Scheduling in Non-Blocking Buffered
Three-Stage Switching Fabrics

Nikos Chrysos and Manolis Katevenis*
Foundation for Research and Technology - Hellas (FORTH), member of HIPEAC

Abstract— Three-stage non-blocking switching fabrics are the
next step in scaling current crossbar switches to many hundreds
or few thousands of ports. Congestion (output contention) man-
agement is the central open problem —without it, performance
suffers heavily under real-world traffic patterns. Centralized
schedulers for bufferless crossbars manage output contention
but are not scalable to high valencies and to multi-stage fabrics.
Distributed scheduling, as in buffered crossbars, is scalable but
has never been scaled beyond crossbars. We combine ideas from
centralized and from distributed schedulers, from request-grant
protocols, and from credit-based flow control, to propose a novel,
practical architecture for scheduling in non-blocking buffered
switching fabrics. The new architecture relies on multiple, in-
dependent, single-resource schedulers, operating in a pipeline.
It: (i) does not need internal speedup; (ii) directly operates
on variable-size packets or multi-packet segments; (iii) isolates
well-behaved from congested flows; (iv) provides delays that
successfully compete against output queueing; (v) provides 95%
or better throughput under unbalanced traffic; (vi) provides
weighted max-min fairness; (vii) resequences cells or segments
using very small buffers; (viii) can be realistically implemented
for a 1024x1024 reference fabric made out of 32x32 buffered
crosshbar switch elements at 10 Gbps line rate. This paper
carefully studies the many intricacies of the problem and the
solution, discusses implementation, and provides performance
simulation results.

1 . INTRODUCTION

Switches are increasingly used to build the core of routers,
cluster and server interconnects, other bus-replacement de-
vices, etc. The desire for scalable systems implies a de-
mand for switches with ever-increasing valency (port counts).
Beyond 32 or 64 ports, single-stage crossbar switches are
quite expensive, and multi-stage interconnection networks
(switching fabrics) become preferable; they are made of
smaller-valency switching elements, where each such element
is usually a crossbar. It has been a longstanding objective
of designers to come up with an economic interconnection
architecture, scaling to large port-counts, and achieving sophis-
ticated quality-of-service (QoS) guarantees under unfavorable
traffic patterns. This paper addresses that challenge.

The performance of switching fabrics is often severely hurt
by inappropriate decisions on how to share scarce resources.
Output contention is a primary source of such difficulties: in-
put ports, unaware of each other’s decisions, may inject traffic
for specific outputs that exceeds those outputs’ capacities. The

¥ The authors are also with the Dept. of Computer Science, University of
Crete, Heraklion, Crete, Greece.

excess packets must either be dropped —thus leading to poor
performance— or must wait in buffers; buffers filled in this
way may prevent other packets from moving toward their
destinations, again leading to poor performance. Tolerating
output contention in the short term, and coordinating the
decisions of input ports so as to avoid output contention in
the long run is a complex distributed scheduling problem;
flow control and congestion management are aspects of that
endeavor. This paper contributes toward solving that problem.

Switching fabrics may be bufferless or buffered. Bufferless
fabrics merely steer traffic, without being able to delay some
of it in favor of other. Such fabrics cannot tolerate any output
contention (or contention for internal links), thus they impose
very stringent requirements on the scheduling subsystem.
Buffered fabrics, on the other hand, contain some internal
temporary storage so as to tolerate contention up to a certain
extent. Buffered fabrics are clearly preferable, and modern
integrated circuit technology makes them feasible. This paper
assumes such buffered fabrics, and is concerned with how
to reduce buffer requirements and how to control the use of
limited buffer space.

Buffers in fabrics are usually small [1], so as to avoid
off-chip memory at the switching elements and limit delays
through the fabric. In order for the small buffers not to
overflow, backpressure is used. Indiscriminate backpressure
stops all flows sharing a buffer when that buffer fills up; it leads
to poor performance due to buffer hogging —a phenomenon
with effects similar to head-of-line blocking. Per-flow buffer
reservation and per-flow backpressure signaling overcome
these shortcomings, but become expensive with increasing
number of flows. Per-destination flow merging [2] alleviates
this cost. One practical compromise is to dynamically share
the available buffer space among flows destined to multiple
(as many as possible) distinct output ports, as in the ATLAS I
chip [3]. A related, improved method is to dynamically detect
congestion trees, allocate “set-aside queues (SAQ)” to them,
and use per-SAQ backpressure [4].

This paper proposes and evaluates an alternative, novel
scheduling, congestion management, and flow control archi-
tecture: when heavy traffic is detected, input ports have to first
request and be granted permission before they can send any
further packets. Requests are routed to and grants are generated
by a scheduling subsystem. This subsystem, which can be cen-
tral or distributed, consists of independent, per-output and per-

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 1

input, single-resource schedulers, operating in parallel. The
architecture has conceptual analogies to scheduling in buffered
crossbars (combined input-crosspoint queueing - CICQ) [5]
[6]. Compared to the alternatives listed above, the new method:
(i) operates robustly under all traffic patterns, not just under
“typical” traffic; (ii) economizes on buffer space; and (iii)
applies to scalable non-blocking fabrics that employ multipath
routing. Other previously proposed scheduling schemes for
3-stage non-blocking fabrics assumed one unbuffered stage,
while our new architecture applies to fully buffered fabrics,
thus yielding significantly higher performance. Further dis-
cussion on these comparisons appears in section 2 on related
work. Before that, we describe our scheduling architecture and
the switching fabric where it fits.

1.1 Non-Blocking Three-Stage Fabrics

Switching fabrics are said to present internal blocking when
internal links do not suffice to route any combination of
feasible I/O rates, hence, contention may appear on internal
links as well, in addition to output ports. Otherwise, a fabric
is called non-blocking when it can switch any set of flows
that do not violate the input and output port capacity limits.
Although internal blocking clearly restricts performance, most
commercial products belong to this first category, because a
practical, robust, and economic architecture for non-blocking
fabrics has not been discovered yet. However, neither has it
been proven that such architectures do not exist. This paper
contributes to the search for practical, robust, and economic
non-blocking switching fabrics.

Low-cost practical non-blocking fabrics are made using
Clos networks [7]; the basic topology is a three-stage fabric,
while recursive application of the principle can yield 5- and
more stage networks. One of the parameters of Clos networks,
m/n, controls the speed expansion ratio —something analogous
to the “internal speedup” used in combined input-output
queueing (CIOQ) architectures: the number of middle-stage
switches, m, may be greater than or equal to the number of
input/output ports per first/third-stage switch, n. In this paper,
we assume m = n, i.e. no speedup —the aggregate throughput
of the middle stage is no higher than the aggregate throughput
of the entire fabric. In this way, the fabrics considered here
are the lowest-cost practical non-blocking fabrics, oftentimes
also referred to as Benes fabrics [8].

In order for a Benes fabric to operate without internal block-
ing in a packet switching set-up, multipath routing (inverse
multiplexing) must be used [9] [10]: each flow (as defined
by an input-output port pair) is distributed among all middle-
stage switches, in a way such as to equalize the rates of the
resulting sub-flows. The middle-stage switches can be thought
of as parallel slices of one, faster virtual switch, and inverse
multiplexing performs load balancing among these slices. Such
multipath routing introduces out-of-order packet arrivals at the
output ports; we assume that egress linecards perform packet
resequencing, so as to ensure in-order eventual packet delivery.
Our scheduling system specificly bounds the extent of packet
mis-ordering, thus also bounding the required size of reorder

Pipelined, Single-Resource
Admission

chedulers

o -1 -B(SF 2
W27 G P,
©? | i H 0,
9), - e k3 Ve, oy,
227 oredill |-~ out(3232)) ing3232) oA
e t/Cree5 o i y NN
ingress (VOO @928 gicr®?| 3O, 5 | Faress
Linecards oo e B 8hers — Siers Linecards
e ki
- .
o
»
/5
7,32) > Aj
L]
L]
L]
—0@27)]
(16232l —~a32 “c32 —oez)

flow-control*

flow=control

flowW-control

Fig. 1. a reference design for this paper.

buffers, so that the latter can fit on-chip using modern IC
technology for our 1024-port reference fabric —see section 4.2.

1.2 Reference Design: a 1024x1024, 10 Tb/s Fabric

Although the architecture proposed and evaluated in this
paper is quite general and applicable to many networks, our
motivation for developing it, and our primary benchmark
for it, is an example next-generation fabric challenge, that
is realistic as a commercial product in the second half of
this decade. This “reference design”, shown in figure 1, is
a 1024 x1024 switching fabric (valency N=1024), made out
of 96 single-chip 32x32 switching elements (3 stages of 32
switch chips of valency M=32 each), plus one (1) scheduler
chip, shown in the top middle of the figure; linecards are
not included in the chip counts. We consider that the line
rate of each link is 10 Gbits/s or more, limited mostly by
the power consumption of the switch chip I/O transceivers.
We name the first, second, and third switch stages as A, B,
and C respectively. Although this topology looks like current
“byte-sliced” commercial switch products, where each cell
is sliced into M subunits and concurrently routed through
all B switches, our system is very different: cells (actually:
variable-size segments) are routed intact (unsliced) through
one of the B switches each, asynchronously with each other;
resequencing is provided in the egress linecards.

