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Abstract— One of the most widely used architectures for
packet switches is the crossbar. A special version of a it is the
buffered crossbar, where small buffers are associated with the
crosspoints. The advantages of this organization, when compared
to the unbuffered architecture, is that it needs much simpler
and slower scheduling circuits, while it can shape the switched
traffic according to a given set of Quality of Service (QoS)
criteria in a more efficient way. Furthermore, by supporting
variable length packets throughout a buffered crossbar: a) there
is no need for segmentation and reassembly circuits, b) no
internal speedup is necessary, and c) synchronization between
the input and output clock domains is simplified. In this paper
we present an architecture, a hardware implementation analysis,
and a performance evaluation of such a buffered crossbar.
The proposed organization is simple, yet powerful and can be
easily implemented using today’s technologies. Our evaluation
shows that it outperforms most of the existing packet switch
architectures, while its hardware cost is kept to a minimum.

1 . INTRODUCTION

The crossbar is the simplest and most popular organization
for high performance (internally non-blocking) switches; it is
also the building block for switching fabrics. Most of the
crossbars considered in the literature, and the most widely
known crossbars in commercial products, are unbuffered, as
shown in figure 1(a). However, buffered crossbars, as in figure
1(b), have significant advantages. One advantage that has
received little attention up to now is that buffered crossbars
can operate directly on variable-size packets, i.e. without
requiring segmentation and reassembly (SAR). Coupled with
the simplicity and effectiveness of scheduling, this eliminates
the need for crossbar speedup. The lack of speedup and of
packet reassembly, in turn, remove the requirement for output
queues and egress buffer memories. Speedup and buffering are
major contributors to cost, hence variable-packet-size buffered
crossbars have the potential of significantly lowering the cost
of packet switches and routers. This paper reports novel
organization, cost, and performance figures for such crossbars.

Unbuffered crossbars tolerate no output conflicts: informa-
tion entering on different inputs must be destined to different
outputs at all times. To operate efficiently under this constraint,
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Fig. 1. 3�3 crossbar example: (a) unbuffered, (b) buffered

all crosspoint configurations (all control signals in fig. 1(a))
have to change in synchrony; input queues have to be organized
per-output (VOQ - virtual output queues); and the crossbar
scheduler has to solve a bipartite graph matching problem
[1] [2] [3]. Synchronous operation introduces at least two
overheads: (i) variable-size packets have to be segmented into
fixed-size cells before entering the crossbar; and (ii) cells
entering a crossbar chip through links operating in different
clock domains have to be synchronized before being switched.
Crossbar schedulers, on the other hand, are the source of
at least two inefficiencies: (i) when the cell time is short,
they cannot practically achieve both high throughput and low
latency; and (ii) it is very hard for them to provide weighted
fair queueing (WFQ) quality of service (QoS) [4].

To cope with the segmentation overhead and the scheduler
inefficiencies of unbuffered crossbars, switches and routers use
internal speedup [5] –often by a factor of two to three in
commercial products.1 This speedup is very expensive: today,
the crossbar chip power consumption is often the limiting
factor for the aggregate performance of the system, and power
consumption translates directly into (mostly I/O) throughput.
Thus, a router that uses e.g. a speedup of two usually ends
up providing only half of the aggregate line throughput that it
could otherwise offer. Additionally, the use of speedup brings
the need for output queues (CIOQ - combined input-output
queueing); their size can grow considerably, hence the egress
path on the line cards has to provide expensive, off-chip buffer
memory.

1For example, to handle a sequence of 65-byte back-to-back packets, a
64-byte-cell system would need a speedup of at least ������ � �.
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Buffered crossbars suffer none of the above overheads or
inefficiencies. Their properties stem from their capability to
tolerate output conflicts: information entering on different
inputs can be destined to any output, because it does not
have to be delivered to that output right away –it can be
buffered at the relevant crosspoints. This greatly simplifies
scheduling: input transmissions can be decided independent
of each other and independent of output transmissions. The
N� buffers of an N�N crossbar would be too expensive if
they had to be large enough for all packets to be queued
in them. Instead, as in figure 1(b), it is better to provide
small crosspoint buffers “backed up” by VOQ’s in large input
buffers –hence the name Combined Input-Crosspoint Queueing
(CICQ); backpressure control (not shown in the figure) ensures
that the small buffers do not overflow. Small buffers and
feedback control provide coupling among the N –otherwise
independent– input schedulers and the N output schedulers:
although short-term output conflicts are tolerated, the traffic
pattern has to be feasible (admissible) in the long run. Hence,
essentially, crosspoint buffering allows scheduling to solve
the bipartite graph matching problem in an approximate and
long-term way, rather than the exact and short-term solution
required by unbuffered crossbars.

