
FORTH-ICS /TR-328 November 2003

Performance Evaluation of
Variable Packet Size

Buffered Crossbar Switches

Georgios Passas

ABSTRACT

The crossbar is very popular for the implementation of switches with a mod-
erate number of ports. Unbuffered crossbars (IQ - architecture) require complex
switch matrix scheduling algorithms that operate on fixed-size cells. On the other
hand, buffered crossbars (CICQ - architecture), use small buffers at the crosspoints
and provide excellent features; scheduling is simplified and variable-size packets
can be directly switched. In this report we present the performance evaluation
of a buffered crossbar directly switching variable sized packets. We describe in
detail the simulator developed for the experimental analysis, and our set of exper-
iments showing that the buffered crossbar switching variable-size packets outper-
forms most of the existing packet switch architectures.

.

Performance Evaluation of
Variable Packet Size

Buffered Crossbar Switches

Georgios A. Passas���

Computer Architecture & VLSI Systems (CARV) Laboratory,
Institute of Computer Science(ICS)

Foundation for Research and Technology — Hellas(FORTH)
Science and Technology Park of Crete

P.O. Box 1385, Heraklion, Crete, GR-711-10 Greece
email: passas@ics.forth.gr

Technical Report FORTH-ICS/TR-328 — November 2003

Copyright 2003 by FORTH
Work Performed as Diploma Thesis at the Depart. of Computer Science, Univ. of

Crete, under the supervision of prof. Manolis Katevenis

Keywords: Variable Packet Size Buffered Crossbar, Performance Evaluation,

Simulation, Traffic Generators, Delay, Throughput

1ICS-FORTH, P.O. Box 1385, GR-711-10 Heraklion, Crete, Greece. E-mail: passas@ics.forth.gr
2Department of Computer Science, University of Crete, Heraklion, Crete, Greece.

E-mail: passas@csd.uch.gr

Abstract

The crossbar is very popular for the implementation of switches with

a moderate number of ports. Unbuffered crossbars (IQ - architecture) re-

quire complex switch matrix scheduling algorithms that operate on fixed-size

cells. On the other hand, buffered crossbars (CICQ - architecture), use small

buffers at the crosspoints and provide excellent features; scheduling is sim-

plified and variable-size packets can be directly switched. In this report we

present the performance evaluation of a buffered crossbar directly switching

variable sized packets. We describe in detail the simulator developed for the

experimental analysis, and our set of experiments showing that the buffered

crossbar switching variable-size packets outperforms most of the existing

packet switch architectures.

Acknowledgments

I would like to thank Nikos Chrysos for supervising my work and for providing the

architeture of the simulator. Professor Manolis Katevenis is thanked for his guid-

ance and discussions throughout this work. I would also like to thank Georgios

Sapunjis and the members of the switch architecture group for the helpful discus-

sions, as well as my friends and family for their support. Lastly, ICS-FORTH is

thanked for providing technical support.

Contents

1 Introduction 1

2 Generic Architecture 3

3 Simulator Description 6

3.1 Simulator Architecture/Entities/Events. 6

3.2 Deciding When to Stop Simulation 13

4 Traffic Generators Description 15

4.1 Poisson Arrivals-Pareto Size(PoissPar) Generator. 15

4.2 Synthetic-Backbone(SynthBackb) Traffic Generator 16

4.3 Burst Generator (BurstGen). 19

5 Simulation Results 21

5.1 Simulation Parameters . .. 21

5.2 On Crosspoint Buffer Size Requirements. 22

5.2.1 Crosspoint Buffer Size less than��������	
���� �

��
 ���
 . 22

5.2.2 Crosspoint Buffer Size greater than��������	
�����

��
 ���
 . 25

5.3 Delay Experiments. 26

5.3.1 Uniform Traffic . 26

5.3.2 Non-Uniform Traffic . 31

5.4 v-bufXbar vs. s-bufXbar .. 34

5.5 Fabric Size Dependence of Performance. 34

6 Conclusion 36

List of Figures

1 Generic Architecture. 3

2 The core event-based architecture for the simulator. 6

3 Simulation’s Evolution. . .. 13

4 Poisson Arrivals-Pareto Size Traffic Model. 15

5 SynthBackb Generator. The aggregate load of a pair of sources is

100Mbps. For� � ���Mbps load we multiplex M pairs.. 16

6 Synthetic Traffic Model. BG sessions emulate bulk transfers. IG

sessions emulate interactive conversations. 17

7 Packet Size Distributions. Percentage.. 18

8 Packet Size Distributions. Cumulative Percentage. Observe the knees

at the discrete packet sizes 40, 41, 42, 43, 44 and 552, 576 and 1500

bytes. 18

9 ��� � ���� ����� . 22

10 Buffer Size Less than��������	
 � ��� �
��
 ���
. For

buffer size less than 1500 bytes, all measurements for output uti-

lization are zero. Upper curves stand forSynthBackb traffic, lower

curves for worst case. 24

11 Buffer Size Greater than��������	
 � ��� �
��
 ���
.

Packets’ average delay underPoissPar traffic. 24

12 Buffer Size Greater than��������	
 � ��� �
��
 ���
.

Packets’ average delay underBurstGen traffic. 25

13 Maximum delay that packets suffer under SynthBackb traffic. Com-

parative results for buffered crossbar, 1-SLIP with speed-up equal

to 1.6 and output queuing . 27

14 Poisson Arrivals-Pareto Pkt Size Traffic (PoissPar) -Uniformly Se-

lected Outputs.��� �� switch. 28

15 Synthetic Traffic (SynthBackb) -Uniformly Selected Outputs.���

�� switch. 29

16 Bursty Traffic (BurstGen) - Uniformly Selected Outputs.�� � ��

switch. 29

17 Delay’s Standard Deviation. Comparative results for buffered cross-

bar, 1-SLIP with various speed-up factors and output queuing. . . 30

18 Unbalanced Traffic.�� � �� switch. Load is 100%. For crossbar,

buffer size is 1.5K, 2K, 3K, 4K and 8K.. 31

19 Hot-spotted SynthBackb traffic. Comparative results for buffered

crossbar, 1-SLIP with various speed-up factors and output queuing. 32

20 Comparative results for uniform and hot-spotted SynthBackb traffic. 33

21 s-bufXbar vs. v-bufXbar. s-bufXbar needs speed-up 1.1. 34

22 Fabric Size Dependence of Performance. For buffered crossbar the

plots match. . .. 35

23 Pareto Distribution. b=10, a=5. 40

24 Exponential Distribution. a=3. 41

25 CIOQ architecture using the iSLIP centralized scheduler.. 44

26 The FSMs for the schedulers in the simulated CIOQ architecture. . 46

List of Tables

1 Distributions for the Synthetic Traffic Model 19

2 Parameters’ values for the Synthetic Traffic Model 20

3 System Parameters. 23

1 Introduction

Nowadays, packet switches are the basic building blocks for constructing high-

speed networks that employ point-to-point links. As the demand for network band-

width is continuously increasing, attention is turning to cost-effective switch scal-

ability. In that direction, crossbars are very popular for the implementation of

switches with low to modest numbers of ports (�� � to ���� ���). Additionally,

crossbar switches are used in the core of switching fabrics with greater number of

ports.

Although, crossbar fabrics suffer from inherent drawbacks, such as O(��)

complexity-cost and the need for input queues (Virtual Output Queues-VOQs),

due to the well-known Head Of Line blocking (HOL)1 they offer many advan-

tages: they are simple, internally non-blocking and rather available in marketing.

Most crossbars in research and industry are unbuffered ones. An unbuffered

crossbar switch is configured using a centralized scheduler and uses fixed sized

cell as a transfer unit. The scheduler implements a switch matrix scheduling al-

gorithm [1] [2] [3], based on parallel and iterative grant-request-accept cycles.