We assume links carry variable size segments, each con-
taining one or more variable-size packets or fragments thereof,
as in [11], so as to eliminate padding overhead (if segments
had fixed size) and reduce header and control overhead (by
carrying multiple small packets inside a segment). Linecards
are assumed to contain (large, off-chip) virtual-output queues
(VOQ) in the ingress path, and (small, on-chip) resequencing
and reassembly buffers in the egress path. No (large, off-chip)
output queues are needed, since we do not need or use any
internal speedup; in other words, this architecture has the same
advantages as variable-packet-size buffered crossbars [12]. We
assume that individual switch chips are buffered crossbars, like
our recent chip design [12] which proved their feasibility in

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 2

the 2006-08 time frame for size 32x32, with few-Kilobyte
buffers per crosspoint, at 10 Gb/s line rate. We chose buffered
crossbars because of their simplicity, scheduling efficiency,
and support for variable-size packets.

The scheduler chip is connected to each A switch via one
link, and to each C switch via another link, for a total 64
links (not shown in the figure), just like each switch chip has
64 1/0 links (32 in, 32 out). We chose the parameters of our
reference design so that the scheduling subsystem can fit in a
single chip, although this subsystem could also be distributed
among multiple chips. To achieve a single-chip scheduler, we
have to ensure that the aggregate throughput of its traffic does
not exceed 1/M times the aggregate data throughput of the
fabric, where M=32 is the switch valency, for the following
reasons. Since the M switches in each fabric stage can pass
the aggregate data throughput, it follows that the one scheduler
chip can pass the aggregate control throughput, if the latter is
1/M times the former. The scheduler chip is connected to
each A and C chip via one link; that link suffices to carry
the control traffic that corresponds to the M data links of the
switch chip, if control traffic is 1/M times the data traffic.

For these relations to hold for M = 32, we assume that
the maximum-size segment is 64 Bytes or larger. Under heavy
traffic, almost all segments are of maximum size, because they
are allowed to carry multiple packets (or packet fragments)
each. The control traffic, per segment, consists of a request (10
bits), a grant (10 bits), and a credit (5 bits) —see section 5.1.
Hence, the data throughput, for a switch, per segment, is 1024
bits (512 entering, 512 exiting), while the control throughput,
for the scheduler, per segment, is 25 bits (15 entering, 10
exiting); the resulting control-to-data ratio is 25/1024 ~ 1/41
(bidirectional), or 15/512 =~ 1/34 (entering) and 10/512 ~
1/52 (exiting).

1.3 Our Admission Scheduling Architecture

The basic idea of our scheduler is that, under heavy traffic,
ingress ports have to request and be granted permission before
they can send a segment to the fabric. The request-grant
handshake incurs some delay, but that delay is in parallel with
—hence masked by— the (VOQ) input-queueing delay. Only
under light load would this extra delay be visible, but we
assume that the request-grant protocol is not used for light-
load flows. This point is further discussed in section 1.5 while
the bulk of this paper concerns fabric operation under heavy
load.

The request-grant protocol economizes on buffer space
relative to per-flow buffer reservation and backpressure. Ef-
fectively, instead of first letting data occupy buffers and then
scheduling among the flows to which these data belong (“cor-
rective” congestion management), we schedule first among
competing requests and then let into the fabric only the data
that are known to be able to quickly get out it (“preventive”
congestion management).

Schedulers for bufferless switches (usually crossbars) serve
the same preventive function, but have a much harder time
because they must enforce absolute admissibility of the traffic,

per time-slot. Our scheduler only has to enforce admissibility
over a longer time window, because the fabric contains internal
buffers. This time window serves to mask the latency of
the scheduling pipeline. At the same time, buffers allow
some overprovisioning of traffic admissions. These excess
admissions mask out scheduling inefficiencies (not being able
to simultaneously match all inputs to all outputs). Thus,
instead of using (expensive) internal throughput speedup, as
in bufferless crossbars, we use admissions overprovisioning,
which is almost for free given the low cost of buffer memory in
modern chips. In essence, we achieve the scheduling efficiency
of buffered crossbars, but at a cost that grows with! O(N- VN)
instead of O(N?).

Our admission method is realized by independent per-
output and per-input single-resource schedulers, working in
parallel (figure 1). Input requests specify the flow’s output
port, and are routed to the scheduler for that port. Requests
are queued in front of the proper per-output (credit) scheduler;
these queues often degenerate to mere counters. Each per-
output scheduler generates grants after first allocating space
in that output’s buffer’. Grants can be generated according to
a desired quality-of-service (QoS) policy, e.g. weighted round
robin (WRR) / weighted fair queueing (WFQ). When the data
that were granted eventually depart through that output, the
scheduler is notified so as to re-allocate that buffer space.
Thus, the rate of data departures indirectly regulates the rate
of grant generation, while buffer size (minus control-protocol
round-trip time (RTT)) determines the amount of admissions
overprovisioning.

Multiple per-output schedulers may simultaneously generate
grants for a same input port. A per-input scheduler serializes
these in a desired order and forwards them to the input at a
convenient rate. Per-output and per-input schedulers work in
parallel, asynchronously from each other, in a pipeline fashion
(they can even be in separate chips). As long as each single-
resource scheduler maintains a decision rate of at least one
result per segment time, admissions proceed at the proper rate.

The scheduling subsystem principles and operation are dis-
cussed in detail in section 3; the central scheduler organization
and implementation is discussed in sections 4 and 5.

1.4 Contributions and Results Achieved

First, the paper presents a careful study of this novel
scheduling architecture, its parameters, and its variants. We
consider this class of architectures very interesting because
they perform the function of bufferless-crossbar schedulers,
but at the high efficiency of buffered-crossbar scheduling,
while using significantly less buffer space than buffered cross-
bars, and while being scalable to high-valency fabrics.

leach switch has VN ports, hence N crosspoint buffers; there are VN
switches per stage, hence 3- \/N in the entire fabric. Thus, there are 3- N - VN
crosspoint buffers in the fabric.

2space should in general be reserved for intermediate-stage buffers as well;
however, it turns out that, because the fabric is non-blocking, no serious harm
results if such allocation is omitted —see section 3.3.

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 3

Second, the proposed architecture switches equally well
fixed-size cells or variable-size (multi-packet) segments, be-
cause it only uses independent single-resource schedulers
throughout. Thus, it retains the advantages of buffered cross-
bars: no padding overhead, thus no internal speedup needed,
hence no (large, off-chip) output queues needed, either. Al-
though no internal speedup is used, throughput under unbal-
anced traffic is very high. The simulations presented in this
paper are mostly for fixed-size cells, in order to compare our
results to alternative architectures that operate only on cells.
However, we do present simulations showing smooth operation
with variable-size segments.

Third, advanced QoS policies can be straightforwardly
implemented in the proposed architecture. For example, we
simulated the system using WRR/WFQ admission schedulers:
under inadmissible traffic (persistently backlogged VOQs),
the system distributes input and output port bandwidth in a
weighted max-min fair manner; up to now, this had only been
shown for single-stage buffered crossbars [6].

Fourth, we quantify buffer space requirements, using sim-
ulations. Interestingly, for good performance, a single RTT-
window buffer per-crosspoint suffices, provided that this buffer
size is at the same time large enough for several segments
(cells) to fit in it (RTT is the control protocol round-trip time).
As long as crosspoint buffers are larger than one RTT-window
each, it appears that performance is sensitive to the number of
segments per output port that can be pending inside the fabric
at once. The (excellent) performance results listed in the next
paragraph are achieved with crosspoint buffers on the order of
ten (10) segments each, and assuming that the overall (control)
RTT is equal to 10 segment times.

Finally, the new architecture achieves excellent performance
without any internal speedup. Under uniformly-destined traf-
fic, the system delivers 100% throughput, and delay within
1.5 times that of pure output queueing (OQ) for bursty traffic,
and within 4 times that of OQ under smooth traffic’. Under
unbalanced traffic, the simulated throughput exceeds 95%.
Under hot-spot traffic, with almost all output ports being con-
gested, the non-congested outputs experience negligible delay
degradation (relative to uniform traffic); at the same time, the
congested outputs are fully utilized (100% load). Compared to
bufferless 3-stage Clos fabrics [13], our architecture performs
much better, and, at the same time, uses a much simpler
scheduler.

For the 1024x1024 reference design (section 1.2), these
performance results can be achieved with 780 KBytes of
total buffer memory per switch chip, assuming the overall
control RTT can be kept below 600 ns, and assuming 64 Byte
maximum segment size (hence, 12 segments per crosspoint
buffer). Under the same assumptions, 25 KBytes of reorder
buffer suffice in each egress linecard. Alternatively, if the
control RTT is as high as 3.2 us, if we increase maximum
segment size to 256 Bytes (so as to reduce header overhead),

3results obtained using round-robin schedulers and fabric size up to 256 x
256 made of 16 x 16 switches.

and if we increase crosspoint buffer size to 16 segments =
4 KBytes (for even better performance), then buffer memory
per switch chip will be 4 MBytes (feasible even today), and
reorder buffer size will be 128 KBytes.

