Scheduling in Switches with Small Internal Buffers

Nikos Chrysos and Manolis Katevenis*

Inst. of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH) - member of HIPEAC
FORTH-ICS, Vassilika Vouton, P.O. Box 1385, Heraklion, Crete, GR-711-10 Greece
http://archvlsi.ics.forth.gr/bpbenes/

Abstract— Unbuffered crossbars or switching fabrics contain
no internal buffers, and function using only input (VOQ) and
possibly output queues. Schedulers for such switches are complex,
and introduce increased delay at medium loads, because they
have to admit at most one cell per input and per output, during
each time slot. Buffered crossbars, on the other hand, contain
sufficient internal buffering (N2 buffers) to allow independent
schedulers to concurrently forward packets to the same output
from any number of inputs. These architectures represent the
two extremes in a range of solutions, which we examine here;
although intermediate points in this range are of reduced practi-
cal interest for crossbars, they are nevertheless quite interesting
for switching fabrics, and they may be of interest for optical
switches. We find that tolerating two cells per-output per time-
slot, using small buffers inside the switch or fabric, sufficies
for independent and efficient scheduling. First, we introduce
a novel “request-grant” credit protocol, enabling N inputs to
share a small switch buffer. Then, we apply this protocol to a
switch with N such buffers, one per output, and we consider
the resulting scheduling problem. Interestingly, this looks like
unbuffered crossbar schedulers, but it is much simpler because
it comprises independent schedulers that can be pipelined. We
show that individual buffer sizes do not need to grow, neither with
switch size nor with propagation delay. Through simulations, we
study performance as a function of the number of cells allowed
per-output per-time-slot. For one cell, the switch performs very
close to the iSLIP unbuffered crossbar with one iteration. For
more cells, performance improves quickly; for 12 cells, packet
delay under (smooth) uniform load is practically as low as ideal
output queueing. Under unbalanced load, throughput is superior
to buffered crossbars, due to better buffer sharing.

1. INTRODUCTION

Networks need fast and low-cost packet switches to keep
pace with the increase in communication demand. Switches
employ ingress and egress linecards, which usually contain
sizable buffer memories, and a core, which is a crossbar
or a switching fabric. Packet switch architectures belong to
two principal categories, depending on their core: buffer-
less or buffered. Crossbars were bufferless, but are now
evolving to architectures with buffers per-crosspoint, owing
to advances in IC technology that allow increased on-chip
memory; analogous trends exist for fabrics made of multiple
smaller switching elements. This paper studies the spectrum of
intermediate solutions between the two extremes of bufferless
and buffered crossbars. Our study provides indications that

¥ The authors are also with the Department. of Computer Science, Univer-
sity of Crete, Heraklion, Crete, Greece.

most of the advantages of buffered architectures —simple and
efficient, distributed, pipelined scheduling— can be achieved
with considerably less total buffer space compared to what
buffered crossbars currently employ.

With unbuffered core, output conflicts must be avoided
before packets enter the core. This requires a central scheduler
to coordinate the set of input/output pairs (flows) that will be
served in each time-slot [1]; this is a complex task that can
limit the switch packet rate. Heuristic algorithms that have
been adopted today work well only when internal speedup
is used to compensate for their scheduling inefficiencies [2].
Because these algorithms operate only on fixed-size units,
additional speedup is needed when external packets have
variable size, to compensate for segmentation padding.

Buffered architectures ease scheduling by allowing conflict-
ing packets to enter the fabric. The buffered crossbar has one
buffer per crosspoint (combined input crosspoint queueing -
CICQ), and has received much research attention recently
because it features simple and efficient scheduling [3] [4]
[5]. Its single-resource, per-input and per-output schedulers
operate independent of each other; loose, long-term coordi-
nation comes from backpressure flow-control, which is used
to keep the size of the crosspoint queues small enough to fit
on-chip. Flow control impedes repeated conflicting decisions
by the schedulers, and enforces pipeline-like operation. An
additional advantage of independent scheduling is that it can
be performed directly on variable-size packets, eliminating the
segmentation overhead [6].

These benefits come at the expense of a more expensive
fabric. The internal memory of a buffered crossbar grows with
NZ2.RTT-)\, where N is the switch valency, RT'T is the round-
trip time between the ingress linecards and the crossbar, and
A is the line-rate. This is a high cost for switches with large
numbers of ports, IV; even for modest NV, the implementation
can be expensive when RTT -) is large [7].