Variable-size packets are segmented at input ports, transfered across the switch and

finally reassembled into packets at output ports. This operation introduces many

inefficiencies. First, when the cell time is short, the centralized scheduler cannot

practically achieve both high throughput and quality of service (QoS) guarantees;

this coupled with the overhead due to packet segmentation2 brings the need for in-

ternal speed-up3 - usually a factor of two to four to commercial products [4]. Sec-

ond, the segmentation at inputs brings the need for reassembly at outputs, which

requires significant egress buffering (CIOQ - Combined Input-Output Queuing).

On the other hand, buffered crossbars [5] [6] benefit by using small buffers

at the crosspoints (CICQ - Combined Input-Crosspoint Queuing). For buffered

1Under certain conditions HOL limits the maximum achievable throughput to��
�
� � �����.

2The worst case situation is a stream of back-to-back packets of length 1 byte greater than the

cell size. For this case we need a speed-up near two
3Speed-up is defined to be the ratio of the line card’s bandwidth into/from the switch core to the

link speed.

1

crossbars we do not need a centralized scheduler because packets don’t have to be

switched to the outputs right away but they can be buffered at the crosspoints [7].

Thus the scheduling is distributed at the distinct inputs and outputs: input transmis-

sions are independent of each other and of the output ones, resulting to a simplified

scheduling. In addition, buffered crossbars can directly switch variable size pack-

ets; there is no need for segmentation and reassembly. Thus, no speed-up and no

egress buffering is needed. Speed-up and buffering are the main contributors to

cost in switch design, so buffered crossbars have the potential to reduce the cost of

packet switches.

The buffered crossbar concept dates at least as far back as 1987 [8]. How-

ever the lack of the suitable technology for a single chip buffered crossbar made

the buffered crossbar idea not implementable. Recently, with the current million

transistor technology many groups [6] [9] [10] have studied the buffered crossbar

architecture. However little work has been done up to now for one of its main ad-

vantages : the direct operation on variable sized packets. This key feature and more

precisely the performance evaluation of a buffered crossbar natively supporting

variable sized packets, is studied in detail in this report.

We have to mention that this report does not examine QoS and priority level

issues. Instead, the main purpose is to show that the architecture we describe in

session 2, performs very well directly switching variable sized packets. So, we

consider only best-effort traffic.

2

S S S S

0

1

i

0 1 j

S

S

S

S

on−chip
switch fabric

output
links

off chip
ingress line cards

input
links

BPWCQ

N−1

N−1

VOQ(N−1,N−1)

XPB(i,j)

BPW : BackPressure Wire
CQ : Credit Queue

XPB : CrossPoint Buffer

0

N−1

1

i

Figure 1: Generic Architecture.

2 Generic Architecture

The proposed architecture uses a crossbar for interconnecting the cards on which

ports reside. As shown in fig.1, we assume buffers at the two potential contention

points: inputs and crosspoints (thus the name Combined Input Crosspoint Queuing-

CICQ). At each input�, � �(0, N-1) there are N large off-chip memories (e.g.

DRAMs), Virtual Output Queues(VOQs), identified by an input-output pair (�, �),

j�(0, � � �). At each crosspoint (�,�), there is a small on-chip buffer (SRAM),

dedicated to the input VOQ (�,�). Each input� also maintains a scheduler serving

the N competitive VOQs, by selecting one among them and forwarding its HOL

packet to its dedicated crosspoint buffer. At each output�, resides a scheduler su-

3

pervising the N crosspoint buffers(�, �). It keeps selecting the next crosspoint buffer

from which the head packet will be forwarded to the respective output�. A sim-

ple, credit-based flow control ensures that the small crosspoint buffers will never

overflow.

Concerning the flow control scheme, we assume that each input� maintains N

credit counters: one for each VOQ. Initially, the value of these counters equals the

crosspoint buffer size. Whenever an input scheduler forwards a packet from a VOQ,

it decrements its respective credit counter by the size of the forwarded packet.

Whenever an output scheduler forwards a packet from a crosspoint buffer (�,�), it

sends a credit to the VOQ (�,�) 4. The credit needs only to contain information for

the VOQ’s input-output pair. Each input maintains N simple, small FIFO queues,

one per VOQ, in order to “remember” the size of those packets send but still not

acknowledged. So, if an input receives a credit for VOQ (�,�), it knows that it has

to increment VOQ’s credit counter by the size, stored at the head of the j-th FIFO

queue. Via the above optimization, we reduce the backpressure overhead, since

credits do not have to carry information for the packet’s size.

An input port scheduler selects among that input’s VOQs the one from which

the next packet will be forwarded to the crossbar chip. The selection is performed

in round-robin (RR) manner, among the eligible VOQs; a VOQ is eligible if and

only if : (i)it is not empty and (ii)it will not cause its corresponding crosspoint

buffer to overflow, that is the value of its credit counter is greater or equal to the

size of its head packet. Identically, an output scheduler serves in RR discipline the

next eligible crosspoint buffer. Note that a crosspoint buffer is eligible if and only

if it is not empty.

In the proposed architecture, at every queue we employ cut-through operation:

whenever the packet’s header reaches a VOQ, input scheduler can start transmitting

it (if its VOQ is eligible); whenever the packet’s header reaches a crosspoint buffer,

output scheduler can start forwarding it to the output port.

We have to mention that we decided to place input schedulers off-chip, at input

line cards, cause :(i)these schedulers would add to the cost of the crossbar chip,

4The credit is forwarded to the input as soon as the output starts transmitting a packet.

4

(ii)ingress line cards would have to communicate to the crossbar chip the head

packet of each VOQ, (iii)the scheduler’s decision would need to travel to the line

card, increasing the scheduler’s latency.

More details about the architecture and the hardware implementation appear

in [7].

5

3 Simulator Description

This section concerns a description for the simulator developed toward the per-

formance evaluation purpose. We preferred to create our own simulator instead of

using standard libraries (e.g. CSIM), considering it is a more flexible solution.

Thus, we developed a software model in��� which matches the hardware of the

proposed architecture at a system level.

3.1 Simulator Architecture/Entities/Events

pop event

dispatch event

pu
sh

 ev
en

t

Events
Dispatcher

Heap
Events

system entity

Figure 2: The core event-based architecture for the simulator.

Specifically, the software model was “built” around an event-based architec-

ture, resulting to an event-driven simulator5: the system consists of entities which

communicate with each other via events. An event is another entity that holds in-

formation about the time of the event’s birth and its type. The events are stored in a

heap data structure, which serves as an “event-list” - holds the events sorted by time

of birth order. A dispatcher keeps pulling out events from the heap and delivering

them to the system’s entities; the entity receiving an event, handles it and depend-

ing on its type, generates a new one that stores (pushes) into the heap. The events

5We also assume a single execution thread.

6

are popped (by the dispatcher) from the heap in increasing time of birth order and

the simulation time is procedurally advanced to the point when the popped event

occurred. We mention here that the operation of the simulator in a time-slotted

manner could not be feasible for the IP switching case. Time-slotted simulation

could work well only when modeling (fixed size - ATM) cell switching.

Below, we describe the basic entities forming the simulator and the main event

types they communicate to each other. We basically assume 7 entities and 7 event-

types.