Scheduler independence removes the requirement for syn-
chronized decisions, thus also removing the need for fixed-size
cells and synchronization to a common clock. Additionally, the
loosely-coupled input and output schedulers are able to find
very efficient long-term solutions to the crossbar scheduling
problem, with capability for advanced QoS, without requiring
speedup [6] [7] [8] [9] [10]. These facts allow significant
cost reductions, since they eliminate the need for speedup
and egress buffering.2 Although advantageous, the buffered
crossbar architecture was not very popular in products, due
to the difficulty, in the past, to integrate large amounts of
memory on the crossbar chip. With the progress of semicon-
ductor technology, however, we are today at the point where
enough buffer space can be placed on these chips. Thus, we
consider buffered crossbar as the architecture of choice for the
switching components of the coming years, for port counts up
to about 32 to 128.

This paper studies buffered crossbars that operate directly on
variable size packets. Although a number of previous studies
explored fixed-size-cell buffered crossbars, very little work has
been done up to now on variable packet size operation. We
review this previous work and point out the novelty of our
results in section 2. Section 3 discusses the organization and
operation of variable-packet-size buffered crossbars, and gives
hardware cost metrics for them. In particular, we discuss cross-
point queue organization, inter-clock domain communication,
cut-through operation, scheduler placement, and backpressure
format; then, we give gate count, silicon area, and power
consumption estimates. Section 4 evaluates the performance
of the crossbars under consideration, using simulation; input

2Egress buffering will still be needed for the ports that drive multiple output
sub-ports each.

loads include realistic network traffic, as well as some worst-
case scenaria. We show that a reasonable crosspoint buffer size
is approximately one maximum-size packet plus one round-
trip-time (RTT) window, and we demonstrate the superior
performance of buffered crossbars without speedup relative
to unbuffered ones with considerable speedup.

2 . PREVIOUS WORK

Buffered crossbar proposals date at least as far back as
1987: Nojima e.a. [11] described a “bus matrix” switch with
buffers only at the crosspoints (no input buffers), operating
on variable-size packets; we [12] proposed a switch with
small crosspoint buffers, large input buffers, and backpressure
between them (figures 10-13). Recently, with the availability
of technology for single-chip buffered crossbars, a number
of groups studied fixed-size-cell buffered crossbars –see e.g.
[7] [8] [13] and our previous work [9] [10]; from industry,
a representative example is [14]. This paper differs from the
above in that we consider buffered crossbars directly operating
on variable-size packets. To the best of our knowledge, there
have been only two previous studies on this topic: (i) Stephens
and Zhang [6]; and (ii) Yoshigoe and Christensen [15] [16].

Our present work differs from these studies in the following
ways. Firstly, we consider the hardware implementation of
such crossbars: section 3 discusses a number of issues and
gives cost estimates (gates, area, power); the only other
hardware study, [16], concerns a relatively low-end FPGA-
based system, and does not discuss the internals of the crossbar
chips at all. Secondly, our performance evaluation is more
comprehensive than previous studies, as explained below.

Stephens and Zhang [6] consider variable-size internal
packets, but limit their length up to twice the minimum
packet size, i.e. up to 80 bytes); larger external packets are
still segmented. Also, [6] only simulates a 4�4 switch, with
one specific crosspoint buffer size, under one specific traffic
scenario (which contains traffic of different QoS classes,
with three specific packet sizes, and an aggregate load in
excess of 100 %). While this simulation demonstrates the
excellent properties of buffered crossbars with appropriate line
schedulers, we simulate a 32�32 switch under a much wider
spectrum of traffic scenaria, and we compare our results to
unbuffered crossbars with various speedup factors.

