure E.6, is the area overhead for the addition of the sub-FSM
activation/inactivation logic.

(b)

S0 S1

S2

S3
S4

S5

(a)

M2
(S3,S4,S5)

(S0,S1,S2)
M1

Figure E.6: FSM decomposition power optimization: in (a) we can see a
traditional FSM, which can be partinioned into two sub-FSMs, M1 & M2,
(b), only one of which will be active at any time.

Retiming & Guarded Evaluation Retiming is a performance ori-
ented method. Latches are added to the glitchy nodes and 5-10% power
savings can be achieved in pipelined circuits. Area overhead is not negligi-
ble, though. This optimization is not supported by Synopsys Power Com-
piler, thus the designer has to perform it on his own (see Figure E.7). With
guarded evaluation, dynamic power management is carried out, but in the
Gate-Level: guard logic (latches with enable) are added to block inputs.

E.2.2 Technology-dependent Techniques

Technology Mapping

The idea of technology mapping is to hide high-switching nodes inside the
gates. If, for example, the tool synthesizes a function f , at first it performs
“decomposition of f”, thus building the “subject graph”, which is the circuit
that implements f , built from primitive elements. Next the tool performs
“subject graph covering”, that is, it chooses the appropriate gates from the
technology library, in order to “hide” some high switching activity inside the

APPENDIX E. POWER OPTIMIZATION TECHNIQUES 90

(b)(a)

Figure E.7: Retiming power optimization: lathes are added (b) to glitchy
nodes; power reduction is in the range of 5-10%, but area overhead can be
significant.

gate; these gates will be directly built on silicon, so their switching activity
will as low possible. An example of this mapping can be seen in Figure E.8.

H

L L

Figure E.8: Technology mapping power optimization: the covered circuit on
the left is the “subject graph”, which is then “covered” into a three input
NAND gate, shown on the right; thus, the high switching internal node of
the subject graph is “hidden” inside the gate implementation.

Gate Resizing

All technology libraries contain a number of basic primitives (gates, mul-
tiplexors, registers), but for every primitive, multiple editions exist, with
different characteristics (size, speed, power consumption), as shown in Fig-
ure E.9. The synthesis tool chooses which instance to use depending on the
contraints the designer has imposed. Hence, the tool chooses to use fast,
but power consuming primitives in the critical path, and small, slow and low
power primitives for other, non-critical, paths. Power savings can be up to
30%.

Buffer Insertion

Having a fully mapped gate level netlist, with exact timing data, we can add
buffers and thus decrease the capacitance and the transition time of a node.
For example, in Figure E.10 we can see how a buffer insertion between a
driving NAND gate and two receiver flip flops reduces capacitance (hence
power consumption) and node transition time.

APPENDIX E. POWER OPTIMIZATION TECHNIQUES 91

high power
slow
low power

small size medium size
medium speed
medium power

large
fast

Figure E.9: Technology library primitive characteristics: the library contains
different editions of the same primitives, which differ in area, speed and power
consumption. Hence, the synthesis tool can choose to use a specific primitive,
depending on the contraints set by the designer.

−Buffer = 1

Internal Power
−NAND = 3
−FF1, FF2 = 5
Total = 13
−Tr. time n1 = 4

clkclk

n1 n1 n2

Internal Power

(a) (b)

−NAND = 2.5

−Tr. time n1, n2 = 2
Total = 12.5
−FF1, FF2 = 4.5

Figure E.10: Buffer insertion power optimization: case (a) shows a NAND
gate driving two flip flops in parallel. By adding a buffer in the node (case
(b)), NAND gate and flip flop power consumption decrease. Of course, buffer
insertion should be carefully performed: mistakes may increase total power.

Dual-voltage Gates

Gates with low supply voltage consume small amounts of power, but are slow,
too. The synthesis tool might be able to replace gates that do not affect the
timing contraints with others of a lower supply voltage (see Figure E.11).
Generally speaking, no more than two different supply voltages should be
used in a circuit; this method is also preferrably followed locally in a design,
as the special circuits needed at the low voltage outputs (level shifters), have
large area and consume power 3.