First, thepacket entity models the IP packets arriving at the switch ingress

line cards. It contains fields which specify the discrete packet’s id, the input port

it reaches, the output port it is destined to, its arrival/departure time to/from the

switch and its size (payload plus header size). As described in session 2 packets are

buffered in FIFO queues. We model them with thequeue entity, which maintains a

pointer to the head packet and supplies enqueue/dequeue operations.

class pkt{

private:

int pkt_id; //the packet’s id

int input_id,output_id; //packet’s input-output port

int priority; //packet’s priority

int size; // packet’s size

class pkt *nxt,*prev; //next/previous packet in queue

double arr_time,dep_time; //packet’s arrival/departure time

public:

pkt(); //constructs a new packet

˜{}pkt(); //destructs a packet

void set_attr(int pkt_id,int input_id,int output_id,int priority,

int size , double arr_t,double); //sets the packets attributes

void print(); //for debugging purpose

}

7

class entity_queue{

private:

int size; // queue’s size

pkt *head,*tail; //pointer to the head and tail packet

public:

entity_queue(); //constructs an empty queue

˜entity_queue(); //destructs a queue

int enqueue(pkt *packet); //enqueues packet

pkt * dequeue(); //dequeues packet

int not_empty(); //checks for empty queue

void print(); //for debugging purpose

};

The whole input line card is modeled with theinput controller entity. Each

input controller is identified by the input it resides and maintains a pointer to a

table of queues, corresponding to its input’s VOQs. In addition,input controller

implements scheduling operations, in order to specify the VOQ to be served; the

scheduling is performed in WRR discipline but in our simulations we assume that

the weights of all flows are equal.

class input_controller{

private:

int input_id; //controller’s input port

queue **VOQs; // N array of pointers to queues (the VOQs)

int enqueue_packet(pkt *packet,int VOQ_id); //enqueues packet to VOQ

//VOQ_id of input input_id

pkt *dequeue_packet(int VOQ_id); //dequeues a packet from VOQ

//VOQ_id of input input_id

int *credits; //credits for each VOQ

8

int exists_eligible_flow(); //checks if there is an eligible flow at input input

double *vtime; //virtual time for WRR

void scheduling_discipline_for_priority(int priority_id) //implies WRR and

//finds VOQ_to_be_served

int VOQ_to_be_served; //the VOQ to be served by the scheduler

int start_scheduling_expired; // variables

int new_transfer; // for the scheduler’s

int state; // state machine

public:

void set_input_id(int); //sets the input id for the controller

input_controller(); //constructs an input line card module

˜input_controller(); //destructs an input line card module

void handle_event(event *ev, HEAP *); //checks the type of the ev

//and pushes a new one to the heap

void goto_schedule_state_or_remain(double time, HEAP * events_heap); //checks i

//and performs scheduling or chang

void print(TIME msec); //for debbuging purpose

};

Similarly, output controller is specified by the output port it resides. It main-

tains a pointer to a table of queues, corresponding to the crosspoint buffers of that

output. It performs WRR scheduling, thus specifying the next crosspoint buffer

from which the next packet will be forwarded to the output.

class output_controller{

private:

int output_id;

queue *priority_level; //N array of pointers to queues (the xpoint buffers)

int enqueue_packet(PACKET Packet,int priority_id,int xpoint_buffer_id); //enqueu

//packet to VOQ VOQ_id of input input_

9

pkt *dequeue_packet(int xpoint_buffer_id); //dequeues

//a packet from xpoint buffer xpoint_bufer_id of output output_

int exists_eligible_flow(); //checks if exists non empty xpoint buffer

double *vtime; //virtual time for WRR

void scheduling_discipline(int priority_id); //implies WRR and

//finds xpoint_buffer_to_be_served

int xpoint_buffer_to_be_served; //the xpoint buffer to be served by

//the output scheduler

credits_controller ** credit_controllers; // used to pass credits with

//on-chip zero delay

int start_scheduling_expired; //variables for the schedulers state mach

int new_transfer;

int state;

public:

void set_output_id(int); //specifies the output port for the module

output_controller(); //constructs an output module

˜output_controller(); //destructs an output module

void set_credits_controllers(credits_controller **);

void handle_event(event_link, HEAP * events_heap); //similarly to input cont

void goto_schedule_state_or_remain(TIME , HEAP *); //similarly to input contr

void print(); //for debugging purpose

};

We assume that the schedulers at input and output ports operate in accordance

to a specified finite state machine. For the description of that state machine refer

to [11].

Statistics monitor is the module that collects the statistics for the simulation.

It computes the packets’ average/max delay, the delay’s standard deviation, the

switch throughput, as well as when to stop simulation (see section 3.2). It prints

10

the results to a specified file.

class statistics_monitor{

private:

int nofpackets_counter; //total packets left the switch during the simulation

int packets_per_exp; //total packets left the switch during the experiment

double aggregate_delay; //cumulative delay for all packets

double average_delay;

double max_delay;

double aggregate_bits; //cumulative bits for packets left the

//switch during the experiment

double throughput;

double sample_variance; //variables for the stop-simulation decision

double sample_variance_updated;

double sample_mean;

double sample_mean_updated;

double delay_i; //variables for computing delay’s standard deviation

double delay_i_s;

double sum_delay_i;

double sum_delay_i_s;

double standard_deviation;

public:

statistics_monitor(); //construct a monitor

˜statistics_monitor(); //destruct the monitor

int collect_statistics(event_link Event); //collects the new statistics

int compute_confidence_interval(); //decides when to stop simulation

void print(FILE *fp); //prints the statistics to file fp.

};

Lastly, traffic controller generates the packets that arrive at the switch ingress

11

line cards. It provides various traffic patterns (see section 5) and destination distri-

bution options.

PACKET AT INPUT event is generated by the traffic generator when a new

packet is generated6 . PACKET HEADER REACHESCROSSPOINT event is

generated by the input controller notifying that the header of the packet has reached

the crosspoint. INPUTSCHEDULING STARTED and INPUTSCHEDULING COMPLETED

events are generated by input controller according to its state machine and point the

start/completion of a scheduling operation. OUTPUTSCHEDULING STARTED

and OUTPUT

SCHEDULING COMPLETED events are similarly generated by output controller.

PACKET TRANSFERTO OUTPUT COMPLETED event is generated by output

controller when the packet has been totally transmitted to output. CREDITSAT INPUT

event is generated by credit controller notifying the arrival of a credit at input.

For example when traffic generator generates a packet a new event PACKE

T AT INPUT is created and pushed to the heap. Then the events dispatcher passes

the event to input controller; input controller enqueues the packet to the corre-

sponding VOQ and handles the event by changing its state. If scheduler is idle it

makes a scheduling decision,dequeues a packet from a VOQ and creates a new

event PACKETHEADER REACHESCROSSPOINT.

Before starting the simulation we have to specify the parameters for the system.

Particularly we have to specify the switch size, the rates of external, internal and

credit lines, the crosspoint buffer size, the propagation/memory access/scheduling

time values, as well as the parameters for the traffic generator. That is the parame-

ters defining the traffic pattern to be generated and the distribution for the packets’

destinations.

Lastly, we have to report that in order to compare the proposed architecture to

the CIOQ one and to the ideal output queuing we have also developed software

models simulating the operation of the iSLIP switch and the switch employing

output queuing. For these models we assume the same event-based architecture.

Details appear in the Appendix.

6We assume that a packet is generated at zero time and concurrently reaches the input port

12

e
x
p

e
ri
m

e
n

ts
5 6 7

1st experiment
2nd experimentreset time i−th experiment

(x100.000 pkts leaving the switch)

x1 x2 xnxi

i n

time

output data :

n−th experiment

Figure 3: Simulation’s Evolution.

3.2 Deciding When to Stop Simulation

We adopt the method described in [12] in order to determine when to stop simula-

tion. We briefly discuss it and then fit it to our special case.