Yoshigoe and Christensen [15] evaluate the performance
of the buffered crossbar only for crosspoint buffer size of
1500 bytes, without specifying the backpressure RTT, while
we explicitly study the dependence of performance on the
relative sizes of these two parameters. Next, [15] simulates
variable-size packets only in one experiment (#3), using
Poisson arrivals with uniformly selected outputs, while our
traffic mix closely represents internet backbone traffic, and
we examine non-uniform destinations and hot-spot scenaria
too. In addition, we show that it is trivial for the crossbar
to provide cut-through operation, and we use cut-through in
our simulations. Note that we do not consider multi-priority
traffic in this paper (as [15] does), due to lack of space, but a
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Fig. 2. (a) Clock domains, (b) crosspoint logic

companion paper [17] does consider that topic at great depth
(also refer to [18]).

3 . INTERNAL ORGANIZATION AND COST

We discuss implementation issues for variable-packet-size
buffered crossbars, and we estimate the silicon cost per com-
ponent.

3.1. Crosspoint Logic and Inter-Clock Communication

Buffered crossbars allow a simple separation among the
clock domains in the switch. By placing their boundaries in
the crosspoint switches, as shown in figure 2(a), we eliminate
elastic buffers at the chip inputs; this reduces latency and
power consumption, because each word of packet payload is
only written once into and read once out of a memory during
its transition through the chip.3

Figure 2(b) shows the entire logic of each crosspoint –
the reader will appreciate the simplicity of the architecture.
Packets arrive through the w-bit bus; transceiver logic at the
input of the chip asserts sop (start-of-packet) in the proper
clock cycle. We assume that the first word of each packet
contains a multicast bitmap, specifying the crosspoints where
the packet should be enqueued: enqueueing is activated when
both sop and the appropriate bit of the bus are ON, and it
is terminated when the input transceiver asserts eop (end-
of-packet). Buffer overflow does not need to be checked,
because the flow control protocol ensure it will never happen.
In the baseline architecture, shown in fig. 2(b), each crosspoint
contains a single FIFO queue (see [17] for other cases); hence,
enqueue addresses are generated by a single counter.

We assume that the length of the packet appears in one of
the first words of the packet (3rd and 4th bytes, for IP) and
is written into the buffer. Then, the only inter-clock domain
communication needed is for the output to be notified every
time a new packet arrives –the packet length will be found
in the FIFO. This notification is accomplished by raising a
flag, newPacket, which gets synchronized to the output clock;

3This requires 2-port crosspoint buffers. Two-port SRAM’s are more
expensive than one-port memories of the same width; however, the second
port is also needed for throughput purposes. If crosspoint buffers were made
of 1-port SRAM, they would require twice the data bus width, thus again
increasing their cost, and increasing the fragmentation overhead for packets
whose size is not an integer multiple of the new width.

when the output sees newPacket, it increments a counter (not
shown) and resets the flag (before the minimum-size packet
duration elapses). The counter mentioned stores the number of
packets that are currently enqueued in this crosspoint. When
the output decides to dequeue a packet from this crosspoint,
it decrements that counter, and it raises deq for the proper
number of cycles (determined by the packet length read out
of the FIFO). Buffer underflow does not need to be checked,
because the input always writes entire packets into the buffer.

3.2. Cut-through, Output Scheduling

We just saw that the output is notified of a packet arrival one
synchronization delay after packet enqueueing starts. If this is
the only packet in the buffer, and if the output scheduler so
decides, it may start dequeueing the packet right away, thus
providing cut-through operation, in order to reduce latency.
Cut-through will work correctly as long as the output clock
frequency does not exceed the input clock frequency by more
than the synchronization delay divided by the maximum-size
packet duration.

Each output port must have a scheduler, which can be
as simple or as sophisticated as desired. The inputs to each
scheduler are the packet counts for the buffers of its column;
notice, however, that buffer occupancies in terms of bytes are
not known, because enqueue and dequeue pointers are in dif-
ferent clock domains and cannot be subtracted from each other.
In this paper we assume plain round-robin output schedulers
(oblivious of packet size): serve the next crosspoint with a
non-zero packet count, following the last-served crosspoint in
circular order.4 For fancier output schedulers see [9] [17] [20].

3.3. Input Scheduling and Credit Flow Control

On its input side, a buffered crossbar chip communicates
with the ingress line cards that contain the VOQ’s (figure
1(b)). A scheduler per port selects the VOQ from which
the next packet will be forwarded to the crossbar; eligible
VOQ’s are those that (a) are non-empty, and (b) will not cause
their corresponding crosspoint buffer to overflow. If these
schedulers were placed in the crossbar chip, they would have
inexpensive and fast access to crosspoint buffer occupancy
information, but (i) these schedulers would add to the cost
of the crossbar chip; (ii) ingress line cards would need to
communicate to the crossbar the size of the head packet of
each VOQ5; and (iii) the scheduler’s decision would need
to travel to the line card before the next packet can depart
from the line card to the crossbar, effectively increasing the
scheduler’s latency.