3Special algorithms do exist that minimize the use of level shifters.

APPENDIX E. POWER OPTIMIZATION TECHNIQUES 92

(a)

slow
low power

small size

medium size
medium speed
medium power

large
fast
high power

HVdd (2.5 V)

−fast
−high power

slow
low power

small size

medium size
medium speed
medium power

large
fast
high power

−low power
−slow

L Vdd (1.8 V)

(b)

Figure E.11: Dual-voltage gate power optimization: case (a) is a high voltage
(2.5V) technology library of three NAND gates, which are fast and non-power
aware. Case (b) is a low voltage (1.8V) version of the same technology; it is
slower, but consumes less power.

Leakage Power Minimization

By synthesizing the design with gates of high threshold voltage VThreshold, we
can achieve a minimum leakage power implementation. Timing constraints
are then met by replacing the gates of the critical path with gates of smaller
threshold voltage. Of course, switching power decreases as threshold voltage
drops, and at the same time leakage power increases; thus, care must be
taken.

Appendix F

LFSR Random Number
Generators

Switch verification is a difficult task, with the most challenging part being
the generation of realistic input traffic that must resemble, as close possible,
real internet traffic. Because of the high link bandwidth (almost 10 Gbit/sec)
supported by our 32×32 buffered crossbar switch, emulating internet back-
bone traffic was desirable. After traffic analysis data is acquired, traffic must
be generated and sent to the switch inputs. Although this task is usually
performed in software 1, generating traffic that follows specific mathematical
distributions is quite difficult in hardware. In this section we will present
the most important internet traffic analysis results, and propose a way to
produce number sequences that follow a specific distribution in hardware,
especially in FPGAs. Random number generation is mostly analysed, since
every other distribution can be implemented by transformating a random
number sequence.

F.1 Traffic Analysis

Traffic analyses were found in [23], while a cumulative distribution of packet
sizes, and of bytes by the size of packets carrying them is presented in Fig-
ure F.1. The figure is a good example of the difference between per-packet
and per-byte analyses. As we can see, there is a predominance of small
packets, with peaks at the common sizes of 44, 552, 576, and 1500 bytes.
The small packets, 40-44 bytes in length, include TCP acknowledgement
segments, TCP control segments such as SYN, FIN, and RST packets, and
telnet packets carrying single characters (keystrokes of a telnet session).
Many TCP implementations that do not implement Path MTU Discovery
use either 512 or 536 bytes as the default Maximum Segment Size (MSS)
for nonlocal IP destinations, yielding a 552-byte or 576-byte packet size. A

1Such software traffic generation is briefly presented in [19], whereas a more technical
and detailed presentation can be found in [29].

93

APPENDIX F. LFSR RANDOM NUMBER GENERATORS 94

Figure F.1: IP packet length distribution: Data taken from a www.caida.org
year 2000 simulation.

Maximum Transmission Unit (MTU) size of 1500 bytes is characteristic of
Ethernet-attached hosts. Almost 75% of the packets are smaller than the
typical TCP MSS of 552 bytes. Nearly half of the packets are 40 to 44 bytes
in length. Note, however, that in terms of bytes, the picture is much differ-
ent. While almost 60% of packets are 44 bytes or less, constituting a total
of 7% of the byte volume, over half of the bytes are carried in packets of size
1500 bytes or larger.

F.2 Hardware Random Number Generators

Generally speaking, there are several requirements that a random number
generator (RNG) must satisfy, the most important being: (a) uniformity,
(b) independence, (c) long period, (d) repeatability, (e) portability, and, of
course, (f) efficiency [28]. The latter requirement is the most difficult to meet
in hardware and the most important, too, as hardware recourses are critical,
both for ASICs and FPGAs.