In general, when simulating a system we are interested in measuring a quantity

�, which is the output data of a simulation. We assume that a simulation consists of

multiple simulation runs (or experiments). Usually,� is a random variable and we

are interested in its average value�. In order to compute�, we consider a variable-

estimator	� of �: 	�=
��

���
��
�

, where�� is the output of the simulation’s��� run.

The problem of finding when to stop simulation actually matches to the one of

finding the value for�, such as	� is a good estimator of�; that is	� converges to�.

To examine when	� converges to�, we need another metric: “mean square

error” (mse), specified by the following formula:��
 � ��

�
, where� is the stan-

dard deviation for	�. The difficulty now is that we do not know the value for��.

Thus, as we did for	�, we consider an estimator for�� : �� �
�

�

���
��������

��� , mea-

sured during the simulation’s evolution. We can now specify the algorithm for the

simulation-stop decision:

1. Specify a value� for the 	�’s standard deviation.

2. Generate at least 30 values�� (i.e. run the simulation at least 30 times and

collect the output data).

3. Continue generating values�� until ��
�
� �, where� the number of�� values

generated.

13

For instance (see fig. 3), when measuring e.g. the average delay for the packets

going through the switch, we start the simulation and wait until 500.000 packets

have left the switch; this concerns thereset time, which is used in order to skip

the initial/transient phenomena, before the switch stabilizes. Then we consider�

successive experiments
���
��� ����
��� ����
�� with a duration (for each of them)

specified by the time required for 200.000 packets to leave the switch. In each

experiment
�� we measure the average value�� for the packets’ average delay.

In order to determine n’s value (i.e. when to stop simulation), we apply the algo-

rithm described above. Setting� � ����, we get that we can stop the simulation

when� �� �� and ��
�

� ����. When the latter is achieved,	�=
��

���
��
�

well-

approaches the value for packets’ average delay, that is we can stop simulation.

14

4 Traffic Generators Description

We present the traffic generators used for the experimental performance analysis.

4.1 Poisson Arrivals-Pareto Size(PoissPar) Generator

ThePoissPar traffic generator generates packets of size given by the pareto distri-

bution (subexponential family). We use the pareto distribution because it is heavy

tailed, approaching the distribution of packet sizes in Internet: most packets are

small and rarely appear large packets. To be more precise we consider the bounded

pareto distribution with a minimum value 40 (the minimum packet size,��������	
)

and maximum value 1500 (the maximum packet size,��������	
). We set its

expected value to 370; that is the mean packet size (�
�������	
) is 370 bytes.

For packet interarrival time we used the exponential distribution so as the packet

birth is a poisson process (see fig. 4). In order to vary the load for the generated

���
���
���
���

���
���
���
���

��������
��������
��������
��������

0

packet interarrival time packet size

time

p
a

c
k
e

t

Figure 4: Poisson Arrivals-Pareto Size Traffic Model.

traffic, we vary the mean interarrival time (�
�����
����� ��
) value. The load

generated by thePoissPar generator is given by the formula:

� �� �
� ��
�������	

�
�����
����� ��
� �	
������
	
������	�
�	

(1)

where!��
��
���
 stands for the capacity of the link feeding a switch port7.

7In our simulations the link’s capacity is 10Gbps.

15

4.2 Synthetic-Backbone(SynthBackb) Traffic Generator

Trying to represent as much as possible the Internet backbone traffic, we consider

that it is dominated by two groups of application level “conversations”8: bulk and

interactive conversations [13]. The bulk conversations include applications such as

http page responses or FTP transfers while the interactive conversations include

TELNET-like applications and TCP acknowledgments. We also claim that the traf-

fic going through a backbone router, results by multiplexing the above conversa-

tions.

�
�
�
�

��

�
�
�
�

��������

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

to ingress
line card

FIFO queue
for multiplexing

pair 1

pair 2

packet

100Mbps

10Gbps link

pair M

burst generatorinteractive generator

Figure 5: SynthBackb Generator. The aggregate load of a pair of sources is

100Mbps. For� � ���Mbps load we multiplex M pairs.

So, we developed two traffic generators (sources) that generate the aforemen-

tioned conversations: interactive generator (– IG, generating interactive conver-

sations) and burst generator (– BG, generating bulk conversations). In fig 5 we

demonstrate how we use these generators to feed the switch with realistic traffic:

the traffic arriving at each ingress line-card is generated by multiplexing� distinct

pairs of sources in a FIFO queue. Each pair consists of an IG and a BG.

The synthetic traffic model consists of two layers, namely session and packet

as illustrated in fig 6.

A session contains several packets depending on the application it belongs to.

8We define a conversation to be a stream of packets traveling between the end points of an asso-

ciation.

16

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

���
���
���
���

��
��
��
��

��
��
��
��

������������ �������� ������

�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�

s
e

s
s
io

n
s session intearrival time idle period session size

pkt interarrival time

p
a

c
k
e

t(
p

k
t)

idle period

pkt size

time

time’

IG session
BG session

Figure 6: Synthetic Traffic Model. BG sessions emulate bulk transfers. IG sessions

emulate interactive conversations.

For instance in a www browsing, a (BG) session corresponds to the downloading

or uploading of a www document; the packets within this session form a bursty se-

quence, i.e. are coming back-to-back. On the other hand, a (IG) session correspond-

ing to an application like TELNET consists of small packets which are delimited

by idle periods. Idle periods also delimit sessions and emulate the thinking time of

the application user, that is the thinking time during a TELNET “conversation” or

the time after an http document retrieval [14].

To be more precise, the duration of a session generated by IG and BG follows

the pareto distribution with mean value 125 packets and 8 Kbyte respectively [15].

All sessions are generated according to a Poisson process. Packets within IG ses-

sions vary from 40 to 44 bytes and their interarrival time follows the exponential

distribution. A BG session consists of packets, having the same size –1500 (x%)

or 552 (y%) or 576(z%) bytes– except for the last one; x, y, z9 and the ratio

of rates between IG and BG are selected so that 60% of all generated packets

have size between 40-44 bytes, 18% 552 or 576 bytes, and 18% 1500 bytes. These

analogies seem to characterize the Internet traffic, as many sources of statistics and

many studies on the nature of Internet traffic indicate. Representative studies can

be found in [16]. InSynthBackb generator, each pair of sources has aggregate rate

9x=72.66, y=13.39, z=13.95; refer to Appendix for details.

17

percentage

p
e

rc
e

n
ta

g
e

packet size (bytes)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 200 400 600 800 1000 1200 1400 1600 180

Figure 7: Packet Size Distributions. Percentage.

cumulative percentage

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
ta

g
e

packet size (bytes)

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 180

Figure 8: Packet Size Distributions. Cumulative Percentage. Observe the knees at

the discrete packet sizes 40, 41, 42, 43, 44 and 552, 576 and 1500 bytes.

100 Mbps; so for a M * 100 Mbps load we multiplex M pairs.

Table 1 briefly shows the mathematical distributions while table 2 shows the

values for the parameters of the traffic model. In fig. 7 and 8 we demonstrate re-

18

spectively the percentage and cumulative percentage for the sizes of the packets

belonging to the stream generated bySynthBackb.

Quantity Distribution

Session Size (pkts) Pareto Ditribution

Session Interarrival Time (usec)Exponential Ditribution

Packet Size (bytes) Pareto Ditribution

Packet Interrarival Time (usec) Exponential Distribution

Table 1: Distributions for the Synthetic Traffic Model

4.3 Burst Generator (BurstGen)

In order to evaluate the performance of the switch under extreme conditions we

developed the burst generator (BurstGen). Actually, we isolated the BG of the

SynthBackb generator described in the previous section and considered a single

BG feeding each of the switch ports. In order to vary the load ofBurstGen we

vary the session interarrival times of BG. The load ofBurstGen is equal to:

� �� �
� ��
��"#�����	

�
�����
����� ��
� �	
��������
	
������	�
�	

(2)

where ExtLineRate stands for the capacity of the link feeding a switch port and

MeanBurstSize is equal to 8KBytes.

