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Abstract— Three-stage non-blocking switching fabrics are the
next step in scaling current crossbar switches to many hundreds
or few thousands of ports. Congestion management, however, is
the central open problem; without it, performance suffers heav-
ily under real-world traffic patterns. Schedulers for bufferless
crossbars perform congestion management but are not scalable to
high valencies and to multi-stage fabrics. Distributed scheduling,
as used in buffered crossbars, is scalable but has never been
scaled beyond crossbar valencies. We combine ideas from central
and distributed schedulers, from request-grant protocols and
from credit-based flow control, to propose a novel, practical
architecture for scheduling in non-blocking buffered switching
fabrics. The new architecture relies on multiple, independent,
single-resource schedulers, operating in a pipeline. It: (i) isolates
well-behaved against congested flows; (ii) provides throughput
in excess of 95% under unbalanced traffic, and delays that suc-
cessfully compete again output queueing; (iii) provides weighted
max-min fairness; (iv) directly operates on variable-size packets
or multi-packet segments; (v) resequences cells or segments using
very small buffers; and (vi) can be realistically implemented for a
1024×1024 reference fabric made out of 32×32 buffered crossbar
switch elements. This paper carefully studies the many intricacies
of the problem and the solution, discusses implementation, and
provides performance simulation results.

1 . INTRODUCTION

Switches are increasingly used to build the core of routers,
cluster and server interconnects, other bus-replacement de-
vices, etc. The desire for scalable systems implies a demand
for switches with ever-increasing valency (port counts). Be-
yond 32 or 64 ports, single-stage crossbar switches are quite
expensive, and multi-stage interconnection networks (switch-
ing fabrics) become preferable; they are made of smaller-
valency switching elements, where each such element is usu-
ally a crossbar. It has been a longstanding objective of design-
ers to come up with an economic switch architecture, scaling
to large port-counts, and achieving sophisticated quality-of-
service (QoS) guarantees under unfavorable traffic patterns.
This paper addresses that challenge.

The performance of switching fabrics is often severely hurt
by inappropriate decisions on how to share scarce resources.
Output contention is a primary source of such difficulties: in-
put ports, unaware of each other’s decisions, may inject traffic
for specific outputs that exceeds those outputs’ capacities. The
excess packets must either be dropped, thus leading to poor
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performance, or must wait in buffers; buffers filled in this
way may prevent other packets from moving toward their
destinations, again leading to poor performance. Tolerating
output contention in the short term, and coordinating the
decisions of input ports so as to avoid output contention in
the long run is a complex distributed scheduling problem;
flow control and congestion management are aspects of that
endeavor. This paper contributes toward solving that problem.

Switching fabrics may be bufferless or buffered. Bufferless
fabrics merely steer traffic, without being able to delay some
of it in favor of other. Such fabrics cannot tolerate any output
contention (or contention for internal links), thus they impose
very stringent requirements on the scheduling subsystem.
Buffered switching fabrics, on the other hand, contain some
internal temporary storage so as to tolerate contention up to
a certain extent. Buffered fabrics are clearly preferable, and
modern integrated circuit technology makes them feasible.
This paper assumes such buffered fabrics, and is concerned
with how to reduce buffer size and how to control its use.

Buffers inside switching fabrics are usually small [24], so
as to avoid off-chip memory at the switching elements, as
well as to better control delays through the fabric. In order
for the small buffers not to overflow, backpressure protocols
are used. Indiscriminate backpressure stops all flows sharing
a buffer when that buffer fills up; it leads to poor performance
due to buffer hogging –a phenomenon with effects similar
to head-of-line blocking. Per-flow buffer reservation and per-
flow backpressure signaling overcome these shortcomings,
but become expensive with increasing number of flows. Per-
destination flow merging [10] alleviates this cost. One practical
compromise is to dynamically share the available buffer space
among flows destined to multiple (as many as possible) distinct
output ports, as in the ATLAS I chip [25]. A related, improved
method is to dynamically detect congestion trees, allocate “set-
aside queues (SAQ)” to them, and use per-SAQ backpressure
[26].

This paper proposes and evaluates an alternative, novel
scheduling, congestion management, and flow control ar-
chitecture: when heavy traffic is detected, input ports have
to first request and be granted permission before they can
send any further packets. Requests are routed to and grants
are generated by a scheduling subsystem. This subsystem,
which can be central or distributed, consists of independent,
simple, per-output and per-input, single-resource schedulers,
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operating in parallel. The architecture has conceptual analogies
to scheduling in buffered crossbars (combined input-crosspoint
queueing - CICQ) [18] [20]. Compared to the alternatives
listed above, the new method: (i) operates robustly under all
traffic patterns, not just under “typical” traffic; (ii) has the
potential to economize on buffer space; and (iii) applies to
scalable non-blocking fabrics that employ multipath routing.
Other previously proposed scheduling schemes for 3-stage
non-blocking fabrics assumed one unbuffered stage, while our
new architecture applies to fully buffered fabrics, thus yielding
significantly higher performance. Further discussion on these
comparisons appears in section 2 on related work. Before
that, we describe our scheduling architecture and the switching
fabric where it fits.

1.1 Non-Blocking Three-Stage Fabrics

Switching fabrics are said to present internal blocking when
internal links do not suffice to route any combination of
feasible I/O rates, hence, contention may appear on internal
links as well –in addition to output ports. Otherwise, a fabric
is called non-blocking when it can switch any set of flows
that do not violate the input and output port capacity limits.
Although internal blocking clearly restricts performance, most
commercial products belong to the first category, because a
practical, robust, and economic architecture for non-blocking
fabrics has not been discovered yet. However, neither has it
been proven that such architectures do not exist. This paper
contributes to the search for practical, robust, and economic
non-blocking switching fabrics.

Low-cost practical non-blocking fabrics are made using
Clos networks [27]; the basic topology is a three-stage fabric,
while recursive application of the principle can yield 5-
stage networks, 7-stage, etc. One of the parameters of Clos
networks, m/n, controls the speed expansion ratio –something
analogous to the “internal speedup” used in combined input-
output queueing (CIOQ) architectures: the number of middle-
stage switches, m, may be greater than or equal to the
number of input/output ports per first/third-stage switch, n.
In this paper, we assume m = n, i.e. no speedup –the
aggregate throughput of the middle stage is no higher than
the aggregate throughput of the entire fabric. In this way,
the fabrics considered here are the lowest-cost practical non-
blocking fabrics, oftentimes also referred to as Benes fabrics.