Comparisons to related work appear in section 2. The
operation of the scheduler is discussed in sections 3 and
4, and a practical implementation is presented in section 5.
Performance simulation results are presented in section 6.

1.5 Eliminating Request-Grant Latency under light Load

The request-grant protocol adds a round-trip time (RTT)
delay to the fabric response time. For heavily loaded flows
this RTT delay is hidden within input queueing delay. For
lightly loaded flows, it is desirable to avoid this extra delay
in latency-sensitive applications, e.g. cluster/multiprocessor
interconnects. We are currently studying such protocols, and
we have promising preliminary simulation results. The basic
idea of these protocols is as follows.

Every input is allowed to send a small number of segments
without first requesting and receiving a grant. Once these
segments have exited the fabric (as recognized by credits
coming back), the input is allowed to send more segments
without a grant. However, in order to send more segments
before receiving credits for the previous ones, the input has
to follow the normal request-grant protocol. Under light load,
credits will have returned before the flow wishes to send new
segments, thus allowing continued low-latency transmission.
Under heavy load, the system operates as described in the rest
of the paper. To guard against the case of several inputs by
coincidence sending at about the same time “free” cells to
a same output, thus creating a congestion tree, we consider
having “free” cells and “request-grant” cells travel through
separately reserved buffer space (and being resequenced in
the egress linecard).

2 . RELATED WORK
2.1 Per-Flow Buffers

In a previous study [2], we considered a buffered Benes
fabric where congestion management was achieved using per-
flow buffer reservation and per-flow backpressure signaling. To
reduce the required buffer space from O(N?) down to O(N)
per switching element, where N is the fabric valency, we
introduced per-destination flow merging. That system provides
excellent performance. However, the required buffer space, at
least in some stages, is M - N, where M is the switch valency.
In our reference design, M is relatively large in order to reduce
the number of hops; thus, either the first or the third stage
would need switches containing 32 K “RTT” windows each,
which is rather large. Furthermore, the buffers in this space
are accessed in ways that do not allow partitioning them for
reduced throughput (e.g. per-crosspoint).

This paper addresses those practical problems: we only
use O(M?) buffer space per switch (only 1 K windows for
the reference design), explicitely partitioned and managed
per-crosspoint. This partitioning allows variable-size segment
operation. Furthermore, the present architecture can provide

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 4

WMMF QoS, which would be quite difficult in [2], where
merged-flow weight factors would have to be recomputed
dynamically during system operation.

2.2 The Parallel Packet Switch (PPS)

The Parallel Packet Switch (PPS) [14] [15] is a three-stage
fabric where the large (and expensive) buffers reside in the
central-stage. First and third stage switches serve a single
external port each. By increasing the number of central ele-
ments, k, the PPS can reduce the bandwidth of each individual
memory module, or equivalently provide line-rate scalabil-
ity. Essentially, the PPS operates like a very-high-throughput
shared buffer, which is composed of k interleaved memory
banks; one expensive and complex component of the design
is how to manage the shared buffer data structures (queue
pointers etc.) at the required very high rate, hence necessarily
in a distributed fashion. The PPS provides port-rate scalability,
but does not provide port-count (/N) scalability. One could
modify the PPS for port-count scalability, by modifying each
first-stage element from a 1-to-k demultiplexor serving one
fast input to an M X k switch serving M normal inputs;
correspondingly, each third-stage element must be changed
from a k-to-1 multiplexor to a k x M switch. However,
this latter modification would require dealing with output
contention on the new “subports”, i.e. per-subport queues
along the stages of the PPS. Effectively, then, this radically
altered PPS would have to solve the same problems that this
paper solves for the input-queued fabric.

2.3 Memory-Space-Memory Clos

Clos fabrics containing buffers in the first and last stages, but
using bufferless middle stage, and having a central scheduler,
have been implemented in the past [16] and further studied
recently [13]. These schedulers are interesting but complex
and expensive (they require two iSLIP-style exact matchings
to be found, some of which among N ports, per cell-time).
Like iSLIP, they can provide 100% throughput under uniform
traffic, but performance suffers under non-uniform load pat-
terns. In-order delivery results from (or is the reason for) the
middle stage being bufferless. This paper demonstrates that
the cost of allowing out-of-order traffic, and then reordering
it in the egress linecard, is minimal. In return for this cost,
the use of buffered crossbars in all stages of our architecture
provides much better performance with a much more scalable
scheduler.

2.4 Regional Explicit Congestion Notification (RECN)

A promising method to handle the congestion in multistage
switches has recently been presented in [4]. A key point is
that sharing a queue among multiple flows will not harm
performance as long as the flows are not congested. Hence, [4]
uses a single queue for all non-congested flows, and dynam-
ically allocates a set-aside-queue (SAQs) per congestion tree,
when the latter are detected. Congestion trees may be rooted
at any output or internal fabric link, and their appearance is
signaled upstream via “regional explicit congestion notification

(RECN) messages. We consider [4] and our scheme as the
two most promising architectures for congestion management
in switching fabrics. Precisely comparing them to each other
will take a lot of work, because the two systems are very
different from each other, so the comparison results depend a
lot on the relative settings of the many parameters that each
system has.

Nevertheless, a few rough comparisons can be made here:
(i) RECN saves the cost of the central scheduler, but at
the expense of implementing the RECN and SAQ func-
tionality (which includes a content-addressable memory) in
every switch; (ii) under light load, RECN uses very little
throughput for control messages; however, some amount of
control throughput must be provisioned for, to be used in case
of heavy load, and this may not differ much from control
throughput in our system; (iii) RECN has not be studied for
fabrics using multipath routing, which is a prerequisite for
economical non-blocking fabrics, like our system does, hence
it is not known whether and at what cost RECN applies to
non-blocking fabrics; (iv) RECN works well when there are
a few congestion trees in the network, but it is unknown
how it would behave (and at what cost) otherwise, while
our system operates robustly independent of the number of
congested outputs (no internal links can ever be congested
in our system); (v) contrary to our system, in RECN, during
the delay time from congestion occurrence until SAQ setup,
uncongested flows suffer from the presence of congested ones;
(vi) RECN relies on local measurements to detect congestion;
these measurements are performed on an output buffer; for
reliable measurement (especially under bursty traffic or with
internal speedup), that buffer cannot be too small; at the same
time, RECN signaling delay translates into SAQ size; the sum
of all these required buffer sizes may end up not being much
smaller than what our system requires.

2.5 End-to-end Rate Regulation

Pappu, Turner, and Wong [17] [18] have studied a rate
regulation method analogous to ours. Both systems regulate
the injection of packets into a fabric so as to prevent the
formation of saturation trees.

However, the Pappu system foresees a complex and lengthy
communication and computation algorithm; to offset that cost,
rate adjustments are made fairly infrequently (e.g., every 100
us). Such long adjustment periods (i) hurt the delay of new
packets arriving at empty VOQs; and (ii) do not prevent
buffer hogging and subsequent HOL blocking during transient
phenomena in between adjustment times, when these buffers
are not proportionally sized to the long adjustment period.
Our scheme operates at a much faster control RTT, with much
simpler algorithms, basically allocating buffer space, and only
indirectly regulating flow rates. The result is low latencies and
prevention of buffer hogging. Additionally, Pappu e.a. do not
address the size of resequencing buffers, while we provide a
quite low bound for that size.

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 5

3. SCHEDULING THREE-STAGE NON-BLOCKING FABRICS

This section shows how to properly schedule, using in-
dependent and pipelined schedulers, a N-port non-blocking
three-stage fabric, with as few as O(M) queues per M x M
switch (M =N). To that end, we combine ideas from buffer-
less and buffered fabrics. The first scheduler to be presented
here is derived from first principles, and for that reason it is
expensive and complicated; then we simplify it in sections 3.3
and 4.

3.1 Key Concepts

The first idea is to use an independent scheduler for each
fabric buffer (this will later be relaxed). A packet (segment)
will only be injected into the fabric after all schedulers for all
buffers along its route have reserved space for the packet. First
reserving then injecting trades latency (for the request-grant
round-trip time (RTT)) for buffer space economy: buffers are
only occupied by cells that are guaranteed to move forward,
instead of being uselessly held by congested-flow cells, with
backpressure protocols.

We start buffer-space reservations from the last (output)
fabric stages, moving left (to the inputs), one stage at a
time; this is precisely opposite to how cells progress under
backpressure protocols. The direction chosen ensures that each
reservation, when performed, is on behalf of a cell that is
guaranteed not to block inside the buffer: buffer space has
already been reserved for that cell in the next downstream
buffer. Hence, cells will be allowed to move freely, without
need for any backpressure to ever hold them back, and without
danger of any buffer overflowing.