1.1 Contributions

Unbuffered fabrics, on one hand, and crossbars with one
buffer per crosspoint, on the other hand, are the two extremes
in a range of architectures that contain some (small) amount of
buffering inside a crossbar or a switching fabric. In this paper,
we examine these intermediate design points: what is the least
amount of buffer space that allows efficient, independent, and
pipelined scheduling? We find that buffer space of 2 cells per

©Copyright IEEE - To appear in Proceedings of Globecom Conference, St. Louis, MO, USA, 28 Nov.-2 Dec. 2005. 1

output suffices for decent performance, while buffer space of
12 cells per output yields close to ideal performance, almost
independently of switch size N; these numbers are to be
compared to buffer space of N-RTT-\ per output in buffered
corssbars.

Besides their theoretical importance, these results are of
interest primarily for fabrics of multiple smaller switching
elements. For a single N x N switch implemented as crossbar,
placing fewer than N2 buffers “near” its outputs is awkward,
because we would have to increase the output throughput
of the crossbar, which often costs more than the reduction
in memory bits. However, any interesting N x N switching
fabric contains less than O(N?) switching elements, and it
is desirable to also limit its total buffer space quite below
that value. The message of this paper is positive: There
exist scalable scheduling methods to control the number of
conflicting cells entering a fabric. Once that number is properly
controlled, limited buffer space inside the fabric suffices for
high performance. Our model is crude because it assumes that
all buffers are at the outputs; however, it constitutes a useful
first approximation towards a full study of the fabric itself.
We are undertaking such a full study in a subsequent, current
work [8].

To achieve the above small buffer spaces, we had to go over
a sequence of steps which we present in this paper. First, we
replace credit-based with request-grant backpressure (section
2). This increases latency by 1 RT'T, but allows buffer space
reduction by a factor of IV, in principle. Section 3.1 presents
the basic switch architecture, with independent per-output and
per-input schedulers operating in a pipelined fashion, similar
to buffered crossbar scheduling. Pipelined unbuffered crossbar
schedulers [9] typically employ multiple crossbar schedulers,
each one comprised of non-independent schedulers, which is
only a halfway solution.

Next, we propose a credit predicition scheme, which further
reduces buffer size, making it independent of propagation de-
lay (RT'T'), by exploiting the lack of backpressure at the egress
ports (section 3.2). The resulting system allows independent,
pipelined scheduling with output buffers as small as a single
cell (which allows up to two conflicting cells per output).
This part of our results can be of interest for optical switches:
scheduling can be simplified significantly if the optical switch
contains a small (e.g. one-cell), fixed-delay, fiber delay line
(FDL) at each output; a cell will need to be stored on an
output FDL for one or a few cell times.

Section 3.3 outlines the similarities of our system, when
using round-robin schedulers, to iSLIP; we discuss how
“desynchronization” is achieved, and we show how the system
provides 100% throughput under uniform traffic. Section 3.4
discusses grant-rate control. The last part of the paper (sec-
tion 4) presents our simulation results. Performance improves
significantly when buffer space per output increases from 1
to 4 cells, and less so up to 12 cells. We also study how
performance depends on credit generation rate, scheduling
delay, and switch size, and we demonstrate RTT-independence
under the credit predicition scheme.

1
linecards switch or fabric 1 linecards (1) req. switch or fabric
1 };1 » ‘r‘t‘tk : 1 }(Lg lr»eques’tC ;::;;ters
Il S B T] scheduler
. 3 . 1 . (2) grant .
. . 1 .
. ° ! .
— 1
n
I TEAN N R N M
1 — B I e g P =
1
1
1 F
1

v
(a) blind-mode FC @

Fig. 1. (a) traditional credit-based flow-control needs N window buffers;
(b) request-grant credit-based FC, using one window buffer.