In order for a Benes fabric to operate without internal block-
ing in a packet switching set-up, multipath routing (inverse
multiplexing) must be used [28] [29]: each flow (as defined
by an input-output port pair) is distributed among all middle-
stage switches, in a way such as to equalize the rates of the
resulting sub-flows. The middle-stage switches can be thought
of as parallel slices of one, faster virtual switch, and inverse
multiplexing performs load balancing among these slices. Such
multipath routing introduces out-of-order packet arrivals at the
output ports; we assume that egress linecards perform packet
resequencing, so as to ensure in-order eventual packet delivery.
Our scheduling system specificly bounds the extent of packet
mis-ordering, thus also bounding the required size of reorder
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Fig. 1. System assumed in this paper. Our reference design (section 1.2)
uses valency N=1024, switch element size M=32; a first (short) operation
description appears in section 1.3, par. 4; C-B flow-control is superimposed
by the request-grant (credit-based) flow-control, described in (extend in) [11];
our system uses C-B link buffer flow-control for a few unsolicited packets
that (skip) “bypass” the request-grant procedure.

buffers, so that the latter can fit on-chip using modern IC
technology for our 1024-port reference fabric –see section 4.2.

1.2 Reference Design: a 1024×1024, 10 Tb/s Fabric

Although the architecture proposed and evaluated in this
paper is quite general and applicable to many networks, our
motivation for developing it, and our primary benchmark for it,
is an example next-generation fabric challenge, that is realistic
as a commercial product in the second half of this decade.
This “reference design”, shown in figure 1, is a 1024×1024
switching fabric (valency N=1024), made out of 96 single-
chip 32×32 switching elements (3 stages of 32 switch chips
of valency M=32 each), plus one (1) scheduler chip, shown in
the top middle of the figure; linecards are not included in the
chip counts. We name the first, second, and third switch stages
as A, B, and C respectively. Although this topology looks like
current “byte-sliced” commercial switch products, where each
cell is sliced into M subunits and concurrently routed through
all B switches, our system is very different: cells (actually:
variable-size segments) are routed intact (unsliced) through
one of the B switches each, asynchronously with each other;
resequencing is provided in the egress linecards.

The scheduler chip is connected to each A switch via one
link, and to each C switch via another link, for a total 64 links
(not shown in the figure), just like each switch chip has 64
I/O links (32 in, 32 out). An implementation issue, not shown
in figure 1, is the direction of each scheduler link, as well as
how backpressure signals are transmitted from C chips to B
chips, from B to A, and from A to linecards; we are currently
working on these issues. We consider that the line rate of each
link is on the order of 10 Gbits/s, limited mostly by the power
consumption of the switch chip I/O transceivers (roughly up
to 320 Gb/s aggregate incoming throughput, plus 320 Gb/s
outgoing, per chip).
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We assume links carry variable size segments, each con-
taining one or more variable-size packets or fragments thereof,
as in [23], so as to eliminate padding overhead (if segments
had fixed size) and reduce header and control overhead (by
carrying multiple small packets inside a segment). Linecards
are assumed to contain (large, off-chip) virtual-output queues
(VOQ) in the ingress path, and (small, on-chip) resequencing
and reassembly buffers in the egress path. No (large, off-chip)
output queues are needed, since we do not need or use any
internal speedup; in other words, this architecture has the same
advantages as variable-packet-size buffered crossbars [22]. We
assume that individual switch chips are buffered crossbars, like
our recent chip design [22] which proved their feasibility in
the 2006-08 time frame for size 32×32, with few-Kilobyte
buffers per crosspoint, at 10 Gb/s line rate. We chose buffered
crossbars because of their simplicity, scheduling efficiency,
and support for variable-packet-size operation.

We chose the parameters of our reference design so that
the scheduling subsystem can fit in a single chip, although
this subsystem could also be distributed among multiple chips.
To achieve a single-chip scheduler, we have to ensure that
the aggregate throughput of its traffic does not exceed 1/M
times the aggregate data throughput of the fabric, where M=32
is the switch valency, for the following reasons. Since the
M switches in each fabric stage can pass the aggregate data
throughput, it follows that the one scheduler chip can pass
the aggregate control throughput, if the latter is 1/M times
the former. The scheduler chip is connected to each A and C
chip via one link; that link suffices to carry the control traffic
that corresponds to the M data links of the switch chip, if
control traffic is 1/M times the data traffic.

For these relations to hold for M = 32, we assume that
the maximum-size segment is 64 Bytes or larger. Under heavy
traffic, almost all segments are of maximum size, because they
are allowed to carry multiple packets (or packet fragments)
each. The control traffic, per segment, consists of a request
(10 bits), a grant (10 bits), and a credit (5 bits). Hence,
the data throughput, for a switch, per segment, is 1024 bits
(512 entering, 512 exiting), while the control throughput,
for the scheduler, per segment, is 25 bits (15 entering, 10
exiting); the resulting control-to-data ratio is 25/1024 ≈ 1/41
(bidirectional), or 15/512 ≈ 1/34 (entering) and 10/512 ≈
1/52 (exiting). For the control information format, see section
5.1.

1.3 Our Admission Scheduling Architecture

The basic idea of our scheduler is that, under heavy traffic,
ingress ports have to request and be granted permission before
they can send a segment to the fabric. The request-grant
handshake incurs some delay, but that delay is in parallel with
–hence masked by– the (VOQ) input-queueing delay. Only
under light load would this extra delay be visible, but we
assume that the request-grant protocol is not used for light-
load flows. This point is further discussed in section 1.5 while
the bulk of this paper concerns fabric operation under heavy
load.

The request-grant protocol economizes on buffer space
relative to per-flow buffer reservation and backpressure. Ef-
fectively, instead of first letting data occupy buffers and then
scheduling among the flows to which these data belong (“cor-
rective” congestion management), we schedule first among
competing requests and then let into the fabric only the data
that are known to be able to quickly get out it (“preventive”
or admission-oriented congestion management).