Of course, inputs and outputs play symmetric roles in switch
scheduling. When consuming buffers in the downstream direc-
tion, as with backpressure protocols, the danger is for many
inputs to simultaneously occupy buffers with cells going to the
same output: output contention delays cell motion. Conversely,
when reserving buffers in the upstream direction, like we do
here, the danger is for many outputs to simultaneously reserve
space for cells to come from the same input: input contention
delays cell arrivals. This is analogous to “bad synchronization”
of round-robin pointers in the initial, suboptimal iSLIP idea
[19]. What limits input contention in our case is that buffer
reservations constitute a second pass through the fabric, after
requests have traversed once from inputs to the per-output
scheduler. Thus, the only way for an input to receive an
excessive number of reservations from multiple outputs is for
other inputs not to have sent any requests to those outputs. Our
recent paper [20] studied this issue in a single-stage fabric
equipped with small output queues. There, we found that,
when at any given time each scheduler may have reserved
space for multiple inputs, the bad effects of “synchronization”
are confined; on the order of ten cells per output port sufficed
there. We observe a similar result in this paper, except that
the number of segments per output is higher in the present
paper, partly due to the buffered crossbar organization, which

(1) request ("ask for credits”)
4-stage pipeline of credit schedulers
(one "time-slot" delay per-stage)

A 1

LGy a-cig:]
)
(2G| B2-Cigy|
VOQs<grant (2) 2 e
iy e & G‘B—2©<
) 22) gy | 8lA2-Bagy | 8| B2-Cogr |8
%' 4th ﬁnput) stage f l3/7d (A-B) fiznd (B-C) 1175? (output) stage
Q replenished credits from A, from B, from C
§ (7 e TR JB=cr— 1o
X 0o(1,2)
P 024] 2 B J & Acet e
in fabric e 3 1 02.1)
¥ Ry J

| _C2 02,2,
122 gy 1jA2:B2 5, T)|B2oCAo, 1192

Fig. 2.
fabric.

pipelined buffer scheduling in a 4 X 4, three-stage non-blocking

partitions each output queue’s space into many smaller per-
input spaces*.

Note that similar conflicting decisions also occur in buffered
crossbar scheduling: a set of inputs may concurrently forward
packets to a same output. However, these inputs are not
blocked following their first, suboptimal decisions: they may
continue sending cells to other outputs. This is the reason why
buffered crossbars yield good performance without explicit
coordination between the port schedulers. A buffered crossbar
uses order N segment buffers per output to achieve this result.
Our results indicate that one can do equally well with quite
fewer (smaller) buffers.

3.2 Buffer Scheduling

Switch schedulers match inputs to outputs (or to internal
links). Schedulers for bufferless switches do that precisely, per
time-slot [19][13]. On the other hand, if there is a buffer of size
B° in front of each output (or internal) link, the scheduling
constraint is relaxed: the amount of traffic admitted to that link
can be as much as B per time-slot, but over any interval of
length 7' that amount of traffic must not exceed A - T + B°,
where) is the link rate’.

We start with a conceptual scheduler, shown in figure 2, that
admits this “window-type” feasible traffic; we will simplify it
in the next sections. It consists of single-resource schedulers
per output and per internal link. Each scheduler hands out
credits for the buffer space in front of the corresponding
link. Credits are replenished when the admitted cell eventually
frees the corresponding resource. Each credit scheduler works
independent of the others, using a private credit counter and
private buffers (queues) that hold outstanding requests, until
the scheduler can serve these requests. Each scheduler needs
to grant at least one segment per segment-time (as long as it

“4we further improve performance by using a backpressure mechanism that
prevents persistent buffer reservations that conflict on inputs —see section 4.4.

Sas mentioned already, when buffer space is reserved for every cell in every
buffer, backpressure is not needed and cells are never dropped; in the absence
of backpressure, each link always empties its buffer at peak rate A. Notice
that this also yields an upper bound for cell delay through the fabric: number
of stages, times buffer size per stage, divided by link rate .

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 6

has credits), in order to keep its associated link busy. It can
grant credits faster than that for a while, but when it runs
out of credits the grant rate will be dictated by the credit
replenishment rate, i.e. the actual traffic rate on the link.

As seen in figure 2, these schedulers form a 4-stage pipeline,
with stages decoupled by the request buffers. Each stage
contains N schedulers. The first-stage schedulers allocate
space for the IV output buffers of the C-stage switches (figure
1). We call them credit schedulers, because they hand out
credits. The 2nd-stage schedulers do so for the B switches; the
3rd stage handles A-switch outputs; we call those intermediate
schedulers. Finally, each 4th-stage scheduler corresponds to
a linecard, and sends credits (grants) to the corresponding
VOQs; we call them grant schedulers.

Credit schedulers enforce traffic admissibility (feasible
rates). Due to multipath routing, credit (output) schedulers
have the additional duty to perform path selection (choose
a B switch), and direct the request to the appropriate 2nd-
stage scheduler. When a grant is eventually sent to a linecard,
it specifies both the output port (VOQ) and the route to be
followed.

Let dg, denote the delay incurred by any single scheduler,
and d7'% the delay of a complete scheduling operation; d%) =
4 - dZ,. If each scheduler starts with an initial pool of at
least d”'h - \ worth of buffer-space credits, the pipeline can
be kept busy, and throughput is not wasted. It suffices for
schedulers to generate grants at rate \. This is the nice feature
of buffered fabrics: the control subsystem can be pipelined,
with considerable inter-stage and total latency, as long as the
pipeline rate (individual scheduler decision rate) matches link
rate (one grant per segment-time).

3.3 Simplifications owing to Load Balancing

Route selection, for this multipath fabric, can be performed
by the (per-output) credit schedulers. To obtain non-blocking
operation, each (per input-output pair) flow must be distributed
uniformly across all B switches. Such load balancing (i) has
been shown very effective in Clos/Benes networks [14] [2],
and (ii) can be implement in a distributed manner.

Consider a particular fabric-output port, 0. Assuming an
ideal, fluid distribution of the type discussed above, the traffic
destined to output o and assigned to any particular switch By,
is (%, Bﬁo) leaky-bucket regulated. Now, considering all M
outputs residing in the same C switch with output o, C.,
their collective traffic steered on any switch B; will be the
summation of M sources, each (%, Bﬁo) regulated, i.e. during
any time interval 7T, the traffic admitted for any particular
B, — C. link is:

L(By — C.,T) < Yol ATEBY = \.T + B°
In other words, C' switch admissions and load distribution
guarantee that the aggregate traffic into the buffer in front
of link B, — C, will always be (A, B°) constrained, in-
dependent of B switch admissions. At the same time, as
already mentioned, there is no backpressure in the system of
figure 2; hence link B, — C, will never be idle whenever
its buffer is backlogged. Thus, in this ideal, fluid system,

the traffic admitted into C' switches will always find room
in the By, — C. buffer, hence we can safely eliminate the
second scheduler stage, which was responsible for securing
buffers in the B switches. In a real (non-fluid) system, segment
distribution will have quantization imbalance; thus, to prevent
occasional overflows, we have to use backpressure from stage
B to stage A.

To simplify the scheduler further, we discard the third sched-
uler stage (for A buffers) too, replacing it with conventional
backpressure from stage A to the ingress linecards. We may
safely do so because, in a fluid model, owing to perfect load
balancing, the traffic entering the fabric and routed through any
particular A, — By link, is: L(A, — By, T) < S0 X =
A. Although in the fluid model no A buffers (in front of
A, — By links) are needed, the real system does require
them, in order to deal with quantization imbalance (multiple
inputs of a same A switch sending concurrently to a same B
switch, which is inevitable under distributed and independent
load-balancing®).

These points are supported by the simulations results on
delay under congestion epochs (sec. 6.3). The central scheduler
described in the next section uses these simplifications: only
credit (output) and grant (input) schedulers are needed, without
any intermediate schedulers, as shown in figure 1. Note
however that distributed scheduler implementations would
need these intermediate nodes, in order for them to route
grants from the credit schedulers to the grant schedulers
(similar routing would be needed from VOQs to credit (output)
schedulers).

4 . CENTRAL SCHEDULER

The scheduler proposed in section 3 is amenable to dis-
tributed implementations, scaling to large fabric valencies.
However, in this paper, our reference design (section 1.2)
employs a single central control chip, that contains all credit
and grant schedulers. This choice allows “plain” switches in
the datapath, without requiring modifications to add parts of
the (distributed) scheduler in them’. This section shows (i)
how to minimize the information carried by each request/grant
notice, thus reducing control bandwidth, and (ii) how to turn
each request and grant queue into a simple counter; it also
presents the overall operation of the system.

4.1 Distribution Policy & Buffer Allocation Granularity

Section 3 used the term B° to refer to the buffer in front of
a switch output. Since we assume buffered crossbar switching
elements, B? is in fact partitioned per-input link of the switch;
we will use the term B* for an individual crosspoint buffer; the
sizes are: B°=B"-M. Since each C switch buffer corresponds
to a specific upstream B switch, when a credit scheduler
reserves space for a cell, it must choose a particular B switch

Reference [21] removes these buffers by considering coordinated, static
cell distribution from the input side, independent of the destination. However,
this may cause Benes to be blocking.