1.2 Previous Work

In 1992, Li [10] considered a switch with FIFO inputs
queues (not VOQs) and infinite output queues accepting a
limited number of concurrent arrivals. Our study differs be-
cause we consider buffer space rather than buffer throughput
limitation; also, we assume VOQs, and we study scheduler
implementation. In an analogous way, the IBM SP2 Vulcan
switch [11] used requests and grants to control the use of
the limited throughput of its shared-memory buffer; again, we
differ because we control buffer space rather than throughput.
Recent PRIZMA work at IBM Zurich [12] considered a
switch with VOQs and a limited shared-memory. However,
the scheduling and the flow control (On/Off) style used end
up requiring O(N?) buffer space in the shared memory. By
contrast, our scheme only uses O(/N) buffer space.

Request-grant protocols like the one we use (section 2)
are used to communicate with the schedulers of all bufferless
crossbars. However, request-grant protocols have rarely been
used for flow control, in ensuring that buffers do not over-
flow. Abrizio (later PMC-Sierra) [13] used the LCS request-
grant protocol to control the utilization of a buffer fed by a
single input in a bufferless crossbar system. Instead, we use
our request-grant protocol for queues shared among multiple
inputs. Finally, flit-reservation flow control [14] is reminiscent
of our credit prediction scheme (section 3.2). Flit-reservation
applies to general interconnection networks and results in
efficient buffer usage, but buffer space is still dependent on
round-trip time. By contrast, our credit prediction makes buffer
space independent of round-trip time, but only applies to cases
where there is no backpressure from the egress port.

2 . REQUEST-GRANT BACKPRESSURE

In this section we present a novel variant of credit-based
flow control, which enables buffer space sharing among multi-
ple upstream inputs. Consider N ingress linecards feeding one
egress port of rate A, as in figure 1. With traditional credit-
based backpressure, figure 1(a), each input is allocated private
credits corresponding to a dedicated RT"T-\ window inside the
fabric. This is necessary for individual inputs to be allowed to
abruptly step up their transmission rate without needing prior
“consultation” with the switch so as to learn about the other
inputs’ current rate. However, since the aggregate rate of all

©Copyright IEEE - To appear in Proceedings of Globecom Conference, St. Louis, MO, USA, 28 Nov.-2 Dec. 2005. 2

Scheduling Delay

* Prop. Time |
: P SD ! rate R
linecards 'switch or fabric ! size B

|_request

.‘S"‘

rate
1 grant/cell-time @

inputs

st

grant grant request
schedulers “cnts cnts

credit
schedulers

Fig. 2. A switch with small output queues managed using request-grant
backpressure. Request and grant queues are implemented as counters.

inputs cannot exceed A, a single RTT - A window suffices,
in principle, for the entire aggregate traffic. The problem with
such a small buffer window is that it is not known a priori
how to divide the credits for it among the N inputs.

This problem can be solved by making the ingress linecards
share access to a common credit counter for the buffer space
that they intend to share. Figure 1(b) shows how to do this.
The shared credit counter is placed in the switch. Inputs
must secure credits before transmitting data. To resolve credit
contention when multiple inputs concurrently need credits,
inputs first request credits from a credit scheduler authorized
to allocate them. Requests wait inside request queues for their
turn to be served. The scheduler decrements the credit counter
when it serves a request, and returns a grant to the input being
serviced. The recipient of the grant can now safely forward the
corresponding data. The shared credit-counter is incremented
when data depart from the shared buffer space.

The round-trip time in this protocol equals the delay from
a cell departure that increases the shared credit-counter, till
a cell which reserves the newly released credits reaches the
output queue and is ready for transmission. The request
corresponding to the latter cell can be in advance (of the
credit release) inside the request queues, hence the round-
trip time (and the associated queue space) is comparable to
that of credit-based backpressure. As shown in fig. 1, with
fixed-size cells, the request queues can be implemented using
per-connection counters. The advantage of the request-grant
backpressure scheme is that one RTT - A\ window suffices
to support full line-rate to any input that requests for it,
whereas traditional backpressure needs N such windows. One
drawback of the new method is that credits must be requested
through a separate initial transaction, thus increasing packet
latency under low traffic by one RTT (similar, though not
exactly equal to the above RTT); also, requests consume some
extra bandwidth.

3. A SWITCH WITH SMALL OUTPUT QUEUES

In this section we present a switch with one small queue at
each output, managed using request-grant backpressure.