19

Parameter Value

avg IG pkt size 42 bytes

avg BG pkt size 1032 bytes

avg IG session duration 125 pkts

avg BG session duration 8 Kbytes

IG’s load 6.7 Mbps

BG’s load 93.3 Mbps

IG’s capacity 100Mbps

BG’s capacity 100Mbps

avg IG session interarr. time 128 usec

avg BG session interarr. time 126 usec

avg IG pkt interarr. time 49 usec

Table 2: Parameters’ values for the Synthetic Traffic Model

20

5 Simulation Results

In this section we present the performance evaluation of the proposed architec-

ture via simulation. First, we explicitly study the influence of the Round Trip Time

(RTT) and the buffer size on performance and then we present some experiments

where we measure the delay and throughput of packets crossing the switch, using

the traffic patterns described in session 4. We compare the proposed architecture to

output queuing (OQ), which is the ideal system, to the iSLIP switch, a representa-

tive and efficient example of the unbuffered crossbar family, as well as to buffered

crossbar switching fixed sized cells.

5.1 Simulation Parameters

In all experiments we assumed����� switch with port speed of 10Gbps(LineRate).

For simplicity we considered no internal packet header overhead and thus no inter-

nal speed-up. Our input line-cards and crosspoint buffers implement cut-through

operation while the credit line rate is such that the duration of a credit transmis-

sion equals a minimum packet transmission time [17]. Credits destined to the same

input line-card are sent in FIFO order.

Concerning the RTT between input line cards and switch fabric (see fig. 9), it

results as the sum:

��� � ���� ����� �
�$ � ��$ � ��$� �
%�$ � ��$ � ��$� (3)

where�$ stands for VOQ memory access delay,��$ for input scheduling delay,

��$ for packet propagation delay,%�$ for output scheduling delay,��$ for

credit propagation delay and��$ for credit transmission delay.

Setting the above parameters to the values shown in table 3 we get that the RTT

in our system equals to 500 byte times, corresponding to 400 ns at 10 Gbps line

rate.

21

S

S

RTTi

RTTj

RTTj+RTTiRTT =

MD
ISD

CPD + CTD

PPD

OSD

Figure 9:��� � ���� �����

5.2 On Crosspoint Buffer Size Requirements

In this section we present why the use of crosspoint buffer size equal to��������	
�

��� �
��
 ���
 is a reasonable choice.

5.2.1 Crosspoint Buffer Size less than ��������	
 ���� �
��
 ���

We assume a single, persistent flow, i.e. load is 10 Gbps. For crosspoint buffer size

(") varying from���� to ���� bytes we measure the output utilization as a frac-

tion of 10Gbps. We repeat the experiment for RTT values varying from 250 to 700

byte times. First, (realistic case), we let the packets of the flow being generated by

SynthBackb. Next, we experiment with a worst case scenario where we continu-

ously alternate between packets&� and&� with sizes��, equal to��������	

and��, equal to max("-(��������	
��), ��������	
) bytes;�� and�� have

been selected so that(a) �� is as small as possible, while(b) &� is able to block&�

at the input. Condition(b) creates the necessary condition for underutilization, and

(a) maximizes the duration of this possible underutilization.

Fig. 10 shows that output underutilization occurs for every" less than��������	
�

22

Parameter Value (nsec)

MD 80

ISD 30

PPD 114

OSD 30

CPD 114

CTD 32

Table 3: System Parameters

����
��
 ���
; however, by employing a crosspoint buffer size equal to��������	
�

��� �
��
 ���
 full output utilization is achieved. This happens because if"

equals��������	
 � ��� �
��
 ���
, we impose that&� will be blocked

at the input only if�� is greater than��� �
��
 ���
. But in this case, when

&� will be ready for transmission at the output after receiving&�’s credit (i.e. RTT

times after starting transmitting&�), the output will still be busy transmitting&�,

because its size is greater than��� �
��
 ���
. So, with this buffer size, full

output utilization is guaranteed.

UnderSynthBackb arrivals the knee at crosspoint buffer size��������	
�

��� �
��
 ���
 is also observable (fig. 10), but not as strongly as with the

aforementioned worst-case scenario.

The conclusion is that we have to place crosspoint buffers of at least��������	
�

��� �
��
 ���
 if we want full output utilization to be achieved. In the pro-

posed architecture and in our simulations we assume 2KBytes buffer size (result-

ing as��������	
 � ��� �
��
 ���
, where MaxPktSize=1500 bytes and

RTT=500 byte times).

23

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
crosspoint buffer size

0.7

0.75

0.8

0.85

0.9

0.95

1.05

1

RTT600_mixed
RTT650_mixed
RTT700_mixed

RTT500_mixed
RTT250_mixed

RTT600_wc
RTT650_wc

RTT550_wc

RTT700_wc

RTT500_wc
RTT450_wc
RTT400_wc

RTT300_wc
RTT350_wc

RTT250_wc

o
u

tp
u

t
u

til
iz

a
tio

n
 (

p
e

rc
e

n
ta

g
e

)

Figure 10: Buffer Size Less than��������	
 ���� �
��
 ���
. For buffer

size less than 1500 bytes, all measurements for output utilization are zero. Upper

curves stand forSynthBackb traffic, lower curves for worst case.

a
ve

ra
g

e
 d

e
la

y
(u

se
c)

input load

buffer_size2K
buffer_size4K
buffer_size10K

0

5

10

15

20

25

30

35

40

45

0.9 0.92 0.94 0.96 0.98 1

Figure 11: Buffer Size Greater than��������	
���� �
��
 ���
. Packets’

average delay underPoissPar traffic.

24

a
ve

ra
g

e
 d

e
la

y
(u

se
c)

input load

0

50

100

150

200

250

300

350

400

450

500

0.9 0.92 0.94 0.96 0.98 1

"bufXbar2K"
"bufXbar4K"

"bufXbar10K"

Figure 12: Buffer Size Greater than��������	
���� �
��
 ���
. Packets’

average delay underBurstGen traffic.

5.2.2 Crosspoint Buffer Size greater than ��������	
���� �
��
 ���

Next, we experimented for buffer size greater than��������	
�����
��
 ���

using thePoissPar and BurstGen Generator, assuming all flows are active and

measuring the average delay of packets that cross the switch. Fig 11 and fig 12

show the results. It is observable that under thePoissPar traffic generator we ac-

tually don’t benefit enough in performance by increasing the buffer size. However,

under the extreme conditions of bursty traffic (BurstGen), the performance is bet-

ter when using crosspoint buffers greater than 2Kbytes, especially for loads greater

than 0.94. For instance under load 0.98 we have a reduction in average delay of ap-

proximately 24% when using 10Kbytes buffers rather than 2Kbytes. Additionally,

in non-uniform traffic we also benefit by increasing the crosspoint buffer size. See

below the experiment for unbalanced traffic (fig. 18).

25

5.3 Delay Experiments

5.3.1 Uniform Traffic

Under uniform traffic, the destination port of each session is chosen uniformly; all

packets in a session have the same destination port. The reported delay is the time

between the packet’s first byte exit-time minus the packet’s first byte enter-time,

averaged over all packets; This way we measure only the queuing delay of the

packets. The results are compared to output queuing (OQ) and to the CIOQ using

iSLIP. For iSLIP we consider one iteration, 64 byte segments and various speedup

factors.