"note, however, that it is also possible to implement distributed schedul-
ing entirely on the linecards, without adding scheduler components in the
switches.

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 7

egress linecard j

segment reorder packet reassembly
buffer (size B*o) buffer (size N*S{i&)

in1

@ in2
complete

-~ | packet boundaries

N EAinN

packets

i in-order segments i
credit scheduler for out j

Fig. 3. Egress linecard organization. Segments are ordered, and then their
fabric-output credits are returned to the credit scheduler.

and reserve space in the corresponding C' buffer. Hence, each
grant must carry a B-switch identifier.

4.1.1 Coordinated Load Distribution Decisions: We can
perform this B switch choice using per-flow round-robin
segment distribution®. Besides other advantages, this distri-
bution method ensures that the route of each segment can be
independently and consistently determined at both its (per-
output) credit scheduler, and at its ingress linecard. Thus,
this route assignment need not be communicated from the
scheduler to the ingress: upon receiving a grant, the linecard
can infer the route assigned to the segment by the credit
scheduler. To do so, both of those units initialize a private,
per-flow pointer to an agreed upon B switch, and then advance
that pointer for every new grant or segment of that flow. In
this way, we reduce the grant width by log, M bits.

4.1.2 Buffer Reservations: fixed or variable space?: To
support variable-size segments, one has the option of either
(i) having each request-grant transaction explicitly specify a
size and carry the corresponding count; or (ii) always request
and allocate buffer space for a maximum-size segment, even
when the real segment that will eventually travel through that
space is of a smaller size. We opt for fixed size allocation,
for simplicity reasons: in this way, we reduce the width of
requests and grants (they do not need to carry a size field),
the width of request and credit counters in each scheduler,
and the width of credits returned from C' switches. But, most
importantly, this method allows the grant queues in front of
the (per-input) grant schedulers to be implemented as simple
counters’.

4.2 Resequencing: Bounding the Reorder Buffer Size

Multipath routing through the B switches can deliver pack-
ets out of order to the C' switches. Resequencing is performed
on the egress linecards'’, as shown in figure 3. The scheduler
bounds the required reorder buffer size, and that bound is very
modest in the reference design, as discussed in section 1.4.

8this method ignores the (usually small) load imbalance caused by variable
segment size.

9given the round-robin way in which ingress linecards infer each segment’s
route, grant schedulers are not allowed to merge consecutive grants. If grants
were variable-size, a simple counter would not suffice to keep consecutive
grants from being merged with each other.

10resequencing could also be performed in the C' switches, but not with the
existing buffers: to avoid deadlock, the reorder buffers must be in addition to
the already existing (single-lane, crosspoint) buffers.

We let the credit schedulers manage and allocate space in
the reorder buffers, just as they do for the buffers in the C'
switches. The C' buffers total size is B° per output port. We
assume that each egress linecard has a reorder buffer of equal
size, B° = B* - M. In this way, by allocating space for a
segment in the C' switch, the credit scheduler also implicitly
allocates space in the reorder buffer. Next, we modify the time
at which a credit is returned to the central scheduler: up to now
we assumed a credit is generated as soon as a segment exits the
fabric; in reality, the credit is only generated when the segment
is no longer waiting for any earlier segment to arrive from
the fabric. This scheme effectively combines flow-control and
resequencing, using a common admission mechanism in the
central scheduler. Since we delay credit generation, the added
delay (C switch to end of resequencing) must be counted
in the overall control round-trip time (RTT), to be used in
sizing fabric buffers. The next section reviews overall system
operation.

4.3 Operation Overview

Segment Admission: In each ingress linecard, a request
scheduler visits the VOQs and sends requests for the cor-
responding outputs to the central scheduler. Upon reaching
the latter, each request, say ¢—o, increments the i—o request
count, which is maintained in front of the credit scheduler
for output o. The credit scheduler also maintains M credit
counters, one per crosspoint queue in its C' switch, and N
distribution pointers, one per flow arriving to this output. Each
credit counter is decremented by one when the credit scheduler
allocates space from that counter to one cell (segment). Each
distribution pointer identifies the B switch through which
to route the next cell of the corresponding flow, i—o; it
is initialized and incremented as described in section 4.1.1.
Connection ¢—o is eligible for service at its (output) credit
scheduler, when its request counter is non-zero, and the credit
counter pointed by the distribution counter i—o is also non-
zero. Once connection i—o gets served, its request count
decreases by one, and a grant is routed to its input grant
scheduler, where it increments grant counter ¢—o. Any non-
zero grant counter is always eligible for service, and, once
served, is decremented by one. When served, grant i—o is
sent to its ingress linecard, to admit a new segment inside the
fabric.

Segment Injection: When a grant arrives to a VOQ, that
queue injects its head segment into the fabric. One segment
is injected even if its size is not the maximum (grants always
refer to maximum-size segments). Small segments underutilize
the buffer spaces that have been reserved for them; this is
not a problem: the reason why VOQ i—o does not contain
a maximum-size segment is that this smaller segment is the
only datum in the queue [11]. If the load of this flow persists,
the VOQ will grow to contain multiple packets, in which case
the head segment will always be of maximum-size.

The route of the injected segment is given by input distribu-
tion counter ¢—o; this counter is initialized and incremented
as described in section 4.1.1. A sequence tag is included in the

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 8

header of the segment, specifying its order among segments
in the ¢—o VOQ. The segment has then to compete against
other “granted” segments, and will reach its C' switch subject
to hop-by-hop, credit-based backpressure!!. This backpressure
is indiscriminate (not per-flow), but, as explained in section
3.3, it will not introduce harmful blocking. No backpressure
is exerted from the egress linecards to the C' stage.

4.4 Limiting the per-flow Outstanding Requests

The request schedulers limit the number of requests that
a VOQ may have outstanding inside the central scheduler to
an upper bound u. This has the following benefits. First, the
respective request or grant counter in the central scheduler
will never wraparound (overflow) if it is at least [logzu]-bit
wide. Second, this “flow control” prevents output credit sched-
ulers from severely synchronizing in conflicting decisions, i.e.
granting buffers to a few, oversubscribed inputs. If some credit
schedulers do so for a while, their grants will wait in front of
the input grant schedulers; the latter hand them out at the
rate of one per segment time; the busy VOQ cannot generate
new requests until it receives grants. Effectively, after a while,
the synchronized output (credit) schedulers will find that the
“congested” inputs have no more requests for them; therefore
they will be forced to serve requests from other inputs.

5. CENTRAL SCHEDULER IMPLEMENTATION
5.1 Central Chip Bandwidth

As shown in figure 1, requests issued by the ingress
linecards first travel to the A-switch, at the rate of one VOQ
request per-segment-time; each request carries an identifier of
the output port it refers to. Inside the A switch, VOQ requests
are time division multiplexed (TDM) upon a link that transfers
M (equal to TDM frame size) requests to the scheduler per-
segment-time, one from each linecard —see figure 4. The
scheduler infers the input port linecard of a request by its
position in the TDM frame (request belt). Grants destined to
input ports of a particular A switch depart from the scheduler
on a similar TDM link (grant belt): the position (slot) of a
grant in a TDM frame indicates to the A-switch the linecard
that must receive each grant. The “payload” of each request or
grant notice is an identifier of the fabric-output port that the
notice goes to, or comes from; this destination identifier can
be encoded in logo N bits. Besides request-grant notices, the
central scheduler must also receive credits from the switches
in the C stage. These credits are conveyed through a link
connecting each C-switch with the scheduler. Each such link
carries M credits per-segment-time, one per output port, in
a similar TDM manner: the position of a credit in the TDM
frame identifies the output port that the credit comes from,
and its payload specifies the crosspoint queue ahead of that
port generating the credit —i.e., log, M bits payload per TDM

slot.

Mour system uses credit-based backpressure from the C' stage to the B
stage, so that a few segments can be injected without requesting credits —see
section 1.5. Assuming that all injected segments have been granted credits,
this backpressure will never block or halt a segment.

Pipelined, Single-Resource Admission Schedulers

TDM (replenished) credits
from fabric output buffers in C1 switch;
geeg time!
=] :
o[w[w

: et~ [cnil~{ [cnt]
[ermiiemvil
fEi]
: enil kn
[oru
23
: entl~ [entl~ [ent
5

" Tcredit i i
scheduiers [P 'EPB .

p’grant
schedulers T

prims-g|iino

g
P
5

&

@
=
&

time

ndoupurd

supalg/siuelb WAL

in2

TDM (VOQ) requests
from A1 to credit schedulers

L yBnoiy; ‘spieasaul DOA 01

VOQ linecards

Fig. 4. Central scheduler for N=4 and M=2; request-grant communication
with ingress linecards and credit replenishment from C' switches use time
division multiplexing (TDM).