RNGs can be either “truly random” or “pseudo random”, with the for-
mer to excibit true randomness (so the value of the next number is unpre-
dictable), and the latter to only appear random. Truly RNGs can only be

APPENDIX F. LFSR RANDOM NUMBER GENERATORS 95

built in hardware by using thermal noise (possibly from a resistor), which
is then amplified, latched and sampled. This obviously analog circuit is not
preferrable in most cases.

The most efficient 1-bit RNG implementation uses the Linear Feedback
Shift Register (LFSR). It is based on the fact that the next random value is
a function of the older values, with 1 to 3 XOR operations between them.
The LFSR is a very efficient pseudo-RNG, as for an m-bit random number,
only an m-bit shift register and 1-3 XOR gates are needed; it also shows very
nice statistical properties, while its period can become very large, too.

In order to design a multiple-bit RNG, various methods have been pro-
posed. The most obvious is to use multiple copies of single-bit LFSRs. This
method has the same operation speed as the signle-bit RNG, but has two ma-
jor disadvantages: (a) it requires a different seed for each single-bit LFSR, in
order to avoid correlation; and (b) it is inefficient, as it needs large hardware
resources.

The answer to the above problems is the “Multiple-bit Leap-forward
LFSR”, which utilizes only one LFSR and shifts out several bits, with all
shifts being performed in one clock cycle. This method is based on the ob-
servation that an LFSR is a linear system and the register state can be written
in vector format q(i+1) = A∗q(i), where q(i+1) and q(i) are the contents of
the shift register at (i+1)th and ith steps, and A is a transition matrix. After
the LFSR advances k steps, the equation becomes q(i + 1) = Ak

∗ q(i). If we
compute Ak then we determine the XOR structure and the circuit can leap k
steps in one clock cycle 2. An example of a 4-bit Leap-forward LFSR can be
seen in Figure F.2. Leap-forward LFSR method utilizes extra combinational

4−bit output

D Q

D Q

D Q

D Q

������

��

������

��

	

������

����

����

������

Figure F.2: 4-bit Leap-forward Linear Feedback Shift Register (LFSR) orga-
nization.

circuit, instead of duplicated LFSRs. For small k, this combinational circuit

2Transition matrix computation is presented in [28].

APPENDIX F. LFSR RANDOM NUMBER GENERATORS 96

is not very complex and is thus ideal for FPGAs, since it balances register and
combinational circuitry. However, for large k, the XOR structure grows very
large and becomes the dominant factor; in that case, a “Lagged Fibonnaci”
RNG can be used instead.

F.3 Non-uniform Number Hardware Sequence

Generation

In order to produce general, non-uniform random numbers that follow a spe-
cific distribution, a similar procedure can be followed: first we generate a
uniformly-distributed random number, and then we perform an extra pro-
cessing step, in order to produce the desired value. There are two methods
to implement that extra step, but the easiest and most straightforward is the
“inverse tranform method”: assuming a random variable X, with a proba-
bility distribution function (pdf) P (X = xj) = pj, where j = 1, . . . , m and
∑

j pj = 1. We generate an n-bit random number U and set X as

X =

x1 if 0 <= U < p02
n

x2 if p02
n <= U < p1s

n

· · ·

Hence, in the worst case, we need a 2n by log2m ROM look-up table. By
computing the above values off-line, storing them in a ROM and addressing
it with a uniformly distributed random number (possibly computed by a
LFSR-RNG), the desired values are generated.

Appendix G

Thesis Overview

This thesis was carried out from February 2003 until June 2004 and was
composed of 5 stages: (a) initial work, (b) switch architecture, HDL coding
and verification, (c) synthesis and verification, (d) placement and routing and
(e) thesis report. Figure G.1 shows the time spent in each of those stages; it
should be noted that most stages overlapped.

Thesis

Feb 03 Apr 03 Sep 03 Nov 03 May 04 Jun 04

Placement &
Initial
work

Sw. architecture, HDL coding &
verification

Synthesis &
verification routing report

Figure G.1: Project timeline.