Schedulers for bufferless switches (usually crossbars) serve
the same preventive function, but have a much harder time
because they must enforce absolute admissibility of the traffic,
per time-slot. Our scheduler only has to enforce admissibility
over a longer time window, because the fabric contains internal
buffers. This time window serves to mask the latency of
the scheduling pipeline. At the same time, buffers allow
some overprovisioning of traffic admissions. These excess
admissions mask out scheduling inefficiencies (not being able
to simultaneously match all inputs to all outputs). Thus,
instead of using (expensive) internal throughput speedup, as
in bufferless crossbars, we use admissions overprovisioning,
which is almost for free given the low cost of buffer memory in
modern chips. In essence, we achieve the scheduling efficiency
of buffered crossbars, but at a cost that grows with1 O(N ·

√
N)

instead of O(N2).
Our admission method is realized by independent per-

output and per-input single-resource schedulers, working in
parallel (figure 1). Input requests specify the flow’s output
port, and are routed to the scheduler for that port. Requests
are queued in front of the proper per-output (credit) scheduler;
these queues often degenerate to mere counters. Each per-
output scheduler generates grants after first allocating space
in that output’s buffer2. Grants can be generated according to
a desired quality-of-service (QoS) policy, e.g. weighted round
robin (WRR) / weighted fair queueing (WFQ). When the data
that were granted eventually depart through that output, the
scheduler is notified so as to re-allocate that buffer space.
Thus, the rate of data departures indirectly regulates the rate
of grant generation, while buffer size (minus control-protocol
round-trip time (RTT)) determines the amount of admissions
overprovisioning.

Multiple per-output schedulers may simultaneously generate
grants for a same input port. A per-input scheduler serializes
these in a desired order and forwards them to the input at a
convenient rate. Per-output and per-input schedulers work in
parallel, asynchronously from each other, in a pipeline fashion
(they can even be in separate chips). As long as each single-
resource scheduler maintains a decision rate of at least one
result per segment time, admissions proceed at the proper rate.

The scheduling subsystem principles and operation are dis-
cussed in detail in section 3; the central scheduler organization

1each switch has
√

N ports, hence N crosspoint buffers; there are
√

N

switches per stage, hence 3·
√

N in the entire fabric. Thus, there are 3·N ·
√

N

crosspoint buffers in the fabric.
2space should in general be reserved for intermediate-stage buffers as well;

however, it turns out that, because the fabric is non-blocking, no serious harm
results if such allocation is omitted –see section 3.3.
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and implementation is discussed in section 4.

1.4 Contributions and Results Achieved

First, this paper conducts a careful study of this novel
scheduling architecture, its parameters, and its variants. We
consider this class of architectures very interesting because
they perform the function of bufferless-crossbar schedulers,
but at the high efficiency of buffered-crossbar scheduling,
while using significantly less buffer space than buffered cross-
bars, and while being scalable to high-valency fabrics.

Second, the proposed architecture switches equally well
fixed-size cells or variable-size (multi-packet) segments, be-
cause it only uses independent single-resource schedulers
throughout. Thus, it retains the advantages of buffered cross-
bars: no padding overhead, thus no internal speedup needed,
hence no (large, off-chip) output queues needed, either. Our
simulations presented in this paper version are mostly for
fixed-size cells, because we wanted to compare our results to
alternative architectures that operate using cells. However, we
do have simulations showing smooth operation with variable-
size segments, and we will have more results on that in the
final paper version.

Third, advanced QoS policies can be straightforwardly
implemented in the proposed architecture. For example, we
simulated the system using WRR/WFQ admission schedulers:
under inadmissible traffic (persistently backlogged VOQs),
the system distributes input and output port bandwidth in a
weighted max-min fair manner; up to now, this had only been
shown for single-stage buffered crossbars [20].

Fourth, we quantify buffer space requirements, using sim-
ulations. Interestingly, for good performance, a single RTT-
window buffer per-crosspoint suffices, provided that this buffer
size is at the same time large enough for several segments
(cells) to fit into it (RTT is the control protocol round-trip
time). As long as crosspoint buffers are larger than one RTT-
window each, it appears that performance is sensitive to the
number of segments per output port that can be pending inside
the fabric at once. The (excellent) performance results listed
in the next paragraph are achieved with crosspoint buffers on
the order of ten (10) segments each, and assuming that the
overall scheduling RTT is equal to 10 segment times.

Finally, the new architecture achieves excellent performance
without any internal speedup. Under uniform traffic, the sys-
tem delivers 100% throughput, and delay performance within
1.5 times that of pure output queueing (OQ), under bursty
traffic, and within 4 times that of OQ under smooth traffic;
(results obtained using round-robin schedulers and fabric size
up 256 × 256 made of 16 × 16 switches). Under unbalanced
traffic, the simulated throughput exceeds 95%. Under hot-
spot traffic, with almost all output ports being congested, the
non-congested outputs experience negligible delay degradation
(relative to uniform traffic); at the same time, the congested
outputs are fully utilized (100% load). Compared to bufferless
3-stage Clos fabrics [7], our architecture performs much better,
and, at the same time, uses a much simpler scheduler.

For the 1024×1024 reference design (section 1.2), these
performance results can be achieved with 780 KBytes of total
buffer memory per (32×32) switch chip, assuming the overall
scheduling RTT can be kept below 600 ns, and assuming
64 Byte maximum segment size (hence, 12 segments per
crosspoint buffer). Under the same assumptions, 25 KBytes
of reorder buffer suffice in each egress linecard. Alternatively,
if the scheduling RTT is as high as 3.2 µs, if we increase
maximum segment size to 256 Bytes (so as to reduce header
overhead), and if we increase crosspoint buffer size to 16
segments = 4 KBytes (for even better performance), then
buffer memory per switch chip will be 4 MBytes (feasible
even today), and reorder buffer size will be 128 KBytes.

Comparisons to related work appear in section 2. The sched-
uler is discussed in sections 3 and 4. Performance simulation
results are presented in section 6.

1.5 Eliminating Request-Grant Latency under light Load

The request-grant protocol adds a round-trip time (RTT)
delay to the fabric response time. For heavily loaded flows
this RTT delay is negligible. However, under light traffic,
it is desirable to avoid that extra delay in latency-sensitive
applications, e.g. cluster/multiprocessor interconnects. We are
currently studying such protocols, and we have promising
preliminary simulation results. We will have concluded this
study and will report the results in the final version of the
paper.

The basic idea is that every input is allowed to send a
small number of cells/segments without first requesting and
receiving a grant. If it wants to send more cells before these
original ones have exited the fabric (as recognized by credits
coming back), then it has to follow the normal request-grant
protocol. Under light load, credits will have returned before the
flow wishes to send new cells, thus allowing continued low-
latency transmission. Under heavy load, the system operates as
described in the rest of the paper. To guard against the case of
several inputs by coincidence sending at about the same time
“free” cells to a same output, thus creating a congestion tree,
we are currently evaluating a solution whereby “free” cells and
“request-grant” cells travel through separately reserved buffer
space (and are resequenced in the egress linecard).