Using TDM multiplexing, the aggregate bandwidth of the
scheduler’s chip is 2 - N - logy N bits per-segment-time —for
receiving requests from and issuing grants to all fabric-input
ports— plus N - log, M bits per-segment-time for receiving
credits from all fabric-outputs, for a total of N - (2-log, N +
log, M) bits per-segment-time. For a 1024-port fabric, with
M=32, \=10 Gb/s, and segment size 64 Bytes, the aggregate
input plus output bandwidth is 25.6 Kbit per 51.2 ns, or
roughly equal to 500 Gb/s.

5.2 Routing Requests and Grants to their Queues

Figure 4 depicts the internal organization of the cen-
tral scheduler. Requests from different ingress ports arriving
through a given A-switch are conceptually demultiplexed and
routed to their (output) credit scheduler; in an actual imple-
mentation, no demultiplexing is needed, and the counter can be
held in SRAM blocks, accessed in the same TDM manner as
external links. Conceptually, at the interface of the scheduler’s
chip, we have N inputs that want to “talk” to N output
schedulers. As shown in figure 4, this can be implemented
by a crossbar. Each crossbar input needs only identify the
output for which it has a new requests —no other payload is
being exchanged. When a credit (output) scheduler (middle
of the chip) serves an input it increments the corresponding
grant counter (right half of the chip). The grant counters form
another conceptual “crossbar” analogous to the one formed by
the request counters.

This first, conceptual organization uses 2 - N2 request/grant
counters, [logou]-bit wide each, and N2, log,M-bit wide
distribution (load balancing) counters. For a 1024-port fabric,
and u=32, this results in roughly 15 M of counter bits.
Each such bit costs about 20 transistors (xtors), hence, the
chip of such a straightforward implementation would need
approximately 300 Muxtors, in total.

A Dbetter implementation groups several counters in sets,
implemented as SRAM blocks with external adders for incre-
ments and decrements. In this way, we can reduce the chip die
considerably, since SRAM is much more compact than random
logic. At the same time, input or output operations are time
multiplexed on a set of hardware controllers running faster
than the segment-time. For instance, we can group outputs in

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 9

100 7?12:_‘5110 b1‘6—HTT16 ('poﬂib‘i/" 1000 T T T

S—A—_ 7 el ——— =7 SF: bi12,RTT12 .
_95¢ : AN /A MSM: 4 iterations : . . .
290l SF b12-RTT6 1L \SF b12-RTT12 (ports 64,144, and 256) /.| iSLIP: 2 iterations : : :
§_857 b8=RTTO bi2-RTI2 1L N i %\100 bevns ,,;,;r;,,_M,S_M@gQ_@_:_*";;,%,_ — Sz
S b4-RTTO :) . : [:
280 : 1t . i MSM (ports 64) ——— /- /
£75¢ SN et 1F f 1 E ‘ : /,/’ L iSLIP (ports 64)
70} ports 1L S | O A e N
. < MSM-iterationsd | > :
651 J, 64-port Fabrics| | L/\/ (25égza,;;"s\~ % _ e
60 (a) (b) | o _
0 02 0.4 06 0.8 10 02 0.4 0.6 08 S : : :
unbalance factor, w unbalance factor, w o 40 R T SO
£ : . SF(ports 64, 144, and 256)
Fig. 5. Throughput under unbalanced traffic. 100% input load consisting of : :
fixed-size cell Bernoulli arrivals. (a) 64-port fabric (N=64, M=8); (b) varying 0.1 i i i i

fabric sizes up to N=256, M=16.

groups of M, and use only one credit scheduler controller
performing request admissions for these outputs, in a TDM
manner.

6 . SIMULATION RESULTS

An event-driven simulation model was developed in order
to verify the design and evaluate its performance for various
fabric sizes, crosspoint buffer sizes, and round-trip times. All
experiments except section 6.6 use fixed-size cell traffic, in or-
der to compare to alternative architectures that only work with
fixed-size cells. We simulated the fabric under smooth, bursty,
unbalanced, hotspot, and inadmissible traffic. Smooth traffic
consists of Bernoulli cell arrivals with uniformly distributed
destinations. Bursty traffic is based on a two-state (ON/OFF)
Markov chain!2. In unbalanced traffic, destinations are picked
as in [22], using a parameter w: when w is zero, traffic is
uniform, whereas when w is one, traffic consists of persis-
tent, non-conflicting, input-output connections. Under hotspot
traffic, each destination belonging to a designated set of “hot
spots” receives traffic at 100% collective load, uniformly from
all sources; the rest of the destinations receive a smaller load.
Hotspots are randomly selected among the fabric-output ports.
Finally, inadmissible traffic patterns were used in order to
examine how well can our architecture distribute input and
output port bandwidth based on sophisticated QoS criteria.

The delay reported is the average, over all segments (cells),
of the segment’s exit time —after being correctly ordered inside
the egress resequencing buffers—, minus the segment’s birth
time, minus the request-grant cold start delay, and minus
the segment’s sojourn time through the fabric. Thus, under
zero contention, the reported delay of a segment can be as
small as zero. The control round-trip time (RTT) (figure 1:
arrows 2,3,4), consists of: credit and grant scheduler delays
plus segment sojourn time from ingress to egress plus credit
sojourn time from egress linecard to scheduler. This control
RTT is used to size the crosspoint buffers. We use 95%
confidence intervals of 10% in delay experiments, and of 1%
in throughput experiments.

20N periods (consecutive, back-to-back cells arriving at an input for a
given output) last for at least one (1) cell-time, whereas OFF periods may
last zero (0) cell-times, in order to achieve 100% loading of the switch. The
state probabilities are calibrated so as to achieve the desirable load, giving
exponentially distributed burst length around the average indicated in any
particular experiment.

i
0.4 0.5 0.6 0.7 0.8 0.9 1
load, r

Fig. 6. Delay versus input load, for varying fabric sizes, N; buffer size
b=12 cells, RTT=12 cell-times (time-slots). Uniform Bernoulli fixed-size cell
arrivals. Only the queueing delay is shown.

We use the name Scheduled Fabric (SF) to denote our
system. SF uses no internal speedup. The default schedulers in
SF are pointer-based round-robin (RR) schedulers throughout
the fabric, the linecards, and the admission unit!3. We compare
SF to output queueing (0OQ), to iSLIP, and to a three-stage Clos
fabric consisting of a bufferless middle stage, and buffered first
and last stages (MSM), scheduled using the CRRD algorithm
[13].

6.1 Throughput: Comparisons with MSM

First, we measure throughput for different crosspoint buffer
sizes, b, and for different RTTs under unbalanced traffic; for
comparison, we also plot MSM results. See figure 5. Figure
5(a) shows that with b as small as 12 cells, SF approaches
100% throughput under uniform traffic (w=0), and provides
more than 95% throughput for intermediate w values, which
correspond to unbalanced loads. We also see that, with the
same buffer size (b=12), and for any RTT up to 12 segment-
times, this performance does not change. Figure 5(b) shows
this performance to stay virtually unaffected by the fabric size,
N, increasing from 64 to 256. By contrast, the performance of
MSM drops sharply with increasing N. Although MSM may
deliver 100% throughput (similar to iSLIP), it is designed to
do that for the uniform case, when all VOQs are persistent; if
some VOQs fluctuate however, pointers can get synchronized,
thus directly wasting output slots. By contrast, SF' does not
fully eliminate packet conflicts; in this way, every injected
segment, even if conflicting, makes a step “closer” to its
output, thus being able to occupy it on the first occasion.

6.2 Smooth Arrivals: Comparison with OQ, iSLIP, and MSM

Figure 6 shows the delay-throughput performance of SF
under smooth traffic, and compares it with that of MSM, iSLIP,
and ideal OQ switch. Compared to the bufferless architectures,
SF delivers much better performance. The delay of SF is
not affected by fabric size, while that of MSM is very much
affected. The delay of SF under smooth traffic is within four

Bthe round-robin pointer of each credit scheduler visits inputs (request
counters) in a pseudo-random but preprogrammed order, different for each
output, for reasons of better “desynchronization”.

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 10

1000 E T T T T 3
ESF: b12, RTT12 64-port Fabrics/]
r MSM: 4 iterations /4

100 | A

mean delay (time-slots)

SF-=h/0(uniform)
0.82

1
07 08 09 1

Fig. 7. Delay of well-behaved flows in the presence of hotspots. h/e specifies
the number of hotspots, e.g., h/4 corresponds to four hotspots. Bernoulli fixed-
size cell arrivals; 64-port fabric, b=12 cells, RTT=12 cell-times (time-slots).
Only the queueing delay is shown.

times that of OQ. We hypothesize that the main source of
additional delay, in SF relative to OQ, is the large number of
contention points that a segment goes through during its trip
inside the fabric.

6.3 Overloaded Outputs & Bursty Traffic

A major concern in multistage fabrics is the adverse ef-
fect that congestion at certain outputs may have on other
uncongested outputs. Our design explicitly guards against that
danger. Figure 7 presents the delay of uncongested flows (non-
hotspot traffic), in the presence of a varying number of other
congested outputs (hotspots). All flows, congested or not, are
fed by Bernoulli sources. For comparison, we also plot cell
delay when no hotspot is present, denoted by h/0, and the OQ
delay.