Entire code size of the project can be seen in table G.1. “Core Verilog
Code” code infers to the 32×32 switch code written from scratch; “Automat-
ically Generated Code” had to be produced in order to instantiate the 1024
crosspoints and the 32 credit and output schedulers, as well as organize the
switch in columns. This was carried out by a C file. “Miscellaneous Verilog
Code” was mostly written for the development of a 4×4 buffered crossbar
switch with WRR schedulers, as well as for tests on LFSR random number
generators.

Core Verilog Code 5500
Autom. Generated Verilog Code 10500

Miscellaneous Verilog Code 2000
Synopsys & SoC Encounter Scripts 800

C Code 600

Table G.1: Thesis code size.

97

Bibliography

[1] “Buffered Crossbar (CICQ) Switch Architecture”, Computer
Architecture and VLSI Laboratory, Institute of Computer Sci-
ence, Foundation for Research and Technology, Hellas (FORTH);
http://archvlsi.ics.forth.gr/bufXbar/

[2] Kenji Yoshigoe and Kenneth J. Christensen: “An Evolution to Crossbar
Switches with Virtual Output Queueing and Buffered Cross Points”,
IEEE Network, September/October 2003

[3] Yeh, Hluchyj, Acampora: “The Knockout Switch: A Simple, Modular
Architecture for High-Performance Packet Switching”, IEEE Journal of
Selected Areas in Communications, pp. 1274-1283, Oct 1987.

[4] M. Karol, M. Hluchyj, and S. Morgan: “Input versus Output Queueing
on a Space Division Packet Switch”, IEEE Trans. Commun., vol. 35,
no. 12, Dec. 1987, pp. 1347-56

[5] Altera Corporation: “Crosspoint Switch Matrices in MAX
II & MAX 3000A Devices”, Altera Application Note 294 ;
http://www.altera.com/literature/an/an294.pdf

[6] Altera Corporation: “Using Stratix GX in
Switch Fabric Systems”, Altera White Paper ;
http://www.altera.com/literature/wp/wp switch fabric.pdf

[7] Vinita Singhal, Robert Le: “High-Speed Buffered Crossbar Switch
Design Using Virtex-EM Devices”, Xilinx Application Note 240 ;
http://direct.xilinx.com/bvdocs/appnotes/xapp240.pdf

[8] Xilinx Corporation: “Building Crosspoint Switches with CoolRunner-II
CPLDs”, Xilinx Application Note 380 ; http://www.xilinx.com/ publi-
cations/products/cool2/apps pdf/xapp380.pdf

[9] Xilinx Corporation; http://www.xilinx.com

[10] Xilinx Corporation: “Rocket IO Multi-Gigabit Tranceiver”;
http://www.xilinx.com/products/virtex2pro/rocketio.htm

98

BIBLIOGRAPHY 99

[11] Nick McKeown, Martin Izzard, Adisak Mekkittikul, William Ellersick,
Mark Horowitz: “The Tiny Tera: A Packet Switch Core”, HOTI V,
Stanford University, August 1996; http://tiny-tera.stanford.edu/tiny-
tera/papers/papers/HOTI 96.ps

[12] Nick McKeown: “The iSLIP Scheduling Algorithm for Input-
Queued Switches”, IEEE/ACM Transactions on Network-
ing, vol. 7, no. 2, April 1999, pp. 188-201; http://tiny-
tera.stanford.edu/ nickm/papers/ToN April 99.pdf

[13] T. Anderson et al.: “High-Speed Switch Scheduling for Local-Area Net-
works”, ACM Trans. Computer Systems, vol. 11, no. 4, Nov. 1993, pp.
319-52

[14] K. Yoshigoe and K. Christensen: ”A Parallel-Polled Virtual Output
Queued Switch with a Buffered Crossbar”, 2001 IEEE Workshop on
High Performance Switching and Routing, pp. 271-275, May 2001;
http://www.csee.usf.edu/ kyoshigo/hpsr01.pdf

[15] K. Yoshigoe, K. Christensen, and A. Jacob: ”The RR/RR
CICQ Switch: Hardware Design for 10-Gbps Link Speed”, Pro-
ceedings of the IEEE 2003 International Performance, Comput-
ing, and Communications Conference, pp. 481-485, April 2003;
http://www.csee.usf.edu/ kyoshigo/ipccc03.pdf