2 . RELATED WORK

2.1 Per-Flow Buffers

In a previous study [10], we considered a buffered Benes
fabric where congestion management was achieved using per-
flow buffer reservation and per-flow backpressure signaling. To
reduce the required buffer space from O(N 2) down to O(N)
per switching element, where N is the fabric valency, we
introduced per-destination flow merging. That system provides
excellent performance. However, the required buffer space, at
least in some stages, is M ·N , where M is the switch valency.
In our reference design, M is relatively large in order to reduce
the number of hops; thus, either the first or the third stage
would need switches containing 32 K “RTT” windows each,
which is rather large. Furthermore, the buffers in this space
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are accessed in ways that do not allow partitioning them per-
crosspoint.

This paper addresses those practical problems: we only use
O(M2) buffer space per switch (only 1 K windows for the
reference design, although the window here is larger than in
[10]), explicitely partitioned and managed per-crosspoint. This
partitioning allows variable-size segment operation. Further-
more, the present architecture can provide WRR-style QoS,
which would be quite difficult in [10], where merged-flow
weight factors would have to be recomputed dynamically
during system operation.

2.2 The Parallel Packet Switch (PPS)

The Parallel Packet Switch (PPS) [14] [15] is a three-stage
fabric, where the large (and expensive) buffers reside in the
central-stage. First and third stage switches serve a single
external port each. By increasing the number of central ele-
ments, k, the PPS can reduce the bandwidth of each individual
memory module, or equivalently provide line-rate scalabil-
ity. Essentially, the PPS operates like a very-high-throughput
shared buffer, which is composed of k interleaved memory
banks; one expensive and complex component of the design
is how to manage the shared buffer data structures (queue
pointers etc.) at the required very high rate, hence necessarily
in a distributed fashion. The PPS provides port-rate scalability,
but does not provide port-count (N ) scalability. One could
modify the PPS for port-count scalability, by modifying each
first-stage element from a 1-to-k demultiplexor serving one
fast input to an M × k switch serving M slower inputs;
correspondingly, each third-stage element must be changed
from a k-to-1 multiplexor to a k × M switch. However,
this latter modification would require dealing with output
contention on the new “subports”, i.e. per-subport queues
along the stages of the PPS. Effectively, then, this radically
altered PPS would have to solve the same problems that this
paper solves for the input-queued fabric.

2.3 Memory-Space-Memory Clos
Clos fabrics containing buffers in the first and last stages, but

using bufferless middle stage, and having a central scheduler,
have been implemented in the past [6] and further studied
recently [7]. These schedulers are interesting but complex
and expensive (they require two iSLIP-style exact matching
to be found, some of which among N ports, per cell-time).
Like iSLIP, they can provide 100% throughput under uniform
traffic, but performance suffers under non-uniform load pat-
terns. In-order delivery results from (or is the reason for) the
middle stage being bufferless in those architectures. This paper
demonstrates that the cost of allowing out-of-order traffic, and
then reordering it in the egress linecard, is minimal. In return
for this cost, the use of buffered crossbars in all stages of our
architecture provides much better performance with a much
more scalable scheduler.

2.4 Regional Explicit Congestion Notification (RECN)

A promising method to handle the congestion in multistage
switches has recently been presented in [26]. A key point

is that sharing a queue among multiple flows will not harm
performance as long as the flows are not congested. Based
on this observation, [26] uses a single queue for all non-
congested flows, and dynamically allocates a set-aside-queue
(SAQs) per congestion tree, when the latter are detected.
Congestion trees may be rooted at any output or internal
fabric link, and their appearance is signaled upstream via
“regional explicit congestion notification (RECN) messages.
We consider [26] and our scheme as the two most promising
architectures for congestion management in switching fabrics.
Precisely comparing them to each other will take a lot of work,
because the two systems are very different from each other,
so the comparison results depend a lot on the relative settings
of the many parameters that each system has.

Nevertheless, a few rough comparisons can be made here:
(i) RECN saves the cost of the central scheduler, but at
the expense of implementing the RECN and SAQ func-
tionality (which includes a content-addressable memory) in
every switch; (ii) under light load, RECN uses very little
throughput for control messages; however, some amount of
control throughput must be provisioned for, to be used in case
of heavy load, and this may not differ much from control
throughput in our system; (iii) RECN has not be studied for
fabrics using multipath routing, like our system does, hence
it is not known whether and at what cost RECN applies to
non-blocking fabrics; (iv) RECN works well when there are
a few congestion trees in the network, but it is unknown
how it would behave (and at what cost) otherwise, while
our system operates robustly independent of the number of
congested outputs (no internal links can ever be congested
in our system); (v) contrary to our system, in RECN, during
the delay time from congestion occurrence until SAQ setup,
uncongested flows suffer from the presence of congested ones;
(vi) RECN relies on local measurements to detect congestion;
these measurements are performed on an output buffer; for
reliable measurement (especially under bursty traffic or with
internal speedup), that buffer cannot be too small; at the same
time, RECN signaling delay translates into SAQ size; the sum
of all these required buffer sizes may end up not being much
smaller than what our system requires.

2.5 End-to-end Rate Regulation

Pappu, Turner, and Wong [16] [17] have studied a rate
regulation method analogous to ours. Both systems regulate
the injections of packets into a fabric so as to prevent the
formation of saturation trees.

However, the Pappu system foresees a complex and lengthy
communication and computation algorithm; to offset that cost,
rate adjustments are made fairly infrequently (e.g., every 100
µs). Such long adjustment periods (i) hurt the delay of new
packets arriving at empty VOQs; and (ii) do not prevent
buffer hogging and subsequent HOL blocking during transient
phenomena in between adjustment times, when those buffers
are not proportionally sized to the long adjustment period.
Our scheme operates at a much faster control RTT, with much
simpler algorithms, basically allocating buffer space, and only
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indirectly regulating flow rates. The result is low latencies and
prevention of buffer hogging. Additionally, Pappu e.a. do not
address the size of resequencing buffers, while we provide a
quite low bound for that size.

3 . SCHEDULING THREE-STAGE NON-BLOCKING FABRICS

This section shows how to properly schedule, using in-
dependent and pipelined schedulers, a N -port non-blocking
three-stage fabric, with as few as O(M ) queues per M × M
switch (M=

√
N ). To that end, we combine ideas from buffer-

less and buffered fabrics. The first scheduler to be presented
here is derived from first principles, and for that reason it is
expensive and complicated; then we simplify it in sections 3.3
and 4.