3.1 Switch Description

Figure 2 presents our scheme. The input linecards contain
large virtual output queues, and express their demand for an
output by issuing a request to the associated credit scheduler.
Outstanding requests are kept in request counters, organized
per-input (and per-output), which will be served in subsequent
cell times. Unmatched inputs, that wait for grant (credit),
are allowed to send new requests to the same or to other
outputs; thus, multiple grants from different outputs can be
generated concurrently for the same input. A grant scheduler
associated with the input selects one among them, sends it
to the input linecard, and keeps the remaining grants inside
appropriate grant queues, organized per-output, which will be
served in subsequent cell times. The input linecard responds
to an arriving grant by forwarding the corresponding cell;
when the cell starts departing from the output buffer, the credit
assigned to it is returned to the credit scheduler.

This organization of credit (output) and grant (input)
schedulers resembles schedulers for unbuffered crossbars, like
iSLIP, but, by using small output buffers, the present scheme
is simpler. There is no need for schedulers to coordinate their
decisions on a cell-time basis, as they do in iSLIP; instead,
they can operate independently, in a two-stage pipeline: in
the first pipeline stage, each credit scheduler independently
produces a grant and sends it to the corresponding grant
(pipeline) queue; in parallel with the first stage operations,
each grant scheduler (second pipeline stage) independently
selects one among the grants accumulated up to now inside
its grant queues —not considering the concurrent outcomes by
the credit schedulers. In this way, the matchings produced can
be conflicting but we do not care: if more than one input
linecards receive a grant for the same output at the same time,
the output buffer will absorb the resulting conflict. This type
of scheduling is as simple as buffered crossbar scheduling.

Denote by R the peak rate at which any particular credit
scheduler hands credits out. In general, R may have any value
>1 credit/time-slot; in this paper however, unless otherwise
commented, we assume the minimum allowable rate R, ie
one (1) credit/time-slot !. On the input side, we assume that
each time a grant scheduler grants its corresponding input
linecard, a cell is injected inside the fabric: the rate of each
grant scheduler is one (1) grant/time-slot by default, for we
do not assume any speedup at the fabric ports.

Although global coordination is not imposed explicitly, and
the independent schedulers could synchronize in states of
poor throughput, for B=1 (allowing one conflicting cell per-
time-slot) they will tend to desynchronize as they do in the
iSLIP architecture [1] —see section 3.3. With multicell output
buffers, a credit scheduler may produce grants in consecutive
time-slots, in addition to a first pending grant, thus providing
matching opportunities for other inputs as well. This means

'If R>1, the credit scheduler may produce multiple credit in a single time-
slot; however, its effective (long-term) rate will be dictated by the rate that
credits are replenished, ie, 1 (cell)credit/time-slot. Our simulations show only
marginal benefits in increasing R beyond this value.

©Copyright IEEE - To appear in Proceedings of Globecom Conference, St. Louis, MO, USA, 28 Nov.-2 Dec. 2005. 3

that multiple cells may reach an output buffer in the same
time-slot, since the grant schedulers work independently of
each other.

Assuming that the latency of each individual scheduler
(credit or grant) is one cell time, the round-trip time will
be greater than two cell-times, thus at least two-cell output
buffers are needed. Of course, the round-trip time additionally
includes the propagation delay. Next, we show how we can
eliminate the dependence on this parameter.

3.2 Credit Prediction: Independence from Propagation Delay

Let P be the (one way) propagation delay between a
linecard and the switch —see figure 2. We will show how
to eliminate P from the effective round-trip time used in
dimensioning the output queues. This is possible because
egress ports are not subject to external backpressure.

Credits are generated when cells depart through the egress
ports. Since there is no external backpressure to these ports,
if we know that an output queue will be non-empty at a given
time in the future, we can predict that a cell will depart and
a credit will be generated (per cell time) at that time in the
future. Such predicted “future credits” can be used to trigger
cell departures from the ingress linecards, provided we can
guarantee that the corresponding cells will not arrive at the
buffer before the above future time. In our case, consider a
grant g selected at time ¢ by a grant scheduler; g will arrive
at its linecard at ¢ + P, will trigger the corresponding cell
departure, and that cell will arrive into its output buffer at
t+2P. At time ¢t we know g, hence we also know the output
that it refers to; thus, we can safely conclude that output will
be non-empty at time ¢+ 2P, and consequently it will generate
a credit at t+2P+1. At t+1 we can use this predicted credit to
generate a grant, given that the latency from grant generation
to cell arrival can never be less than 2P.