We experimented with all traffic generators described in session 4. Fig 14

shows the results we get using thePoissPar generator, while fig. 15 and 16 show

the results for traffic generated bySynthBackb andBurstGen. Observe that for

all traffic patterns the performance of the proposed architecture with a crosspoint

buffer of 2KB is very close to OQ; iSLIP with speedup 2 also performs close to

the ideal system. Especially for the most “interesting” of the traffic patterns, the

SynthBackb, the iSLIP switch with no speedup saturates at input load 0.65; for

speedup equal to 1.2 it saturates near load 0.8.

Fig. 13 presents the packets’ maximum delay for the proposed architecture,

iSLIP and output queuing, under the synthetic traffic pattern. For load 0.9, the

maximum delay is 1 msec for buffered crossbar, 3.5msec for 1-SLIP with speed up

equal to 1.6 and 0.9 msec for OQ.

26

m
ax

 d
el

ay
 (

us
ec

)

input load

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

"bufXbar"
"1−SLIP_1.6x"

"OQ"

Figure 13: Maximum delay that packets suffer under SynthBackb traffic. Compar-

ative results for buffered crossbar, 1-SLIP with speed-up equal to 1.6 and output

queuing

27

a
ve

ra
g

e
 d

e
la

y
(u

se
c)

input load

bufXbar2K

OQ

1−SLIP_1x

1−SLIP_1.2x

1−SLIP_1.4x

1−SLIP_1.6x

1−SLIP_2x

0

5

10

15

20

25

30

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 14: Poisson Arrivals-Pareto Pkt Size Traffic (PoissPar) -Uniformly Selected

Outputs.��� �� switch.

Finally, we measured the standard deviation of delay for the various architec-

tures that we examine, under uniform synthetic traffic. In fig. 17 we observe that

the standard deviation of the dealy for the proposed architecture is always less that

the respective one for i-SLIP, even with a speed-up equal to 2, while it closely

approximates the one for output queuing.

28

100

60

80

40

20

input load

a
ve

ra
g

e
 d

e
la

y
(m

ic
ro

se
co

n
d

)

0.5 0.55 0.6 0.75 0.8 0.85 0.950.9 10.70.65

bufXbar2K

OQ

1_SLIP_2x

1−SLIP_1.6x

1−SLIP_1.4x

1−SLIP_1.2x

1−SLIP_1x

0

Figure 15: Synthetic Traffic (SynthBackb) -Uniformly Selected Outputs.�� � ��

switch.

bufXbar2K

OQ

1−SLIP_2x

1−SLIP_1.2x

1−SLIP_1.4x

1−SLIP_1.6x

input load

av
er

ag
e

de
la

y
(u

se
c)

0

20

40

60

80

100

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.951

Figure 16: Bursty Traffic (BurstGen) - Uniformly Selected Outputs.����� switch.

29

input load

de
la

y’
s

st
an

da
rd

 d
ev

ia
tio

n

0

50

100

150

200

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.951

"bufXbar2K"
"OQ"

"1−SLIP_1x"
"1−SLIP_1.2x"
"1−SLIP_1.4x"
"1−SLIP_1.6x"

"1−SLIP_2x"

Figure 17: Delay’s Standard Deviation. Comparative results for buffered crossbar,

1-SLIP with various speed-up factors and output queuing.

30

5.3.2 Non-Uniform Traffic

First we experimented with unbalanced traffic, considering the traffic scenario de-

scribed in [18]. According to this scenario, there is an unbalance factor' , such that

input � sends to output� with probability' , and to all other outputs uniformly with

collective probability�� ' .

bufXbar4K

bufXbar8K

bufXbar3K

bufXbar2K

bufXbar1.5K

sw
ic

th
 t
h

ro
u

g
h

p
u

t
(p

e
rc

e
n

ta
g

e
)

0.95

1

0.9

0.85

0.8

0.75

0.7

0.55

0.6

0.65

10.90.80.70.60.50.40.30.20.1

1−SLIP_1x

unbalanced factor, f

Figure 18: Unbalanced Traffic.��� �� switch. Load is 100%. For crossbar, buffer

size is 1.5K, 2K, 3K, 4K and 8K.

In this experiment we usePoisPar arrivals model and we assume all flows are

active. We measure the switch throughput as a fraction of the maximum possible

one (320 Gbps). For iSLIP (1 iteration, 64 bytes segment, speed-up equal to 1.0)

packets have sizes equal to����()�
� (� integer), so as to eliminate segmentation

overheads.

Even under this assumption, we find (see fig. 18) that the CICQ architecture

with variable-size packets considerably outperforms the CIOQ (iSLIP) switch.

With 2KB crosspoint buffer size, the worst switch throughput under this scenario,

for the buffered crossbar is 0.90 versus 0.58 for the iSLIP switch.

Next, we experimented under hotspot traffic, using the traffic generatorSyn-

thBackb. For hotspot traffic, each destination belonging to a designated set of

31

“hotspots” receives traffic at���
 collective load, uniformly from all sources;

the rest of the destinations receive uniform traffic. Without loss of generality, we

assume that the hotspots are ports 0, 1, 2 and 3 [19]. The reported delay is the time

between the packet’s first byte exit-time minus the packet’s first byte enter-time,

averaged over all packets destined to non-hotspot outputs.

Fig. 19 shows the performance evaluation for buffered crossbar, versus iSLIP

and output queuing while fig. 20 shows the comparative results for uniform and

hotspot traffic.Under hotspot traffic, in the buffered-crossbar system, we observe

that non-hotspot traffic stays unaffected by the presence of hotspots (the uniform

and the hotspot plots actually match), due to the isolation/protection that is pro-

vided to flows (input/output pairs) by the crossbar/queuing architecture. On the

other hand, when we apply hotspot traffic to the iSLIP switch, all flows’ perfor-

mance degrades considerably due to the absence of any flow control.

0

100

80

60

40

20

input load to non hotspot

10.950.90.850.80.750.70.650.60.550.5

bufXbar2K
1−SLIP_2x

OQ

1−SLIP_1.6x

1−SLIP_1.4x

1−SLIP_1.2x

a
ve

ra
g

e
 d

e
la

y
(m

ic
ro

se
c)

Figure 19: Hot-spotted SynthBackb traffic. Comparative results for buffered cross-

bar, 1-SLIP with various speed-up factors and output queuing.

32

1−SLIP_1.2x_hotspot

1−SLIP_1.2x_uniform

bufXbar2k_hotspot

bufXbar2K_uniform

a
ve

ra
g

e
 d

e
la

y
(u

se
c)

input load to non hotspot

0

20

40

60

80

100

120

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.951

Figure 20: Comparative results for uniform and hot-spotted SynthBackb traffic.

33

5.4 v-bufXbar vs. s-bufXbar

We compare the buffered crossbar switch natively supporting variable sized packets

(v-bufXbar) to the one switching fixed sized cells (s-bufXbar). For s-bufXbar we

considered 64-byte segments. Fig 21 shows the average delay that packets suffer

in v-bufXbar and s-bufXbar underSynthBackb traffic. S-bufXbar needs speed-up,

due to segmentation overheads, to perform as v-bufXbar. This speed-up is at least

1.1.

input load

a
ve

ra
g

e
 d

e
la

y(
u

se
c)

0

20

40

60

80

100

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

"bufXbar_2K"
"s−bufxbar_1x"

"s−bufxbar_1.1x"
"s−bufxbar_2x"

"OQ"

Figure 21: s-bufXbar vs. v-bufXbar. s-bufXbar needs speed-up 1.1.

5.5 Fabric Size Dependence of Performance

In switch design it is desirable for the performance not to degrade when we increase

the fabric size. We run simulations for various switch sizes and we concluded that

for the proposed architecture the performance is not affected by the fabric size. As

fig. 22 shows, for fabric sizes�����, �����, ����� and������� the respective

delay plots match. On the contrary, for the iSLIP switch the performance degrades

when increasing the switch size, for loads greater that 0.7; we can observe this

phenomeno in fig. 22 where we consider speed-up equal to 1.6 and one iteration.