3.1 Key Concepts

The first idea is to use an independent scheduler for each
fabric buffer (this will later be relaxed). A packet (segment)
will only be injected into the fabric after all schedulers for all
buffers along its route have reserved space for the packet. First
reserving then injecting trades latency (for the request-grant
round-trip time (RTT)) for buffer space economy: buffers are
only occupied by cells that are guaranteed to move forward,
instead of being uselessly held by congested-flow cells, with
backpressure protocols.

We start buffer-space reservations from the last (output)
fabric stages, moving left (to the inputs), one stage at a time;
notice that this is precisely opposite to how cells progress
under backpressure protocols. The direction chosen ensures
that each reservation, when performed, is on behalf of a cell
that is guaranteed not to block inside the buffer: buffer space
has already been reserved for that cell in the next downstream
buffer. Hence, cells will be allowed to move freely, without
need for any backpressure to ever hold them back, and without
danger of any buffer overflowing.

Of course, inputs and outputs play symmetric roles in switch
scheduling. When consuming buffers in the downstream direc-
tion, as with backpressure protocols, the danger is for many
inputs to simultaneously occupy buffers with cells going to the
same output: output contention delays cell motion. Conversely,
when reserving buffers in the upstream direction, like we do
here, the danger is for many outputs to simultaneously reserve
space for cells to come from the same input: input contention
delays cell arrivals3. What limits input contention in our case
is that buffer reservations constitute a second pass through the
fabric, after requests have traversed once from inputs to the
per-output scheduler. Thus, the only way for an input to receive
an excessive number of reservations from multiple outputs is
for other inputs not to have sent any requests to those outputs.
Our recent paper [11] studied this issue in a single-stage fabric
equipped with small output queues. There, we found that,
when each scheduler reserves space for multiple inputs in
parallel, the bad effects of “synchronization” are confined; on
the order of ten cells per output port sufficed there. We observe

3this is analogous to “bad synchronization” of round-robin pointers in the
initial, suboptimal iSLIP idea [5].
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Fig. 2. Pipelined buffer scheduling in a 4 × 4, three-stage non-blocking
fabric.

a similar result in this paper, except that the number of cells
per output is higher in the present paper, partly due to the
buffered crossbar organization, which partitions each output
queue’s space into many smaller per-input spaces.

Observe that similar conflicting decisions also occur in
buffered crossbar scheduling: a set of inputs may concurrently
forward packets to a same output. However, these inputs are
not blocked following their first, suboptimal decisions: they
may continue sending cells to other outputs. If an output
receives excess cells in this way, backpressure from the
crosspoints will force the inputs to prefer other outputs. This
is the reason why buffered crossbars yield good performance
without explicit coordination between the port schedulers. A
buffered crossbar uses order N cell buffers per output to
achieve this result; in some sense, this is a waste of resources.
Our results indicate that we can do equally well with buffers
quite smaller than N cells per output 4.

3.2 Buffer Scheduling

Switch schedulers match inputs to outputs (or to internal
links). Schedulers for bufferless switches do that precisely, per
time-slot [4][5][7]. On the other hand, if there is a buffer of
size Bo in front of each output (or internal) link, the scheduling
constraint is relaxed: the amount of traffic admitted to that link
can be as much as Bo per time-slot, but over any interval of
length T that amount of traffic must not exceed λ · T + Bo,
where λ is the link rate5.

We start with a conceptual scheduler, shown in figure 2, that
admits this “window-type” feasible traffic; we will simplify it
in the next sections. It consists of single-resource schedulers
per output and per internal link. Each scheduler hands out
credits for the buffer space in front of the corresponding
link. Credits are replenished when the admitted cell eventually

4as described in section 4.4, our system features a “backpressure” mecha-
nism that prevents persistent buffer reservations that conflict on inputs.

5as mentioned already, when buffer space is reserved for every cell in every
buffer, backpressure is not needed and cells are never dropped; in the absence
of backpressure, each link always empties its buffer at peak rate λ. Notice
that this also yields an upper bound for cell delay through the fabric: number
of stages, times buffer size per stage, divided by link rate λ.
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frees the corresponding resource. Each credit scheduler works
independent of the others, using a private credit counter and
private buffers (queues) that hold outstanding requests, until
the scheduler can serve these requests. Each scheduler needs
to grant at least one cell per (link) cell-time (as long as it
has credits), in order to keep its associated link busy. It can
grant credits faster than that for a while, but when it runs
out of credits the grant rate will be dictated by the credit
replenishment rate, i.e. the cell rate on the link.

As seen in figure 2, these schedulers form a 4-stage pipeline,
with stages decoupled by the request buffers. Each stage
contains N schedulers. The first-stage schedulers allocate
space for the N output buffers of the C-stage switches (figure
1). We call them credit schedulers, because they hand out
credits. The 2nd-stage schedulers do so for the B switches; the
3rd stage handles A-switch outputs; we call those intermediate
schedulers. Finally, each 4th-stage scheduler corresponds to
a linecard, and sends credits (grants) to the corresponding
VOQs, at the rate of one per cell time; we call them grant
schedulers.

Credit schedulers enforce traffic admissibility (feasible
rates). Due to multipath routing, credit (output) schedulers
have the additional duty to perform path selection (choose
a B switch), and direct the request to the appropriate 2nd-
stage scheduler. When a grant is eventually sent to a linecard,
it specifies both the output port (VOQ) and the route to be
followed.

Let dcr
sch denote the delay incurred by any single scheduler,

and dpip

sch the delay of a complete scheduling operation; dpip

sch =
4 · dcr

sch. If each scheduler starts with an initial pool of at least
dpip

sch ·λ worth of buffer-space credits, the pipeline can be kept
busy, and throughput is not wasted. It suffices for schedulers
to generate grants at rate λ, i.e. one per cell-time. This is the
nice feature of buffered fabrics: the control subsystem can be
pipelined, with considerable inter-stage and total latency, as
long as the pipeline rate (individual scheduler decision rate)
matches link rate (one grant per cell-time).

3.3 Simplifications owing to Load Balancing

Route selection, for this multipath fabric, can be performed
by the (per-output) credit schedulers. To obtain non-blocking
operation, we distribute each (per input-output pair) flow
uniformly across all B switches. Such distribution (i) can be
implement in a distributed manner; and (ii) has been shown
very effective in Clos/Benes networks [14] [10].