Using credit prediction, the switch operates efficiently with
two-cell output queues supporting enqueues at rate 2\, inde-
pendent of P: when the demand for an output is high, cells
and grants for this output, of aggregate size 2 - P - A\, will be
virtually “stored” on the lines between the linecards and the
switch.

For the scheme to work correctly, we must take care of one
additional issue. Say that at time-slot ¢, k (> 1) grants for
output o are selected by k grant schedulers in parallel. In this
case, under credit prediction, k credits must be returned to the
corresponding credit scheduler. Observe that the credit count
should not be incremented by k& at once in time-slot ¢, since
the credit scheduler for output o may then drive multiple (>1)
cell arrivals in time ¢ + 1 + 2 - P —assuming R>1-, whereas
only one new cell position in the buffer will be available on
that time. Thus, we must throttle credit increments so that
these occur at a peak rate of one (credit) increment per-time-
slot per-output. This can be realized using an intermediate
predict credit counter, in addition to the actual credit counter
used so far. The predict credit counter, which is initialized at
zero (0), is incremented every time a grant for that output is
sent to an input linecard, and is decremented by one in every

time-slot when it is greater than zero; once decremented, the

corresponding (actual) credit counter is incremented by one 2.

3.3 100% Throughput under Uniform Traffic

Let B denote the buffer size —ie, the number of credits
per-output—, and S D the pipeline scheduling latency, ie, the
sum of credit and grant schedulers delays. Based on [15], it is
trivial to prove that, under uniform cell traffic, the throughput
of the switch that we propose in this paper with SD=1
cell-time, B=1, and pointer-based RR schedulers, can reach
100% [16]. (This result applies even for P greater than zero
(0), if we employ credit prediction.) To see why, consider
that, when B equals one (1), any particular credit scheduler
may have only one input granted at any given time —before
being notified that its “first” grant has been accepted®. The
“first” output grant (credit) that a grant scheduler receives
will reside in its grant queue, waiting to be served, which
is equivalent to what happens in iSLIP —and, symmetrically in
2DRRM: iSLIP, instead of storing unaccepted grants, cancels
them, but reproduces them in subsequent time-slots until these
are accepted. For the more practical system, with two cell-
time pipeline scheduling latency (S D=2), and two cell buffers
per-output (B=2), a possible proof for the 100% throughput
capability would not be trivial at all. However, our simulation
results indicate that 100% throughput is still achieved.

3.4 Throttling Grants to a Bottleneck Input

According to our simulation results (section 4), the system
performs very well under i.i.d. Bernoulli arrivals with buffers
of 4 to 12 cells per-output, independent of the propagation
time, under both uniform and unbalanced traffic. This section
discusses system operation under bursty traffic (correlated
cell arrivals). The corresponding simulation results are not
presented in this paper, due to space limitations, but can be
found in [16].

If multiple credit schedulers allocate credits to a same grant
scheduler (for a same input) at about the same time, that
input will not be able to respond as fast to all of them, due
to its limited throughput. Such accumulations of credits in
front of grant schedulers, waiting for the corresponding grants
to be forwarded and used at rate A, correspond to underuti-
lization of the common pool of available credits, hence also
underutilization of the available buffer space. Accumulations
like this do not occur under smooth arrivals, because credit
schedulers alternate quickly among the inputs to which they
grant. Under bursty traffic, however, bursty requests arriving
at credit schedulers may cause repeated allocation of credits
to a same grant scheduler, hence the above phenomenon may
appear. Our simulations showed that, using 12 cell buffers per-
output, average cell delay under uniform bursty traffic may get
3 to 4 times higher compared to ideal output queueing at high

20bserve that, when R=1 credit/time-slot, the need for the predict credit
counter is removed: each credit scheduler will always allocate only one new
credit per-time-slot.

3either when the grant is selected by its counterpart input scheduler (credit
prediction) or when the corresponding cell leaves the output buffer (no credit
prediction).