34

bufXbar2K_16x16_32x32_64x64_128x128

input load

av
er

ag
e

de
la

y
(u

se
c)

0

5

10

15

20

25

30

35

40

45

50

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

"1−SLIP_1.6x_16x16"
"1−SLIP_1.6x_32x32"
"1−SLIP_1.6x_64x64"

Figure 22: Fabric Size Dependence of Performance. For buffered crossbar the plots

match.

In fact, iSLIP normally requires���� iterations, where� is the switch size, to

produce near full matches. So, in the case we have a�� � �� switch we need 6

iterations, which translates to scheduling time approximately equal to 60 nsec10,

obviously unfeasible for the 10 Gbps link speed.

101 iteration can be performed in approximately 10 nsec [20]

35

6 Conclusion

We presented an extensive performance evaluation via simulation of a buffered

crossbar directly operating on variable sized packets. We showed for various traffic

patterns that the buffered crossbar architecture outperforms the iSLIP switch with

speed-up less than two and performs very close to the ideal output queuing. Con-

cerning the buffered crossbar architecture we presented why we need a crosspoint

buffer size of at least��������	
 � ��� �
��
 ���
 bytes and the general

influence of buffer size on performance.

36

References

[1] T. Anderson, S. Owicki, J. Saxe, C. Thacker: “High-Speed Switch Scheduling

for Local-Area Networks”,ACM Trans. on Computer Systems, vol. 11, no. 4,

Nov. 1993, pp. 319-352.

[2] R. LaMaire, D. Serpanos: “Two-Dimensional Round-Robin Schedulers for

Packet Switches with Multiple Input Queues”,IEEE/ACM Trans. on Net-

working, vol. 2, no. 5, Oct. 1994, pp. 471-482.

[3] N. McKeown: “The iSLIP Scheduling Algorithm for Input-Queued

Switches”,IEEE/ACM Trans. on Networking, vol. 7, no. 2, April 1999, pp.

188-201; http://tiny-tera.stanford.edu/�nickm/papers/ ToNApril 99.pdf

[4] Cyriel Minkenberg, e.a.: “Current Issues in Packet Switch Design”,HOT-

NETS, NJ, USA, October 2002.

[5] D. Stephens, H. Zhang: “Implementing Distributed Packet Fair Queueing in a

scalable switch architecture”,Proc. INFOCOM’98 Conf., San Francisco, CA,

March 1998, pp. 282-290.

[6] N. Chrysos, M. Katevenis: “Weighted Fairness in Buffered Crossbar Schedul-

ing”, Proc. IEEE Workshop High Perf. Switching & Routing (HPSR 2003),

Torino, Italy, June 2003, pp. 17-22; http://archvlsi .ics.forth.gr/bufxbar/

[7] M. Katevenis, G. Passas, D. Simos, Y. Papaeystathioy, N Chrysos: “Variable

Packet Size Buffered Crossbar Switches” , ICS-FORTH, September 2003.

http://archvlsi.ics.forth.gr/bufxbar

[8] S. Nojima, E. Tsutio, H. Fukuda, M. Hashimoto: “Integrated Services Packet

Network Using Bus Matrix Switch”,IEEE J. Sel. Areas in Communications,

vol. 5, no. 8, October 1987, pp. 1284-1292.

[9] M. Nabeshima: “Performance Evaluation of a Combined Input and Cross-

point Queued Switch”,IEICE Trans. Commun., vol. E83-B, no. 3, Mar. 2000,

pp. 737-741.

37

[10] T. Javidi, R. Magill, and T. Hrabik: “A High-Throughput Scheduling Algo-

rithm for a Buffered Crossbar Switch Fabric”Proc. IEEE Int. Conf. on Com-

munications (ICC’2001), Helsinki, Finland, June 2001, vol. 5, pp. 1586-1591.

[11] N. Chrysos: ”Design Issues of Variable-Packet-Size, Multiple-Priority

Buffered Crossbars”,Technical Report FORTH-ICS/TR-325, Inst. of

Computer Science, FORTH, Heraklion, Crete, Greece, October 2003.

http://archvlsi.ics.forth.gr/bufxbar

[12] Ross, S. “Simulation”. Academic Press, San Diego, California, second edi-

tion, 1997.

[13] Ramon Cáceres e.a. : “Characteristics of Wide-Arrea TCT-IP Conversations”

ACM SIGCOM, 1991

[14] Trung Nguyen e.a. : “Computer Modelling of 3G Cellural Traffic”Telecom-

munications and Microelectronics Centre, Victoria University

[15] Bruce A. Mah: “An emprical Model of HTTP Network Traffic”,INFO-

COM’97

[16] “Cooperative Association for Internet Data Analysis”; http://www.caida.org

[17] Ferdinand Gramsamer e.a.: “Flow Control Scheduling” , revised and ex-

tended version ofICCCN 2002, Oct. 14-16, Miami, FL, pp438-443

[18] R. Rojas-Cessa, E. Oki, and H. Jonathan Chao: “CIXOB-k: Combined Input-

Crosspoint-Output Buffered Switch”,Proc. IEEE GLOBECOM, 2001, vol. 4,

pp. 2654-2660.

[19] G. Sapountzis, M. Katevenis: “Benes Switching Fabrics with O(N)-

Complexity Internal Backpressure”,Proc. IEEE Workshop High Perf.

Switching & Routing (HPSR 2003), Torino, Italy, June 2003, pp. 11-16;

http://archvlsi.ics.forth.gr/bpbenes/

38

[20] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, I. Iliadis: “A Four-Terabit

Packet Switch Supporting Long Round-Trip Times”,IEEE Micro Magazine,

vol. 23, no. 1, Jan./Feb. 2003, pp. 10-24.

[21] N. Ni, L. N. Bhuyan: “Fair scheduling for Input Buffered Switches”, cite-

seer.nj.nec.com/482342.html

[22] P. Krishna, N. Patel, A. Charny, R. Simcoe: “On the Speedup Required for

Work-Conserving Crossbar Switches”,IEEE J. Sel. Areas in Communica-

tions, vol. 17, no. 6, June 1999, pp. 1057-1066.

[23] M. Katevenis: “Fast Switching and Fair Control of Congested Flow in Broad-

Band Networks”,IEEE J. Sel. Areas in Communications, vol. 5, no. 8, Octo-

ber 1987, pp. 1315-1326.

[24] K. Yoshigoe, K. Christensen: “A Parallel-Polled Virtual Output Queued

Switch with a Buffered Crossbar”,Proc. IEEE Workshop High Perf. Switch-

ing & Routing (HPSR 2001), Dallas, TX, USA, May 2001, pp. 271-275;

http://www.csee.usf.edu/�christen/hpsr01.pdf

[25] N. Chrysos, M. Katevenis: “Multiple Priorities in a Two-Lane Buffered

Crossbar” , ICS-FORTH, September 2003. http://archvlsi.ics.forth.gr/bufxbar

[26] Quantum Flow Control (QFC) Alliance:“Quantum Flow Control: A cell-

relay protocol supporting an Available Bit Rate Service”, version 2.0,

July 1995; originally at http://www.qfc.org but no longer there –copy at

http://archvlsi.ics.forth.gr/�kateveni/534/qfc/

[27] G. Kornaros e.a.: “ATLAS I: Implementing a Single-Chip ATM Switch

with Backpressure”,IEEE Micro, vol. 19, no. 1, Jan/Feb. 1999, pp. 30-41;

http://archvlsi.ics.forth.gr/atlasI/hoti98/

39

Distributions Used

(a) Pareto Distribution.