Instead, it is preferable to place input schedulers in their
corresponding ingress line cards. We then need to communi-
cate the occupancy of the crosspoint buffers from the crossbar
to the line cards. The easiest method to do that is to notify

4We use a circular priority encoder built out of two simple (linear) encoders:
one of them looks at the eligibility flags after masking out the last-served and
all previous inputs, and the other one looks at all flags from the beginning.

5One message every time a VOQ is served, plus one message every time
a packet arrives into an empty VOQ.

c� ICS-FORTH, SEP. 2003 3



the line card every time a packet departs from the crossbar.
The notification (credit) must specify the output port of the
departure, but does not need to specify the packet size: the
line card can remember the sizes of all the packets that it
has recently sent to the crossbar [18]. Thus, the only module
needed on the input side of the switch chip is the generator of
the sop and eop signals in fig. 2(b), henceforth called enqueue
controller (enqC).

We opted for credit-based flow control, rather than the
popular start/stop flow control, because the latter requires an
additional RTT-window (plus a hysteresis safety margin) of
buffer space per crosspoint. A non-empty VOQ is eligible
when the size of its head packet does not exceed the credit
count of its desired output port. Choosing among the eligible
VOQ’s is an issue of QoS support, outside the scope of this
paper; in our simulations (sec. 4) we assumed round-robin
input scheduling.

3.4. Error Resilience of the Flow Control Mechanism

The above work fine as long as no packet length field and
no credit message ever gets corrupted; one such corruption,
however, suffices for the system to perform erraticly from that
point on forever. This must be amended. For packet length, an
error detection code in the packet can be used to trigger error
recovery actions (reset FIFO pointers and credit count). Better
yet, link-level encoding may provide off-band control signals;
in this case, one or more “idle” (packet separator) symbols
between successive packets will allow the system to recover
from packet-boundary errors on the next uncorrupted separator
symbol.

For credit messages, error tolerance is provided by QFC-
like protocols [21]: the credit semantics are changed from “the
next packet has just left” to “the total, cumulative number of
packets that have left up to now, modulo �k, is equal to . . . ”.
Because credits now contain cumulative information, (i) we do
not need to send one credit for every packet; and (ii) even if
some credits get lost, the next arriving credit carries cumulative
information from past ones too –we just need to ensure that
at least one credit will safely arrive for every �k departing
packets, i.e. before the count wraps around.

We assumed a credit size of 2 bytes: 5 bits for out-port
ID (for a 32�32 chip), k = 3 to 6 bits for the packet count,
1 to 3 bits for error detection, and 1 or 2 bits for priority
[17]. We assume that credits are transmitted on dedicated
links, as shown in figure 2(a) –not by time-sharing the packet-
out links leading to the line cards– because our experience
from the ATLAS I switch chip [22] showed that this greatly
simplifies the design. The average load on a credit link cannot
exceed one credit per minimum-size packet time; however,
credits can be generated at up to 32 times higher rate (32�32
chip), due to packets departing at about the same time to
different output ports. Our simulations assume credit links
of throughput 1 credit per 40 byte times, fed by a FIFO
queue for pending credits. In the implementation, to avoid
the cost of the (rather large) queue, we exploit the property of
QFC-like protocols: even if some credits are not transmitted,

the next credit carries enough cumulative information. Thus,
our implementation maintains 32 counters (k bits each) per
input, counting packet departure (credit generation) events
each; we circularly visit the counters that have changed since
last visited, and transmit their ID and their value. Even if
all counters change, each is guaranteed to be visited every 32
credit times; as long as this is less than �k�� minimum-packet
times, no credit information will be lost (�k�� rather than �k

takes care of occasional corrupted transmissions). When idle,
we circularly transmit the unmodified counter values, for error
resiliency purposes.