To see how well SF isolates flows, observe that the delay
of h/4 (i.e., the delay of well-behaved flows in the presence
of four (4) congested outputs) is virtually identical to that
of h/0. Nevertheless, we see the delay of well-behaved flows
increasing with the number of hotspots, with the increase
being more pronounced for large numbers of hotspots. If
the well-behaved flows were subject to backpressure signals
coming from queues that feed oversubscribed outputs, these
flows’ delay could probably grow without bound, even at very
moderate loads. However, this is not the case with SF. The
observed increase in delay is not due to congestion effects,
but to hotspot traffic increasing the contention along the shared
paths inside the fabric. For instance, when fifty out of the sixty-
four output ports of the fabric are oversubscribed (h/50), and
the load of the remaining fourteen output flows is 0.1, the
effective load, at which each fabric-input injects segments,
is close to 0.82. We have marked in figure 7 the delays of
h/50 at load 0.1 and of h/0 at load 0.82. We see that these
two delays are almost identical'*! Analogous behavior can be
seen in the MSM plots. (Consider that MSM contains N large

l4the delay of h/50 at load 0.1 is actually a bit lower than the delay of
h/0 at load 0.82. This is so because in h/50 under (non-hotspot) load 0.1, the
output load for the uncongested packets, whose delays we measure, is 0.1,
whereas in h/0 under load 0.82, the output load is 0.82 for all flows.

4096 T T
SF: b12, RTT12

1024
286 [B e

64

mean delay (time-slots)

h/4, h16 |

. . : : 256-port Fabrics
L L L L L L L L

10.1 02 03 04 05 06 07 08 0.9 1

load, r

Fig. 8. Delay of well-behaved flows in the presence of hotspots, for varying
burstiness factors. Bursty fixed-size cell arrivals; 256-port fabric, b=12 cells,
RTT=12 cell-times (time-slots). Only the queueing delay is shown.

VOQs inside each A-switch, which are being shared among all
upstream ingress linecards, in order to isolate output flows.)

Not shown in the figure is the utilization of the hotspot
destinations (the load offered to them is 100%). In SF, all
hotspots were measured to be 100% utilized, for any load of
the well-behaved flows; by contrast, in MSM, the respective
utilization dropped below 100%, because, for 100% utilization,
the prerequisite of the CRRD scheme is to desynchronize its
RR pointers, which can only be achieved when all VOQs are
active. When some VOQs are not always in active state, as
those belonging to the well-behaved flows in our experiment
here, pointers may get synchronized, rendering considerable
throughput losses.

Lastly, we examine the effect of burstiness on the perfor-
mance of the SF fabric'>. The results'® are shown in figure
8. While SF delay was approximately 4 times larger than
OQ delay under smooth traffic, here SF delay is only 1.5
times larger than OQ delay!”. In most non-blocking fabrics,
the primary source of delay under bursty traffic is the severe
(temporal) contention for the destination ports, many of which
may receive parallel bursts from multiple inputs [23][19]. For
the same reason, under bursty traffic, the incremental delay that
well-behaved flows experience in the presence of hotspots is
less pronounced than with Bernoulli arrivals —figure 8 versus
figure 7.

6.4 Output Port Bandwidth Reservation

The SF architecture not only protects one output flow
from another, but can also differentiate among flows going
to the same output, if so desired for QoS purposes. Previ-
ous experiments used RR schedulers. Now, we modify the
(single-resource) credit schedulers, which allocate output-port
bandwidth to competing inputs: in this experiment we use

13in [20], using a similar scheduler but for single-stage switches, larger
delays than those that we report here were observed under bursty traffic; [20]
eliminated these large delays using a method that, if needed, can easily be
incorporated in the scheduler of this paper, as well.

16we used a warm-up period of 150 millions cells before gathering delay
samples.

17the same performance trends can be found in [2].

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 11

1F——1T————7———T T T T
. : L/ SF: b12-RTT12, ports 64
08 L B ,L\/f/(‘?th,e’ outputs lpaded with bursty traffic at 90% load)|
; &/ : : : : : :
° 5/ . 1->1 {weight; 20)
- qz// - : : :
0.6 : T
»
c
(<} .
go4r- N
c S 2->1 (weight: 9)
S : il bk~ AL
0.2
g : : 9->1 (weight: 1)
0 i i i T

i i i 0 0
04 05 06 07 08 09 1
connections’ load

0.1 02 03

Fig. 9. Sophisticated output bandwidth allocation, using WRR/WFQ credit
schedulers; 64-port fabric, b=12 segments, RTT=12 segment-times.

WRR/WFQ credit schedulers'.

In figure 9, we configured three flows (connections) in a
64-port fabric, flows 1—1, 2—1, and 9—1, with weights of
twenty (20), nine (9), and one (1), respectively; each of them
is the only flow active at its input, and the load it receives
changes along the horizontal axis. Inputs other than 1, 2, and
3, receive a uniform, bursty (background) traffic, at 0.9 load,
targeting outputs 2 to 64. The vertical axis depicts connections’
normalized service (rate), measured as cell rate at the output
ports of the fabric.

As figure 9 shows, when the demand for output 1 is feasible
(up to 0.33 load per flow), all flows demands are satisfied. At
the other end, when all flows are saturated (starting from 0.66
load per flow), each flow gets served at a rate equal to its fair
share —i.e., 0.66, 0.30, and 0.033. When the load of a flow is
below this fair share, the bandwidth that stays unused by this
flow gets distributed to the other flows, in proportion to those
other flows” weights.

6.5 Weighted Max-Min Fair Schedules

In this section, we place WRR (output) credit schedulers,
as we did in section 6.4, and WRR (input) request schedulers.
Each VOQ flow i—j has a unique weight; this weight is being
used by the WRR request scheduler at ingress ¢, as well as
by the WRR credit scheduler for output port j. We model
persistent VOQ —either (active) constantly full or constantly
empty— flows, and we measure their rate. Each active VOQ is
fed with back-to-back cells arriving at the line rate. (u is set
equal to 32, thus the request rate of a VOQ connection gets
equalized to its grant (service) rate by bounding the per-VOQ
number of pending requests —see section 4.4.)

First, we configure a “chain” of dependent flows as in [24].
The left table in figure 10(a) depicts the weights of the flows
in a 4 x 4 fabric comprised of 2 x 2 switches. When flow
1—1 is active, with a weight of 64, its weighted max-min
fair (WMMF) share is 2/3, and each subsequent connection
along the diagonal of the table deserves a WMMEF rate of 1/3,
2/3, 1/3, etc'®. Service rates are shown in the table on the

18211 other schedulers within the fabric are left intact (RR).
19for algorithms computing WMM fair schedules see [25].

Flows Weights Simulated Rates

in1l .64 8671333
intl 527 32 0 |667
ind 667333
16 | 8 1333 |.667°..
] 667|333
ing 4 2 3331667
ind 1 vl
out? out2 out3 outd (a)

Simulated Vs WMM Fair Rates

266383 58191
267\]384\] 158\ | 191

i3 266122 1367 246
4 1 3]2 26122 [368\ | 242

) 266|208 316|208
iny 4 1 2 1 268\].200\ |.318\ | .20

) 2 | N286| 58| ~354
ind 3 1 1 1 0.2\ .289\].154\ | 344

out! out2 out3 outd (b)

Flows Weights
in1 4 2 1 1

Fig. 10. Weighted max-min fair allocation of input and output port band-
width, using WRR/WFQ schedulers; 4-port fabric, b=12 segments, RTT=12
segment-times.

right (upper corner in each box): the rates that the SF fabric
assigns to connections exactly match their WMMF shares.
When 1—1 is inactive, with zero weight, the fair shares of
the remaining connections get reversed, becoming 2/3, 1/3,
2/3, etc. As shown in the bottom corner of each box in the
table, again simulation rates exactly match these new WMM
fair shares.

In figure 10(b) we configured 16 active connections in the
4-port fabric; their weights, their WMMF shares, as well as
the SF simulated rates are shown in the tables. We again see
how close the rate allocation of the SF fabric approximates
the ideal WMMF allocation.

6.6 Variable-Size Multipacket Segments

Our results up to now assumed fixed-size cell traffic. In
this last experiment, we present simulations of variable-size
multi-packet segments that carry the payload of variable-size
packets. These experiment use reassembly buffers inside the
egress linecards, to form complete packets from segments,
after the latter depart from the reorder buffer. We assume
10 Gbps sources sending variable-size packets uniformly over
all destinations, with exponential inter-arrival times (Poisson
packet sources). Packet sizes follow the Pareto distribution,
ranging from 40 up to 1500 Bytes. Maximum segment is 260
Bytes, and minimum is 40. We compare the SF architecture to
a buffered crossbar with 2 KBytes per crosspoint buffer and
no segmentation or reassembly similar to the architecture [12].