Consider a particular fabric-output port, o. Assuming an
ideal, fluid distribution of the type discussed above, the traffic
destined to output o and assigned to any particular switch Bb

is ( λ
M

, Bo

M
) leaky-bucket regulated. Now, considering all M

outputs residing in the same C switch with output o, Cc,
their collective traffic steered on any switch Bb will be the
summation of M sources, each ( λ

M
, Bo

M
) regulated, i.e. during

any time interval T , the traffic admitted for any particular
Bb → Cc link is:

L(Bb → Cc, T ) ≤ ∑M

ν=1

λ·T+Bo

M
= λ · T + Bo

In other words, C switch admissions, and load distribution

guarantee that the aggregate traffic into the buffer in front
of link Bb → Cc will always be (λ, Bo) constrained, in-
dependent of B switch admissions. At the same time, we
already mentioned that in the system of figure 2 there is no
backpressure; hence link Bb → Cc will never be idle whenever
its buffer is backlogged. Thus, in this ideal, fluid system, the
traffic admitted into C switches will always find room in the
Bb → Cc buffer, hence we can safely eliminate the second
scheduler stage, which was responsible for securing buffers in
the B switches. However, in a real (non-fluid) system, segment
distribution will have quantization imbalance; thus, to prevent
occasional overflows, we have to use backpressure from stage
B to stage A.

To simplify the scheduler further, we discard the third sched-
uler stage (for A buffers) too, replacing it with conventional
backpressure from stage A on the ingress linecards. We may
safely do so because, in a fluid model, using per-input uniform
traffic distribution, the traffic entering the fabric and routed
through any particular Aa → Bb link, is: L(Aa → Bb, T ) ≤∑M

ν=1

λ
M

= λ. Although in the fluid model no A buffers (in
front of Aa → Bb links) are needed, the real system does
require them, in order to deal with quantization imbalance
(multiple inputs of a same A switch sending concurrently to
a same B switch, which is inevitable under distributed and
independent load-balancing6).

These points are further supported in the simulations sec-
tion, through both, delay measurements under congestion
epochs (sec. 6.3), but also, on-the-fly reportings of the intra-
fabric buffer fill probabilities (sec. 6.7). The central scheduler
described in the next section uses these simplifications: only
credit (output) and grant (input) schedulers are needed, without
any intermediate schedulers, as shown in figure 1. Note
however that distributed scheduler implementations would
need these intermediate nodes, in order for them to route
grants from the credit schedulers to the grant schedulers
(similar routing would be needed from VOQs to credit (output)
schedulers).

4 . CENTRAL SCHEDULER

The scheduler proposed in this paper for three-stage non-
blocking fabrics is amenable to distributed implementations,
scaling to large fabric valencies. However, in this paper,
our reference design (section 1.2) employs a single central
scheduler, that contains all credit and grant schedulers inside,
as shown in figure 1. This choice allows the use of “plain”
switches in the datapath, without requiring modifications to
those switches in order to add parts of the (distributed)
scheduler inside them7. Following the theory of last section,
and the introduction of section 1.2, this section shows (i)
how to minimize the information carried by each request/grant

6Reference [8] removes these buffers by considering coordinated, static cell
distribution from the input side, independent of the destination. However, this
may cause Benes to be blocking.

7note, however, that it is also possible to implement distributed schedul-
ing entirely on the linecards, without adding scheduler components in the
switches.
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notice, thus reducing control bandwidth, and (ii) how to turn
each request and grant queue into a simple counter.

4.1 Distribution Policy & Buffer Allocation Granularity

Section 3 used the term Bo to refer to the buffer in front of
a switch output. Since we assume buffered crossbar switching
elements, Bo is in fact partitioned per-input links of the switch;
we will use the term Bx for an individual crosspoint buffer
–obviously, the sizes are: Bo=Bx·M . Since each C switch
buffer corresponds to a specific upstream B switch, when a
credit scheduler reserves space for a cell, it must choose a
particular B switch and reserve space in the corresponding
C buffer. Hence, each grant must carry along a B-switch
identifier.

4.1.1 Coordinated Distribution Decisions: We can perform
this B switch choice by adopting per-connection round-robin
cell (segment) distribution. Besides other advantages, this
distribution method ensures that the route of each cell can
be independently and consistently determined at both its (per-
output) credit scheduler, and at its ingress linecard. Thus, this
route assignment need not be communicated from the former
to the latter: upon receiving a grant, the ingress linecard can
infer the route assigned to the cell by the credit scheduler. To
do so, both of those units initialize a private, per-flow pointer
to an agreed upon B switch, and then advance that pointer for
every new grant or cell of that flow. In this way, we reduce
the grant width by log2 M bits.

4.1.2 Buffer Reservations: fixed or variable space?: To
support variable-size segments, one has the option of either (i)
having each request-grant transaction explicitly specify a size
and carry the corresponding count; or (ii) always request and
allocate buffer space for a maximum-size segment, although
the real segment that will eventually travel through that space
may have a smaller size. We opt for fixed size allocation, for
simplicity reasons: in this way, we reduce the width of requests
and grants (they do not need to carry a size field), the width of
request and credit counters in each scheduler, and the width
of credits returned from C switches. But, most importantly,
this method allows the grant queues in front of the (per-input)
grant schedulers to be implemented as simple counters8.

4.2 Resequencing: Bounding the Reorder Buffer Size

Multipath routing through the B switches can deliver pack-
ets out of order to the C switches. Resequencing is performed
on the egress linecards9. The scheduler bounds the required
reorder buffer size, and that bound is very modest in the
reference design (section 1.4). Refer to figure 3.

We let the credit schedulers manage and allocate space
in the reorder buffers, just as they do for the buffers in the
C switches. The C buffers total size is Bo per output port.

8given the round-robin way in which ingress linecards infer each segment’s
route, the grant schedulers are not allowed to merge consecutive grants.
If grants were variable-size, a simple counter would not suffice to keep
consecutive grants from being merged with each other.

9resequencing could also be performed in the C switches, but only not
with the existing buffers: to avoid deadlock, the reorder buffers must be in
addition to the already existing (single-lane, crosspoint) buffers.
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We assume that each egress linecard has a reorder buffer of
equal size, Bo = Bx · M . In this way, by allocating space
for a cell (or segment) in the C switch, the credit scheduler
also implicitly allocates space in the reorder buffer. Next, we
modify the time at which a credit is returned to the central
scheduler. Up to now, we assumed a credit is generated (for
replenishment) as soon as a cell exits the fabric (through a
C to egress link); the credit is given to the credit scheduler
controlling that link. We modify this so that the credit is only
generated when the cell (or segment) is no longer waiting for
any earlier cell to arrive from the fabric. Hence, the credit is
generated when the cell moves out of the reorder buffer and
into the reassembly queues. This scheme effectively combines
flow-control and resequencing, using a common admission
mechanism in the central scheduler. Since we delay credit
generation, the added delay (C switch to end of resequencing)
must be counted in the overall control round-trip time (RTT),
to be used in sizing fabric buffers.