3.5. Silicon Cost Estimates

Table I shows gate, flip-flop, SRAM, area and power con-
sumption cost for a 32�32 buffered crossbar chip in UMC
0.18�m [23] and 0.13�m low power [24] CMOS technology.
Area cost includes wiring.6 The internal Datapath width of
the device is 32 bits, per port. Periphery cost (I/O pads,
transceivers, SERDES) is only included for power consump-
tion, using estimates based on [14], while we also assume that
the 32�32 switch uses 8 differential pairs for every input or
output link and 1 differential pair for the credit line. In order
to measure the silicon area and the power consumption of the
core the cicrcuit was designed using the Verilog Hardware
Description Language and synthesized using Synopsys[25];
we are currently in the process of placement and routing. The
functionality of the final netlist has been partially verified,
using the simulator of the next section as the verification gold
model; in a future report, we will include a description of the
full verification process.

The lines of Table I refer to: crosspoint datapath (XPD);
crosspoint memory (XPM); enqueue controller (enqC); output
scheduler (OS); and credit sequencer (CRS): Cost figures are
for the entire chip (all block instances). As seen, everything
else besides crosspoint memories occupies just 4% of the area,
indicating the simplicity of the architecture. Since crosspoint
memories cost 96% of the total area, we decided to analyze
the proposed architecture with crosspoint buffers of 2 KByte
each (based on sec. 4 results), and not to support separate
buffers for the different priorities in this study. Consider that
adding another priority with distinct buffers in each crosspoint
[17] will increase the area of the chip core by 92%, which is
only feasible in 0.13�m technology; future technologies or
embedded DRAM will improve the situation. Those future
technologies will also allow ”Jumbo Frames” (10KB packet)
support. Using current technology, Jumbo Frames, would limit
the number of input and output ports to 24 or less.

Power consumption is the primary limiting factor for switch
chip throughput. The power consumption figures, in Table I,
are based on the assumption that the total incoming through-
put of the 32�32 switch is 100Gb/sec; given the datapath
width of 32 bits, the corresponding clock frequency of the
core is 100MHz. According to the synthesis tool this speed

6The 0.13�m figures have been computed by extrapolation based on UMC’s
datasheets.
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Module Gates Flip-Flops SRAM Area Area Power Power
(number of (K) (K) 2-port 0.18�m 0.13�m 0.18�m 0.13�m
instances) (bits) (mm�) (mm�) (Watt) (Watt)
XPD (1024) 65 71 9.3 4.18 3.27 1.96
XPM (1024) 16 M 286 130 11.4 2.03
enqC (32) 2.2 0.57 0.113 0.044 0.013 0.08
OS (32) 68 9.7 3.1 1.49 1.19 0.717
CRS (32) 27.5 2.3 0.73 0.32 0.376 0.225
Wiring 76.757 39.966
Peripheral (64) N/A N/A N/A N/A N/A 7.68 4.8

Total 162.7 83.57 16 K 376 176 see text see text

TABLE I

COMPLEXITY OF THE SUBMODULES OF THE SWITCH (TOTAL NUMBERS SHOWN, INCLUDING ALL INSTANCES), AND TOTAL COST (INCLUDING WIRING).

is easily achievable in today’s 0.18�m technologies. 7 The
maximum consumption of the whole switch is the sum of the
consumptions of all subcircuits, amounting to 24 W in 0.18�m
technology and 9.8 W in 0.13�m. However, this only applies to
the case where all 1024 crosspoints are active at the same time,
i.e. where all the inputs are broadcasting to all the outputs.
In the typical case, most traffic is unicast, possibly with a
small portion of multicast packets. Assuming 50 crosspoints
are active at any time, the power consumption of the chip is
reduced to 9.97 W in 0.18�m and 6 W in 0.13�m.

Table II provides cost figures8 on a per-input, per-output,
and per-crosspoint basis; this is usefull in evaluating switch
configurations with various numbers of ports. These figures
were derived by designing four different switches based on
the proposed architecture: 4�4, 8�8, 16�16, and 32�32;
then, we averaged the area, gate, and flip-flop sums per
input, output and crosspoint, accordingly. Since each input and
output port contains a scheduler whose complexity depends on
the numbers of input ports, the per-port complexity depends
on the fan-in of the switch. The per-input cost is dominated by
the credit sequencer (CRS), and includes enqC; the per-output
cost is mostly the output scheduler (OS); the crosspoint cost
includes XPM and XPD.