©Copyright IEEE - To appear in Proceedings of Globecom Conference, St. Louis, MO, USA, 28 Nov.-2 Dec. 2005. 4

o
S
S

o
S

o

o

average delay (cell-times)

i i i i i i i
02 03 04 05 06 07 08 09 1
normalized input load

o
2
o

Fig. 3. Performance for varying buffer size, B; N=32, P=0, R=1 credit/cell-
time, and S D=1 cell-time; Uniform Bernoulli cell arrivals; Only the queueing
delay is shown, excluding all fixed scheduling and propagation delays.

switch load (higher than 0.9); under the same traffic, buffered
crossbars achieve ideal performance.

In [16], we propose the use of a grant throttling mechanism,
in order to maintain as good a delay as that of buffered
crossbars. The key idea is for credit schedulers to stop serving
an input when that input does not return credits fast enough.
One way to achieve is as follows: a request from an input is
eligibile at its output (credit) scheduler, iff (i) output buffer
credits are available (as before), and additionally (ii) the
combined credit/grant queue size before that input’s grant
scheduler is less than a threshold, 7"H. This method can be
realized by having each input scheduler circulate an On/Off
signal, common (indiscriminate) for all credit schedulers, that
stays Off whenever the (grant) backlogs in its corresponding
grant queues sum up to 7'H (or higher). Using simulations, we
found that by adjusting T'H, we can bring delay down to the
levels of ideal OQ, using only 12-20 cell buffers per-output,
and plain round-robin schedulers; these results apply for any
switch size (V) in the range of 32 up to 128, and for a wide
range of burstiness factors.

4 . SIMULATION RESULTS

The performance of the switch with RR schedulers was eval-
vated under uniform and unbalanced traffic using simulations.
Simulations were run long enough to eliminate the effect of
any initial transient, and the confidence intervals achieved were
better than 10% around the reported values with confidence
95%*. In the plots that follow, we measure cells average delay
in number of cell times (cts). Note that the round-trip time
equals 2- P+ SD, and that the minimum recorded cell delay
in all systems equals zero (we have removed the request-
grant, cold-start delay overhead, as well as scheduling and
cell propagation delays). Unless otherwise noted, our results
do not use neither credit prediction, nor grant throttling.

First, we use uniform Bernoulli cell arrivals and we compare
our switch for different values of B —buffer space per-output in
numbers of cells—, to the i{SLIP switch (iterations 1, 2 and 4),
and to a buffered crossbar with one cell buffer per crosspoint.
Our cell delay results for N=32 are presented in fig. 3.
B1 behaves very close to 1SLIP for the reasons described
in section 3.3. With increasing B, instances upon which a

“In throughput experiments, confidence intervals were better than 1%

o
o
o

.......

o
o
T
I

o
T
i

—For B12, N128, N64,
. plots match

average delay (cell-times)
o
-

i i i i i i
01 02 03 04 05 06 07 08 09 1
normalized input load

o
2

Fig. 4. Performance for varying sw. size, N; P=0, R=1, and S D=1; Uniform
Bernoulli cell arrivals; Delays excludes all fixed delays.

backlogged input does not receive grant are expected to occur
less frequently, therefore delay improves. B12 approaches
the delay of buffered crossbar (bufxbar) —ref. [3, fig. 3]
shows that bu f zbar virtually matches OQ delay; under smooth
arrivals, we found no benefit in further increasing B.

Figure 3 shows that at medium loads, for any B value, the
delay of our system is slightly higher than bufxbar. These
small discrepancies can be ascribed to the following behavior:
at medium loads, occasional small bursts of cells for a switch
output, from different inputs, enter the fabric of our switch
only at the rate the credit scheduler admits cells inside, ie, R=
1 cell (credit) per-cell-time in fig. 3; in the buffered crossbar,
such small bursts may enter the fabric immediately, bypassing
input contention. In our system, these “deferred” admissions
increase input contention and thereby cell delay. We found out
that, by increasing R to 1.5-2.0 credit/cell-time, the cell delay
at medium loads approaches bu fxbar because of more cells
skipping input contention [16]. At high loads, no considerable
improvement were observed.