4.3 Operation Overview

We review, now, the overall system operation.
4.3.1 Segment Admission: In each ingress linecard, a sched-

uler visits the VOQs and sends requests for the corresponding
outputs to the central scheduler. We name these schedulers as
request schedulers. Upon reaching the latter, each request, say
i→o, increments the i→o request count, which is maintained
in front of the credit scheduler for output o. The credit
scheduler also maintains M credit counters, one per crosspoint
queue in its C switch, and N distribution pointers, one per flow
arriving to this output. Each credit counter is decremented by
one when the credit scheduler allocates space from that counter
to one cell (segment). Each distribution pointer identifies
the B switch through which to route the next cell of the
corresponding flow, i→o; it is initialized and incremented as
described in section 4.1.1. Connection i→o is eligible for
service at its output credit scheduler, when its request counter
is non-zero, and, at the same time, the credit counter pointed
by the distribution counter i→o is non-zero as well. Once
connection i→o gets served, its request count decreases by
one, and a grant is routed to its input admission scheduler,
where it increments grant counter i→o. Any non-zero grant
counter is always eligible for service, and, once served, is
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decremented by one. When served, grant i→o is sent to its
ingress linecard, to admit a new segment inside the fabric.

4.3.2 Segment Injection: In a variable-size segment system,
the head segment of VOQ i→o may not be a maximum-size
segment, when the grant arrives to this VOQ; nevertheless,
this smaller segment is injected into the fabric. This means
that the buffer spaces that have been reserved for the segment
will not be fully utilized. This is not a problem: the reason
why VOQ i→o does not contain a maximum-size segment is
that this smaller segment is the only datum in the queue. If
the load of this flow persists, the VOQ will grow to contain
multiple packets, in which case the head segment will always
be a maximum-size one, thus stopping wasting buffer space
in the fabric.

The route of the candidate for injection segment is pointed
by input distribution counter i→o; this counter is initialized
and incremented as described in section 4.1.1. Before the
segment is injected, a sequence tag is included in its header,
specifying the segment’s order among other i→o segments
that have been injected before it. This sequence tag is used
by the reordering circuits at egress linecard o10. The segment
has then to compete against other “granted” segments, and
will reach its C switch subject to hop-by-hop, credit-based
backpressure11. This backpressure is indiscriminate, but, as
explained discussed in section 3.3, it cannot introduce blocking
because it operates on solicited packets. No backpressure is
exerted from the egress linecards to the C stage.

4.4 Limiting the per-flow Outstanding Requests

Limiting by some value, say u, the number of requests that
a VOQ connection may have outstanding inside the central
scheduler has the following benefits –this is controlled by
the ingress request schedulers. First, the respective request or
grant connection counter inside the central scheduler will never
wraparound (overflow) if it is at least dlog2ue-bit wide. The
reason is as follows: the “bit” requests that a VOQ connection
has outstanding must either “reside” in its request counter
(queue) or in its grant counter (queue); hence, the sum of
these two counters will never exceed u. Moreover, this limit
acts as an implicit “backpressure”, that prevents output credit
schedulers from synchronizing in conflicting decisions –i.e.,
granting buffers to a single, “congested” input. If some of them
do so for a while, their grants will clash in front of the input
admission scheduler; from there, every new segment-time,
only one of these grants will move out of the central scheduler,
to reach its VOQ and supply its output admission scheduler
with a new request. Effectively, after a while, the synchronized
output (credit) schedulers will find that the “congested” input
has no more requests for them; therefore they will be forced
to serve requests from other inputs.

10segment header also contains the information needed for the reassembly
of the packets fragments contained in it, as described in [23].

11our system also uses credit-based backpressure from the C stage to B

stage, in order to be able to safely “bypass” admissions for a few (unsolicited)
segments –see section 1.5. Assuming that all the injected segments are
solicited, this backpressure will never block or halt a segment. C
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5 . CENTRAL SCHEDULER IMPLEMENTATION

5.1 Central Chip Bandwidth

As shown in figure 4, requests issued by the ingress
linecards, first travel to the upstream A-switch, via a link con-
veying one VOQ request per-segment-time; each such request
carries along an identifier of the output port it refers to. Inside
the A switch, VOQ requests are time division multiplexed
(TDM) upon a link, that transfers M (equal to the size of
each TDM frame) VOQ requests to the scheduler per-segment-
time, one from each particular input. The scheduler infers the
input port linecard of a request by its position in the TDM
frame (request belt). Output grants, destined to input ports of a
particular A switch element, cross the scheduler’s boundaries
on a similar TDM link (grant belt): the position (slot) of a
grant in a TDM frame indicates to the A-switch the input port
that must receive the grants. The “payload” of each request or
grant notice is an identifier of the fabric-output port that the
notice goes to, or comes from; this destination identifier can
be encoded in log2N bits. Besides request-grant notices, the
central scheduler must also receive credits from the switches
in the C stage. These credits are conveyed through a link
connecting each C-switch with the scheduler. Each such link
conveys M credits per-segment-time, one for each associated
destination, in a similar TDM manner: the position of a credit
notice in a TDM frame “points” the fabric-output that the
credit comes from, whereas, its payload points the specific
crosspoint queue ahead of that fabric-output, generating the
credit –i.e., log2 M bits payload per TDM slot.

Using TDM multiplexing, the aggregate bandwidth of the
scheduler’s chip is 2 · N · log2 N bits per-segment-time, for
being requested from as well as granting all fabric-input ports,
plus N · log2 M bits per-segment-time for being notified for
buffer credit releases from all fabric-outputs, or N ·(2·log2 N+
log2 M) bits per-segment-time in total. For a 1024-port fabric,
with M=32, λ=10 Gb/s, and segment size corresponding to
64-Bytes, the aggregate input plus output bandwidth is 25.6
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Kbit per 51.2 ns, or roughly equal to 500 Gb/s 12.