4 . PERFORMANCE EVALUATION

4.1. Simulation Enviroment

We implemented an event driven simulator in C++, that
models a buffered crossbar switch under backbone IP traffic,
with packet size varying between 40 and 1500 bytes. In
all experiments we have assumed a 32x32 switch, a port
speed of 10 Gbps, no internal packet header overhead and no
internal speedup. Our input line-cards and crosspoint buffers
implement cut-through operation. When a packet starts being
transmitted towards the output lines of the crossbar, the
corresponding credit/acknowledgment is generated. The credit
line rate is such that the duration of a credit transmission
equals a minimum packet transmission time [26] 9. Credits
destined to the same input line-card are sent in FIFO order.

7Our performance simulations (sec. 4) are based on 10 Gbps links, which
yield more pessimistic RTT values (400ns, corresponding to 500 byte times).

8Area cost includes wiring, and 2 KB of 2-port SRAM per crosspoint.
9More conservative than the hardware assumption.

The RTT between input line-cards and switch fabric has been
set to 500 byte times (corresponding to 400 ns at 10 Gbps line
rate), resulting as the sum of the following delays:

� input scheduling time, 30ns;
� VOQ memory access time, 80ns;
� packet propagation time, including time of flight, pipeline

logic, and serialization/deserialization delay, 114ns;
� output scheduling time, similarly, 30ns;
� credit propagation time, similarly, 114 ns;
� credit transmission time, 32ns.

For additional information on design issues and on the simu-
lator refer to [18].

We model variable-size packet arrivals at the input ports,
using mostly two distinct traffic patterns: PoisPar, poisson
process arrivals with packet sizes that follow the bounded
pareto distribution (min 40, max 1500, average 370 bytes);
SynthBackb, a synthetic pattern that we created based on
internet statistics sources [28], trying to emulate as much as
possible realistic, backbone IP traffic.

For SynthBackb, the traffic arriving at each ingress line-
card is generated by multiplexingM pairs of sources in a FIFO
queue (see fig. 3). The first source in each pair (interactive-
generator -IG), generates sessions (i.e. streams of packets),
emulating (a), interactive applications which are dominated
by small packets (e.g. TELNET) and (b), TCP acknowledge-
ments. The sessions of the second source (burst-generator
-BG) emulate bulk transactions such as FTP transfers or
HTTP page responses. The duration of a session generated
by IG and BG follows the pareto distribution with mean value
125 packets and 8 Kbyte respectively [27]. All sessions are
delimited by an idle period and they are generated according
to a Poisson process. Packets within IG sessions vary from 40
to 44 bytes and their interarrival time follows the exponential
distribution. A BG session consists of a burst of back-to-back
packets, having the same size –1500 (x%) or 552 (y%) or
576 (z%) bytes– except for the last one; x, y, z and the ratio
of rates between IG and BG are selected so that 60% of all
generated packets have size between 40-44 bytes, 18% 552 or
576 bytes, and 18% 1500 bytes [28]. Each pair of sources has
aggregate rate 100 Mbps; so for a M * 100 Mbps load we
multiplex M pairs.

c� ICS-FORTH, SEP. 2003 5



Gates FF SRAM (bits) Area (�m�) in 0.18mum
per-input 26 x i + 69 2.5 x i + 18 992 x i + 3334
per-output 69 x i 10 x i 3278 x i
per-crosspoint 63 70 16K 295682

TABLE II

PER INPUT/OUTPUT/CROSSPOINT COSTS; i IN THE NUMBER OF THE INPUT PORTS OF THE SWITCH
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line card
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for multiplexing
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100Mbps
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Fig. 3. Basic Traffic Generator. The aggregate load of a pair of sources is
100Mbps. For M � ���Mbps load we multiplex M pairs.

4.2. Simulation Experiments and Results

1) Round-Trip-Time Experiment: In this experiment we
assume a single, persistent flow, i.e. load is 10 Gbps. For
crosspoint buffer size (B) varying from ���� to ���� bytes
we measure the output utilization as a fraction of 10Gbps. We
repeat the experiment for RTT values varying from 250 to 700
byte times. First, (realistic case), we let the packets of the flow
being generated by SynthBackb.

Next, we experiment with a worst case scenario where we
continuously alternate between packets p� and p� with sizes
s�, equal to 1500 and s�, equal to max(B-1499, 40) bytes; s�
and s� have been selected so that (a) s� is as small as possible,
while (b), p� is able to block p� at the input. Condition (b)
creates the necessary condition for underutilization, and (a)
maximizes the duration of this possible underutilization.