In fig. 4 we evaluate the effect of switch size, N. We find
that, when B is small, performance declines with increas-
ing N. This behavior, also present in the iSLIP algorithm
using few iterations [1], should be ascribed to harmful syn-
chronizations among the credit (output) schedulers becoming
more severe as the number of switch ports grows; but with
increasing B, the dependence on switch size vanishes because
credit schedulers, even if synchronized at some point, they
can keep on producing grants. Under Bernoulli arrivals, and
for any switch size NV in {32, 64, 128}, we found no benefit
in increasing the output queues beyond 12 cells. This suggests
that buffer space does not have to increase with switch valency.

Figure 5 examines how performance behaves with increased
scheduling latency and propagation delay. A first observation
is that, when credit prediction is employed, the queueing delay
does not depend on the propagation time P: with constant B,
the switch performs equally well for all P values that we ex-
amine (0, 1, and 100 cts). On the other hand, a switch waiting
for cell departures to increment credits needs B to grow with
2-P+SD. This is manifested through the performance curves
corresponding to the configurations using SD2, P1 and no
credit prediction: the round-trip time is 2 - P + SD= 4 cts,
hence, for B=2 the switch saturates at load 0.5, and performs

©Copyright IEEE - To appear in Proceedings of Globecom Conference, St. Louis, MO, USA, 28 Nov.-2 Dec. 2005. 5

1000 T T T I

i
— no credit prediction /

¥
2100 SDZPT. N3, 1
£
=
§ 10k =
>
K
8 1t]
[
g
B0k with credit prediction; SD2 |
20

0.01 i 3 mat‘ching Rlots fol" B2, an‘d all o{ P=0, 1,‘ 100 ;

01 02 03 04 05 06 07 08 09 1
normalized input load

Fig. 5. Performance for varying scheduling delay SD, and varying P, using
credit prediction, or without credit prediction; N=32, R=1 credit/cell-time.
Uniform Bernoulli cell arrivals; Delays excludes all fixed delays.

B32
B8 12

L ——7 |

o
©
T
W,
B

ot
“butibs i cel] 02 1

o
o
T
i

o
u
T
i

L. . Bt : . 4

o
o
T
i

switch normalized throughput

0 0.1

e
3

Il Il Il Il Il Il Il Il
02 03 04 05 06 07 08 09 1
unbalanced probability, w

Fig. 6. Throughput under unbalanced traffic for varying buffer size, B;
N=32, P=0, R=1 credit/cell-time, and S D=1 cell-time; 100% input load.

satisfactory for B=4. Another point is that the availability of
more credits per-output in S D2-B2 improves delay compared
to SD1-B1 —both using credit prediction—, even though output
and input schedulers communicate their decisions with a cell
time latency.

A final remark is that the conclusions inferred using previ-
ous experiments for systems with unit scheduling delay apply
equally well when SD=2. Figure 5 shows that, when P=100,
S D=2, and B=12, the queueing delay is very close to bu fzbar
—compare to fig. 3. A 32 x 32 buffered crossbar switch,
having 100 cell-times propagation delay, requires 204 K of cell
buffers, whereas ours uses only 384. With increasing switch
valency, the cost reduction achieved increases even more.

Last we experiment with unbalanced traffic. We borrow
the unbalanced traffic model of [4], where each input, i,
sends most of its traffic to a private “favored” output —in our
experiments to output i. As in [4], w denotes the unbalanced
factor; when w=0 traffic is uniform, whereas when w=1 the
switch is loaded by a persistent permutation. Our results,
presented in fig. 6, show that the throughput of B1 can be
as small as 0.63 for intermediate w values, which is also the
throughput of the 32 x 32 1SLIP switch [3, fig. 6]. With
increasing B, throughput improves fast; for B4, throughput
is higher than 0.9, for B12 higher than 0.97, and for B32
higher than 0.99. Our system achieves better throughput than
bufrbar with one cell per-crosspoint, due to better buffer
sharing.

5. CONCLUSIONS

We presented a method to reduce the amount of internal
buffer space in a switching fabric by a factor of the order of
N; we also showed how the propagation delay dependence
can be removed when sizing fabric queues. We applied our
methods in the design of a switch with small output queues,
allowing a limited number of conflicts per output (B), which
features simplified scheduling. For this switch we showed
how performance changes with varying B: performance is
close to that of unbuffered crossbars for B=1, and increases
with B, approaching that of buffered crossbars for B=12. A
value of B > 2 is sufficient for independent and inherently
pipelined scheduling. Our results indicate that B does not have
to increase neither with switch size nor with propagation delay;
hence, techniques for high-bandwidth buffers, originating from
known shared-memory switch architectures, can be used in our
switch in a more scalable way.