[16] Christopher Heer, Andreas Kirstadter, Christian Sauer: “Self-
Routing Crossbar Switch with Internal Contention Resolution”, In-
ternational IEEE Conference on Electronics, Circuits, and Systems,
ICECS 2001, Sept. 2-5, Malta; http://www.lkn.ei.tum.de/lkn/ mitar-
beiter/akirstaedter/papers/2001 ICECS Chipset.pdf

[17] Heikki Kariniemi, Jari Nurmi: “A Crossbar-based ATM
Switch on FPGA for 2.488 Gbits/s CATV Network with
Scalable Header Remapping Function”, Institute of Digital
and Computer Systems, Tampere University of Technology ;
http://www.scit.wlv.ac.uk/ in8189/CSNDSP2002/Papers/C1/C1.4.pdf

[18] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, I. Illiadis: “A Four-
Terabit Packet Switch Supporting Long Round-Trip Times”, IEEE Mi-
cro Magazine, vol. 23, no. 1, Jan/Feb 2003, pp. 10-24

[19] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, N.
Chrysos: “Variable Packet Size Buffered Crossbar (CICQ)
Switches”, Proc. IEEE International Conference on Communica-
tions (ICC 2004), Paris, France, June 2004, vol. 2, pp. 1090-1096;
http://archvlsi.ics.forth.gr/bufxbar/

[20] Cadence Corporation; http://www.cadence.com

BIBLIOGRAPHY 100

[21] UMC 0.18 micron Libraries; http://www.umc.com/english/design/b3.asp

[22] Xiang Li: “Saving Power with Power Compiler”;
http://vlsi1.engr.utk.edu/ xiang/652/POWER-COMPILER.ppt

[23] Cooperative Association for Internet Data Analysis: “Packet Length
Distributions”; http://www.caida.org

[24] N. Chrysos, M. Katevenis: “Mutliple Priorities in a Two-
Lane Buffered Crossbar”, to be published in Globecom 2004 ;
http://archvlsi.ics.forth.gr/bufxbar/mprio bxb chrys 04-03.pdf

[25] S. Devadas and S. Malik: “A Survey of Optimization
Techniques Targeting Low Power VLSI Circuits”, Proc.
IEEE Design Automation Conf., pp. 242-247, June 1995;
http://portal.acm.org/ ft gateway.cfm?id=217536&type=pdf&coll=
portal&dl=ACM&CFID=24235476&CFTOKEN=52253054

[26] Altera Corporation: “System-on-a-Programmable-Chip Development
Board User Guide”; http://www.altera.com/literature/ug/sopcug.pdf

[27] Ahmed Younis et al.: “A Low Jitter, Low Power, CMOS 1.25-
3.125 Gbps Tranceiver”, Proc. of 2001 ESSCIRC, pp. 148-151;
http://www.imec.be/esscirc/esscirc2001/Proceedings/data/79.pdf

[28] Pong P. Chu and Robert E. Jones: “Design Techniques
of FPGA Based Random Number Generator”, Military
and Aerospace Applications of Programmable Devices and
Technologies Conference, 1999 ; http://academic.csuohio.edu
:8080/chup/chu web stuff/research stuff/Random.PDF

[29] Georgios Passas: “Performance Evaluation of Variable
Packet Size Buffered Crossbar Switches”, Institute of Com-
puter Science, FORTH, Technical Report 328, Heraklion,
Crete, Greece, November 2003; ftp://ftp.ics.forth.gr/tech-
reports/2003/2003.TR328 Evaluation Packet-
Size Buffered Crossbar Switches.pdf

[30] Quantum Flow Control (QFC) Alliance: “Quantum Flow Control: A
cell-relay protocol supporting an Available Bit Rate Service”, version
2.0, July 1995; originally at http://www.qfc.org but no longer there –
copy at http://archvlsi.ics.forth.gr/ kateveni/534/qfc/