Fig. 4 shows that output underutilization occurs for every B
less than �����RTT �Line Rate; however, by employing
a crosspoint buffer size equal to ���� � RTT � Line Rate

full output utilization is achieved. This happens because if
B equals ���� � RTT � Line Rate, we impose that p�
will be blocked at the input only if s� is greater than
RTT � Line Rate. But in this case, when p� will be ready
for transmission at the output after receiving p�’s credit (i.e.
RTT times after starting transmitting p�), the output will
still be busy transmitting p�, because its size is greater than
RTT � Line Rate. So, with this buffer size, full output
utilization is guaranteed.

Under SynthBackb arrivals the knee at crosspoint buffer
size �����RTT�Line Rate is also observable (fig. 4), but
not as strongly as with the aforementioned worst-case scenario.

2) Delay Experiment: We run simulations both under uni-
formly destined and hotspot traffic, using the traffic generator
SynthBackb. Under uniform traffic, the destination port of
each session is chosen uniformly; all packets in a session
have the same destination port. For the hotspot traffic, we
follow the methology in [19]: each destination belonging to a
designated set of “hotspots” receives traffic at ���� collective
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Fig. 4. RTT Experiment. For buffer size less than 1500 bytes, all mea-
surements for output utilization are zero. Upper curves stand for SynthBackb
traffic, lower curves for worst case.

load, uniformly from all sources; the rest of the destinations
receive uniform traffic. Without loss of generality, we assume
that the hotspots are ports 0, 1, 2 and 3. The reported delay
is the time between the packet’s first byte exit-time minus
the packet’s first byte enter-time, averaged over all packets;
for the hotspot case, we take into account only the packets
destined to non-hotspot outputs. The results are compared to
output queueing (OQ), which is the reference model, and to
CIOQ using iSLIP, one of the most representative and efficient
examples of the unbuffered crossbar family. For iSLIP we
consider one iteration, 64 byte segments and various speedup
factors.

Fig. 5 shows the results for uniform traffic. The iSLIP switch
with no speedup saturates at input load 0.65; for speedup
equal to 1.2 it saturates near load 0.8. Observe that the
performance of the proposed architecture with a crosspoint
buffer of 2KB is very close to OQ; iSLIP with speedup
2 also performs close to the ideal system. Under hotspot
traffic, in the buffered-crossbar system, we observed that non-
hotspot traffic stays unaffected by the presence of hotspots
(the uniform and the hotspot plots actually match), due to
the isolation/protection that is provided to flows (input/output
pairs) by the crossbar/queueing architecture. On the other
hand, when we apply hotspot traffic to the iSLIP switch, all
flows’ performance degrades considerably due to the absense
of any flow control. The corresponding diagrams are not shown
here due to space limitations.

3) Throughput Experiment: Next, we experiment with un-
balanced traffic (i.e. non-uniform destinations), considering an
unbalance factor f , as in [13]: input i sends to output i with
probability f , and to all other outputs uniformly with collective
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probability �� f . In this experiment we use PoisPar arrivals
model and we measure the switch throughput as a fraction
of the maximum possible one (320 Gbps) . For iSLIP (1
iteration, 64 bytes segment, speed-up equal to 1.0) packets
have sizes equal to k� ��bytes (k integer), so as to eliminate
segmentation overheads. Even under this assumption, we find
(see fig. 6) that the CICQ architecture with variable-size
packets considerably outperforms the CIOQ (iSLIP) switch.
With 2KB crosspoint buffer size, the worst switch throughput
under this scenario, for the buffered crossbar is 0.90 versus
0.58 for the iSLIP switch.

CONCLUSION

We have the architecture of an innovative buffered crossbar
switching variable-size packets. The crossbar chip organiza-
tion that we propose is fairly simple and cost-effective. In
particular, we claim that by using standard cell technology at
0.13�m, a 	��	� switch supporting 100 Gbps aggregate input
throughtput can be implemented within a single chip: The sili-
con area needed is less than 250mm� and its power dissipation
below 10 Watts. Through simulations, we demonstrated that
the proposed organization, using no speedup, performs very
close to the ideal output queuing system, while it outperforms
practical unbuffered crossbar architectures with speedup less
than 2�.
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