Acknowledgments: this work has been supported by an IBM
Ph.D. Fellowship. The authors would also like to thank CARV
(FORTH) members for stimulating discussions.

REFERENCES

[1] N. McKeown: “The iSLIP Scheduling Algorithm for Input-Queued
Switches”, IEEE/ACM Trans. on Networking, vol. 7, no. 2, April 1999.

[2] P. Krishna, N. Patel, A. Charny, R. Simcoe: “On the Speedup Required
for Work-Conserving Crossbar Switches”, IEEE J. Sel. Areas in Com-
munications, vol. 17, no. 6, June 1999, pp. 1057-1066.

[3] D. Stephens, H. Zhang: “Implementing Distributed Packet Fair Queueing
in a scalable switch architecture”, Proc. IEEE INFOCOM Conf., San
Francisco, CA, March 1998, pp. 282-290.

[4] R. Rojas-Cessa, E. Oki, H. Jonathan Chao: “CIXOB-k: Combined Input-
Crosspoint-Output Buffered Switch”, Proc. IEEE GLOBECOM’01, vol.
4, pp. 2654-2660.

[5] N. Chrysos, M. Katevenis: “Weighted Fairness in Buffered Crossbar
Scheduling”, Proc. IEEE HPSR’03, Torino, Italy, pp. 17-22.
http://archvlsi.ics.forth.gr/bufxbar/

[6] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, N. Chrysos:
“Variable Packet Size Buffered Crossbar (CICQ) Switches”, Proc. IEEE
ICC’04, Paris, France, vol. 2, pp. 1090-1096.
http://archvlsi.ics.forth.gr/bufxbar

[7]1 F. Abel, C. Minkenberg, R. Luijten, M. Gusat, I. Iliadis: “A Four-
Terabit Packet Switch Supporting Long Round-Trip Times”, IEEE Micro
Magazine, vol. 23, no. 1, Jan./Feb. 2003, pp. 10-24.

[8] N. Chrysos, M. Katevenis: “Scheduling in Non-Blocking Buffered
Three-Stage Switching Fabrics”, FORTH-ICS, Crete, Greece, August
2005, 14 pages, http://archvlsi.ics.forth.gr/bpbenes/

[9] E. OKki, R. Rojas-Cessa, H. J. Chao: “A Pipeline-Based Approach for a

Maximal-Sized Matching Scheduling in Input-Buffered Switches”, IEEE

Communication Letters, vol. 5, no. 6, pp. 263-265, June 2001.

S. Q. Li: “Performance of a Nonblocking Space-Division Packet Switch

with Correlated Input Traffic”, IEEE Trans. on Communications, vol.

40, no. 1, Jan. 1992, pp. 97-107.

C. Stunkel et. al.: “The SP2 High-Performance Switch”, IBM Systems

Journal, vol 34, no. 2, 1995.

R.P.Luijten, T.Engbersen, C.Minkenberg: “Shared Memory Switching +

Virtual Output Queuing: a Robust and Scalable Switch” Proc. of the

IEEE ISCAS, Sydney, Australia, May 2001, pp. IV-274-IV-277.

PMC-SIERRA: “Linecard to Switch (LCS) Protocol”, http://www.pmc-

sierra.com/pressRoom/pdf/lcs_wp.pdf

L. Peh, W. Dally: “Flit-Reservation Flow Control”, Proc. of the 6th

Symposium on HPCA, Toulouse, France, January 2000, pp. 73-84.

Y. Li, S. Panwar, H. Jonathan Chao: “On the Performance of a Dual

Round-Robin Switch”, IEEE INFOCOM’01 vol. 3, pp. 1688-1697.

[16] N. Chrysos, M. Katevenis: “Scheduling in Switches with Small Internal

Buffers: Extended Version”, FORTH-ICS, Crete, Greece, September
2005; http://archvlsi.ics.forth.gr/bpbenes

[10]

[11]

[12]

[13]
[14]

[15]

©Copyright IEEE - To appear in Proceedings of Globecom Conference, St. Louis, MO, USA, 28 Nov.-2 Dec. 2005. 6