[31] “CS-534, Packet Switch Architecture”, Computer Science Department,
University of Crete, lecture notes; http://www.archvlsi.ics.forth.gr/ kat-
eveni/534/04a/s22 chip.html

[32] William J. Dally, John Poulton: “Digital Systems Engineering”, Cam-
bridge University Press, ISBN 0521592925

BIBLIOGRAPHY 101

[33] Network Equipment Building Standards (NEBS); http://www.nebs-
faq.com/, http://www.telcordia.com/

[34] K. Harteros: “Fast Parallel Comparison Circuits for Schedul-
ing”, Institute of Computer Science, FORTH, Techni-
cal Report FORTH-ICS/TR-304, 78 pages, March 2002;
http://archvlsi.ics.forth.gr/muqpro/cmpTree.html

[35] Cyriel Minkenberg, Ronald P. Luijten, François Abel, Wolf-
gang Denzel, Mitchell Gusat: “Current Issues in Packet
Switch Design”, HOTNETS ‘02, 10/02 Princeton, NJ, USA;
http://www.acm.org/sigs/sigcomm/HotNets-I/papers/minkenberg.pdf

[36] “International Technology Roadmap for Semi-
conductors”, 2003 Edition, Executive Summary;
http://public.itrs.net/Files/2003ITRS/Home2003.htm

[37] “ECE260B - CSE241A”, University of California, San Diego, Winter
2004, lecture notes; http://vlsicad.ucsd.edu/courses/ece260b-w04/

[38] “ECE260B - CSE241A: Packaging”, University of California, San Diego,
Winter 2004, lecture notes; http://vlsicad.ucsd.edu/courses/ece260b-
w04/ece260b-w04-packaging.pdf

[39] IBM Microelectronics Presentation: “Embedded DRAM
Comparison Charts”, IBM Microelectronics; http://www-
306.ibm.com/chips/techlib/techlib.nsf/products/Embedded DRAM

[40] John Barth, Darren Anand, Jeff Dreibelbis, Erik Nelson: “A
300MHz Multi-Banked eDRAM Macro Featuring GND Sense,
Bit-Line Twisting and Direct Reference Cell Write”, ISSCC
2002, Session 9, DRAM and Ferroelectric Memories, 9.3;
http://www-306.ibm.com/chips/techlib/ techlib.nsf/techdocs/
48D7E84C4F67E55287256DD700021AA1/$file/isscc02 D09 3.pdf

[41] Chorng-Lii Hwang et al.: “A 2.9ns Random Access Cycle Em-
bedded DRAM with a Destructive-Read Architecture”, IBM Micro-
electronics; http://www-306.ibm.com/ chips/techlib/techlib.nsf/ tech-
docs/E95CC111124D5A5587256DD6007DE26D

[42] Steve Tomashot: “An Embedded DRAM Approach”, IBM Cor-
poration; http://www-306.ibm.com/ chips/techlib/techlib.nsf/ tech-
docs/C4DA54943C004A1987256DC8004EA766/$file/emdramprez.pdf

[43] “eSi-RAM/2PTM Two-Port Register File SRAM”, 512 Words 32 Bits
per word, Data Sheet

BIBLIOGRAPHY 102

[44] Terry Tao Ye, Luca Benini, Giovanni De Micheli: “Analysis of Power
Consumption on Switch Fabrics in Network Routers”, Proceedings of
Design Automation Conference, DAC 2002, IEEE, pp. 524 -529, June,
2002; http://www.gigascale.org/pubs/408/34-02-ye.pdf

[45] Hang-Sheng Wang, Li-Shiuan Peh, Sharad Malik: “A Power
Model for Routers: Modelling the Alpha 21364 and In-
finiband Routers”, IEEE Micro, Jan-Feb 2003, pp. 26-35;
http://www.princeton.edu/ peh/publications/powermodel.pdf

[46] Synopsys Corporation; http://www.synopsys.com

[47] “Power Compiler User Guide”, Synopsys Corporation, June 2003