�$* � '
�� �
�

(

(

�
�
	� (4)

�$* � *
�� � ��

(

�
�
 (5)

�
�� � !
�� �
�(

�� �
(6)

+ �����,
 � + ��
�� �
�(�

�� ���
�� ��
(7)

(8)

p
ro

b
a

b
ili

ty
 d

is
tr

ib
u

ti
o

n

value stochastic variable

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70

Figure 23: Pareto Distribution. b=10, a=5.

40

(b) Exponential Distribution.

�$* � '
�� � �
�
� (9)

�$* � '
�� � ��
�
� (10)

�
�� � !
�� �
�

�
(11)

+ �����,
 � + ��
�� �
�

��
(12)

(13)

value stchastic variable

p
ro

b
a

b
ili

ty
 d

is
tr

ib
u

ti
o

n

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 24: Exponential Distribution. a=3.

41

Generating Discrete Random Variables

We adopt the Inverse Transform Method to generate a discrete random variable,

having a specific distribution function* . According to this method, we generate

a random number#, uniformly distributed over
�� �� and then compute the value

*��
#�, which is the desirable random variable. We mention here that for the ran-

dom number generation we used the nrand48 function from the math.h standard C

library.

Applying the method, described above, we get that a Pareto random variable

is obtained by the formula(
 �
����
��� �

�

� while an Exponential Random Variable is

obtained by�����
���

.

Computing the Traffic Parameters

Suppose that IG’s and BG’s load is�,) Mbps respectively. Then

��) � ��� (14)

In a time interval equal to 1sec, IG has generated on average���
�
���� packets, since

its average packet size is 42 bytes, and let� be the number of packets generated on

average by BG. Then approximately�-� packets have size 1500,�-� 552 and�-�

576 bytes. It holds that:

�

�
� ���� �

�

�
� ��� �

�

�
� ���� � � �) � ��
 � (15)

� �
) � ��

����
(16)

It also holds that the number of packets having size 40-44 bytes is near 64/18 times

greater than the respective one for packets with size 1500 bytes:

���
�
����
�
�

�
��

��
(17)

From eq. 16 and eq. 17 we get that:

�

)
� ����� (18)

42

Eq. 14 and eq. 19 yield that� � ����(&� and) � �����(&�.

IG transmits on average 125 packets every approximately

��� � & ���
���� �� � ���
���� � (19)

times, resulting to a transmission rate

��� � �� � �

��� � & ���
���� �� � ���
���� �
(20)

which must equal 6.7 Mbps;& ���
���� � denotes the mean IG’s packet interar-

rival time and� ���
���� � denotes the mean IG’s session interarrival time. Setting

& ���
���� � to 49 usec, it follows that� ���
���� ���
 equals 128usec.

BG’s sessions are on average of size 8KB. Suppose that under probability x%,

y%, z% the transfer is fragmented to packets with size 1500, 552, 576 bytes re-

spectively. As a result there are generated� � �, �� �), �� � 	 packets of size 1500,

552, 576 bytes respectively. It must hold that :
����
���

��) � 	 � ���

� � � � � � �� �)

� � � � � � �� � 	

so,� � �����,) � ����� and	 � �����.

43

scheduler
centralized

input
module

input
module

input
module

output
module

output
module

output
module

grants

requests

input link

output link

configuration

output module

input module

requests

grants

VOQ 0

VOQ 1

VOQ N−1

SOutQ 1

OutQ N−1

OutQ 0

Figure 25: CIOQ architecture using the iSLIP centralized scheduler.

The CIOQ Architecture Using iSLIP

Fig. 25 indicates the simulated CIOQ architecture: Virtual Output Queuing is adopted

at inputs, memories are placed at outputs and a centralized scheduler finds the con-

figuration matrix by performing the iSLIP scheduling algorithm. Variable sized

packets are transfered from inputs to outputs in fixed-size segments.

Particularly, we consider that when a packet arrives at an input port, it is frag-

mented to 64-byte segments which are enqueued to the corresponding VOQ11.

Whenever a VOQ (i,j) is not empty it sends a request to the centralized sched-

uler, which selects among the VOQs the ones to be granted and sends the grants

to these VOQs, thus specifying the configuration matrix. Each granted VOQ(i,j) is

dequeued and its head packet is forwarded to the queue� of output�. We mention

11This operation introduces no delay.

44

here that in the simulated system, the output memories are partitioned in� queues

(OutQ�, � �
�� � ���) of infinite size and each OutQ� of the output� is assigned

to the VOQ(�,�), � �
�� � � ��. These queues serve as reassemble buffers.

At each output� resides a scheduler; it keeps checking for reassembled packets

at the queues of the output� and selects in RR way between that queues the next

reassembled packet to be sent over the output link.

Concerning the centralized scheduler, it performs the iSLIP scheduling algo-

rithm with one iteration. We have taken its description from [3] and we repeat it

below:

Step 1. Request. Each input sends a request to every output for which it has a

queued cell.

Step 2. Grant. If an output receives any requests, it chooses the one that appears

next in a fixed, round-robin schedule starting from the highest priority element. The

output notifies each input whether or not its request was granted. The pointer to the

highest priority element of the round-robin schedule is incremented (modulo N) to

one location beyond the granted input if and only if the grant is accepted in Step 3.

Step 3. Accept. If an input receives a grant, it accepts the one that appears next

in a fixed, round-robin schedule starting from the highest priority element. The

pointer to the highest priority element of the round-robin schedule is incremented

(modulo N) to one location beyond the accepted output.

The simulator for the iSLIP switch is based in the same event-based archi-

tecture described in section 3. However, we had to alter the events used for the

buffered crossbar simulator. In the case of the iSLIP switch, the basic event types

are:

- PACKET AT INPUT : notifies that a packet has arrived at an input port.

- INPUT SCHEDULING COMPLETED : signals the end of the scheduling

operation of the centralized scheduler.

- INPUT START SCHEDULING : signals the beginning of the scheduling

operation of the centralized scheduler.

45

- SEGMENTTRANSFERTO OUTPUT COMPLETED : notifies that a seg-

ment has been transfered to a reassemble buffer.

- REASSEMBLY COMPLETED : notifies that all the segments of a packet

have been transfered to a reassemble buffer.

- TOTAL TRANSFERCOMPLETED : notifies that a (reassembled) packet

has totally left the switch.

Note that for the request/grant operation we do not consider any events. Instead we

assume that the request/grant dealy is included in the scheduling delay.

Concerning the states machines of the schedulers, we present them below:

IDLE

TO_SCHEDULE

P
A

C
K

E
T

_
A

T
_

IN
P

U
T

a
ll

in
p

u
t

flo
w

s
in

e
lig

ib
le

e
lig

ib
le

 f
lo

w

E

SCHEDULING

BUSY

S
G

M
N

T
_

T
R

S
F

R
_

T
O

_
O

U
T

P
U

T
_

C
M

P
L

E
T

E
D

R
E

A
S

S
E

M
B

L
Y

_
E

N
D

E
D

IDLE

TO_SCHEDULE

SCHEDULING

BUSY

T
O

T
A

L
_

T
R

S
F

R
_

C
M

P
L

E
T

E
D

a
ll

o
u

p
u

t
flo

w
s

in
e

lig
ib

le

e
lig

ib
le

 f
lo

w

E

FSM for the centralized scheduler FSM for the output scheduler

Figure 26: The FSMs for the schedulers in the simulated CIOQ architecture.

For the input scheduler a flow is eligible if it is non empty. For the output

scheduler a flow is eligible if it contains at least one reassembled packet.

46