Our results are shown in figure 11. We see that SF delivers
comparable delays to these of the buffered crossbar; at low
loads, the dominant delay factors in SF are the VOQ delay, —
in this experiment, VOQ delay includes 500 ns of request-grant
cold-start delay—, as well as the reordering and the reassembly
delays. Excluding the request-grant delay overhead, the delay
of SF is within 2 to 3 times of the delay of “ideal” buffered
crossbars, that directly operate on variable-size packets.

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 12

(=3
(=]

SF (pérts 64)!' b=7 se‘gments‘, segmént:ZGb BytesT
VPS: single-stage buffered xbar, NO Reorder&Reassembly

—
o
T

Cestuney

mean packet delay (microseconds) _

| SFTotal
1 L. Ai . SVFTHledeI’&RTLasrsemmy ,
SF VOQ o ks S
P — : ‘ —— ‘

—SF A—siage

-

1 i [i i
041 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
load, r

o
-

Fig. 11. Packet delay performance under variable-size packet arrivals, using
variable-size multipacket segments; uniform Poisson packet arrivals on 10
Gbps input lines; b=7 (maximum-size) segments. Packet delay includes the
request-grant delay, segment scheduling and propagation delays, as well as
segment reordering and packet reassembly delays.

7 . CONCLUSIONS & FUTURE WORK

We proposed and evaluated a novel, effective, and realistic
scheduling architecture for non-blocking buffered switching
fabrics. It relies on multiple, independent, single-resource
schedulers, operating in a pipeline. It unifies the ideas of cen-
tral and distributed scheduling, and it demonstrates the latency
- buffer space tradeoff. It provides excellent performance at
realistic cost.

Work in progress includes completing our study of variable-
size segment performance, designing schemes to route back-
pressure and control signals more efficiently, and simulating
various protocols that eliminate the request-grant delay under
light load. Other future work includes a careful comparison
against the RECN protocol, a study of other scheduling
disciplines besides RR or WFQ/WRR (as that proposed in
[26] for networks with finite buffers), and a study of multicast
capabilities.

8 . ACKNOWLEDGMENTS

This work was supported by an IBM Ph.D. Fellowship. The
authors would especially like to thank Georgios Sapountzis
for passing on his understanding of Benes networks, as
well as Kostas Harteros and Dionisis Pnevmatikatos for their
valuable contribution in implementation issues. The authors
also thank, among others, Paraskevi Fragopoulou, Georgios
Georgakopoulos, Ioannis Papaefstathiou, Vassilios Siris, and
Georgios Passas for helpful discussions.

REFERENCES

[1] G. Kornaros, e.a.: “ATLAS I: Implementing a Single-Chip ATM Switch
with Backpressure”, IEEE Micro, vol. 19, no. 1, Jan/Feb. 1999, pp. 30-
41.

[2] G. Sapountzis, M. Katevenis: “Benes Switching Fabrics with O(N)-
Complexity Internal Backpressure”, IEEE Communications Magazine,
vol. 43, no. 1, January 2005, pp. 88-94.

[3] M. Katevenis, D. Serpanos, E. Spyridakis: “Credit-Flow-Controlled
ATM for MP Interconnection: the ATLAS I Single-Chip ATM Switch”,
Proc. 4th IEEE Int. Symp. High-Perf. Computer Arch. (HPCA-4), Las
Vegas, NV USA, Feb. 1998, pp. 47-56; http://archvlsi.ics.forth.gr/atlasl/

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

J. Duato, 1. Johnson, J. Flich, F. Naven, P. Garcia, T. Nachiondo: “A
New Scalable and Cost-Effective Congestion Management Strategy for
Lossless Multistage Interconnection Networks”, Proc. 11th IEEE Int.
Symp. High-Perf. Computer Arch. (HPCA-11), San Francisco, CA USA,
Feb. 2005, pp. 108-119.

D. Stephens, Hui Zhang: “Implementing Distributed Packet Fair Queue-
ing in a Scalable Switch Architecture”, IEEE INFOCOM’98 Conference,
San Francisco, CA, Mar. 1998, pp. 282-290.

N. Chrysos, M. Katevenis: “Weighted Fairness in Buffered Cross-
bar Scheduling”, Proc. IEEE HPSR’03, Torino, Italy, pp. 17-22;
http://archvlsi.ics.forth.gr/bufxbar/

W. Kabacinski, C-T. Lea, G. Xue - Guest Editors: 50th Anniversary
of Clos networks —a collection of 5 papers, IEEE Communications
Magazine, vol. 41, no. 10, Oct. 2003, pp. 26-63.

V. Benes: “Optimal Rearrangeable Multistage Connecting Networks”,
Bell Systems Technical Journal, vol. 43, no. 7, pp. 1641-1656, July 1964.
L. Valiant, G. Brebner: “Universal Schemes for Parallel Communication”
Proc. 13th ACM Symp. on Theory of Computing (STOC), Milwaukee,
WI USA, May 1981, pp. 263-277.

F. Chiussi, D. Khotimsky, S. Krishnan: “Generalized Inverse Multi-
plexing for Switched ATM Connections” Proc. IEEE GLOBECOM
Conference, Australia, Nov. 1998, pp. 3134-3140.

M. Katevenis, G. Passas: “Variable-Size Multipacket Segments in
Buffered Crossbar (CICQ) Architectures”, Proc. IEEE Int. Conf. on
Communications (ICC 2005), Seoul, Korea, 16-20 May 2005, paper ID
”09GC08-4"; http://archvlsi.ics.forth.gr/bufxbar/

Manolis Katevenis, Giorgos Passas, Dimitris Simos, Ioannis Papaefs-
tathiou, Nikos Chrysos: “Variable Packet Size Buffered Crossbar (CICQ)
Switches”, Proc. IEEE ICC’04, Paris, France, vol. 2, pp. 1090-1096;
http://archvlsi.ics.forth.gr/bufxbar

Eiji Oki, Zhigang Jing, Roberto Rojas-Cessa, H.J. Chao: “Concurrent
Round-Robin-Based Dispatching Schemes for Clos-Network Switches”,
IEEE/ACM Trans. on Networking vol. 10, no. 2 December 2002.

S. Iyer, N. McKeown: “Analysis of the parallel packet switch architec-
ture”, IEEE/ACM Trans. on Networking, 2003, 314-324.

D. Khotimsky, S. Krishnan: “Stability analysis of a parallel packet switch
with bufferless input demultiplexors”, Proc. IEEE ICC, 2001 100-111.
F. M. Chiussi, J. G. Kneuer, and V. P. Kumar: “The ATLANTA
architecture and chipset”, IEEE Commun. Mag., December 1997, pp.
44-53.

Prashanth Pappu, Jyoti Parwatikar, Jonathan Turner and Ken Wong:
“Distributed Queueing in Scalable High Performance Routers”, Proc.
IEEE Infocom, March 2003.

Prashanth Pappu, Jonathan Turner and Ken Wong: “Work-Conserving
Distributed Schedulers for Terabit Routers”, Proc. of SIGCOMM,
September 2004.

Nick McKeown: “The iSLIP Scheduling Algorithm for Input-Queued
Switches” IEEE/ACM Trans. on Networking, vol. 7, no. 2, April 1999.
N. Chrysos, Manolis Katevenis: “Scheduling in Switches with Small
Internal Buffers”, Proc. IEEE Globecom’05, St. Louis, MO, USA, 28
Nov. - 2 Dec. 2005; http://archvlsi.ics.forth.gr/bpbenes

Xin Li, Zhen Zhou, and Mounir Hamdi: ‘“Space-Memory-Memory
Architecture for Clos-Network Packet Switches”, Proc. IEEE ICC’05,
Seoul, Korea, 6 pages.

R. Rojas-Cessa, E. Oki, H. Jonathan Chao: “CIXOB-k: Combined Input-
Crosspoint-Output Buffered Switch”, Proc. IEEE GLOBECOM’01, vol.
4, pp. 2654-2660.

S. Q. Li: “Performance of a Nonblocking Space-Division Packet Switch
with Correlated Input Traffic”, IEEE Trans. on Communications , vol.
40, no. 1, Jan. 1992, pp. 97-107.

N. Chrysos, M. Katevenis: “Transient Behavior of a Buffered Crossbar
Converging to Weighted Max-Min Fairness”, Inst. of Computer Science,
FORTH, August 2002, 13 pages; http://archvlsi.ics.forth.gr/bufxbar/

E. Hahne: “Round-Robin Scheduling for Max-Min Fairness in Data
Networks”, IEEE Journal on Selected Areas in Communications, vol.
9, no. 7, September 1991.

Paolo Giaccone, Emilio Leonardi, Devavrat Shah: “On the Maximal
Throughput of Networks with Finite Buffers and its Application to
Buffered Crossbars”, IEEE INFOCOM Conf., Miami USA, March 2005.

(©copyright IEEE 2006 - to appear in the Proceedings of Infocom 2006 Conference, Barcelona, Spain, 23-29 Apr. 2006 13