5.2 Routing Requests and Grants to their Queues

Figure 4 depicts the organization (and candidate implemen-
tation) of the central scheduler. Requests from different ingress
ports, arriving through the same A-switch, are conceptually
demultiplexed at the chip’s interface and routed independently
to their (output) credit scheduler. Conceptually, at the interface
of the scheduler’s chip, we have N inputs that want to “talk” to
N output schedulers. As shown in figure 4, this can be imple-
mented by a crossbar. Each crossbar input needs only identify
the output for which it has a new requests –no other payload is
being exchanged. Observe that, within the duration of a TDM
frame, any number of inputs may concurrently request the
same output; each such request will increase by one a request
counter, residing at the respective crosspoint of the crossbar
interconnection. When a credit (output) scheduler serves an
input –i.e., a request counter–, it needs route a “bit” grant to
the counterpart input admission scheduler. The interconnection
implementing this last output-to-input communication can be
realized by crossbar, in a symmetric to the input-to-output
network fashion; this crossbar contains the grant counters at
its crosspoints. The two networks together form the scheduling
pipeline.

This first, simplistic implementation uses approximately 2 ·
N2 request or grant counters, dlog2ue-bit wide each, as well
as N2, log2M -bit wide distribution counters. For a 1024-port
fabric, and u=32, this results in roughly 5 M of counter bits.
Each such bit costs about 20 transistors (xtors), hence, the chip
of this straightforward implementation needs approximately
300 Mxtors, in total.

A better implementation would group these counters in a
set of plain SRAMs, using external adders for increments
and decrements. In this way, we can reduce the chip die
considerably, since SRAM is much more compact than random
logic. A related optimization is to time division multiplex input
or output operations on a small set of hardware controller
running faster than the segment-time. For instance, we can
group outputs in groups of M , and use only one credit
scheduler controller performing request admissions for these
outputs, in a TDM manner. Certainly, the state of such a
controller should also change from one TDM “slot” frame
to the next.

6 . SIMULATION RESULTS

An event-driven simulation model was developed in order
to verify the design and evaluate its performance for various
fabric sizes, crosspoint buffer sizes (b, b≡Bx), and round-trip
times. Unless otherwise stated, in all experiments that follow,
we assume fixed-size cell traffic, and segments comprising
a single-cell, each –in section 6.6 we present some prelim-
inary variable packet size results. We simulated the fabric

12using the multi-packet segments technique [23], packets smaller than one
segment will be usually –at least at the interesting cases, when the load of
the connection carrying these small packets exceeds the connection’s service–
packed together with other packets (or fragments thereof) into an entire, filled
segment before being injected into the fabric.

under smooth, unbalanced, and hotspot traffic. Smooth traf-
fic consisted of Bernoulli arrivals with uniformly distributed
destinations. The unbalanced traffic experiments use Bernoulli
arrivals, and an unbalance factor determined by w [19]: when
w is equal to zero (0) traffic is uniform, whereas when w is
equal to one (1) traffic consists of persistent (non-conflicting)
input-output port connections. Under hotspot traffic, each des-
tination belonging to a designated set of “hot spots” receives
(smooth or bursty 13 traffic at 100% collective load, uniformly
from all sources; the rest of the destinations receive uniform or
bursty traffic as above. Hotspots are randomly selected out of
the fabric-output ports. We also simulated inadmissible traffic
patterns to examine how well can our architecture distribute
input and output port bandwidth –section 6.4.

The delay reported is the average, over all segments, of
the segment’s exit time –after being correctly ordered inside
the egress resequencing buffers–, minus the segment’s birth
time, minus the request-grant cold start delay, and minus
the segment’s sojourn time through the fabric. Approximately
half of the request-grant cold start delay –specifically, credit
and grant schedulers delays, plus grant propagation (to the
linecard) delay–, added to segment sojourn from ingress to
egress linecards time, and to credit propagation back to the
credit scheduler delay, comprises the round-trip time (RTT),
used in sizing the crosspoint buffers –in figure 1 this feedback
loop can be identified by arrows 1, 2, 3, and 4. Thus, under
zero contention, the reported delay of a segment can be as
small as zero. We use 95% confidence intervals of 10% 14 in
delay experiments, and of 1% in throughput experiments.

We use the name Scheduled Fabric (SF) to denote our
system. By default, FS uses no internal speedup, and pointer-
based round-robin (RR) schedulers throughout the fabric,
linecards, and admission unit. We compare FS to output
queueing (OQ), to iSLIP, and to a three-stage Clos fabric,
comprising a bufferless middle-stage, and buffered first- and
last- stages (MSM). This bufferless fabric is being scheduled
by the CRRD scheme [7].

6.1 Throughput: Comparisons with MSM

First, we measure throughput for different buffer sizes, b,
and for different RTTs, under unbalanced traffic; for com-
parison, we also plot MSM results. Performance curves are
depicted in figure 5. Figure 5(a) shows that with b as small as
12 segments, SF approaches 100% throughput under uniform
traffic, when w equals zero (0), and better than 95% throughput
for intermediate w values, which correspond to unbalanced
loads. We also see that, with the same buffer size b=12,
and for any RTT up to 12 segments-times (i.e., equal to b

λ
),

this performance does not change. Figure 5(b) shows this
performance not to be affected by the fabric size, N : for

13bursty traffic is based on a two-state (ON/OFF) Markov chain. ON periods
(consecutive, back-to-back cells arriving at an input for a given output) hold
for at least one (1) cell-time, whereas OFF periods may last zero (0) cell-times,
in order to achieve 100% loading of the switch. The state probabilities are
calibrated so as to achieve the desirable load, giving exponentially distributed
burst length around the average indicated in any particular experiment.

14we want to improve confidence down to 5%.
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up to 256-ports fabrics, the throughput is virtually the same.
By contrast, the performance of MSM drops sharply with
increasing N . Although MSM may deliver 100% throughput
(similar to iSLIP), it is designed to do that for the uniform
case, when all VOQs are persisting; if some VOQs fluctuate
however, pointers can get synchronized, thus directly wast-
ing output slots. By contrast, FS does not fully eliminate
packet conflict, via maximal schedules as MSM, which method
pertains the danger of pointer clashes that directly relate to
throughput losses. In some sense, every injected segment, even
if conflicting, makes a step “closer” to its output, thus being
able to occupy it on the first occasion.

6.2 Smooth Arrivals: Comparison with OQ, iSLIP, and MSM

Figure 6 shows the delay-throughput performance of SF
under smooth traffic, and compares it with that of MSM,
iSLIP, and ideal OQ switch. The figure shows that, compared
to the bufferless architectures, SF delivers strictly better per-
formance. We also see that the delay performance of SF is
not affected by the fabric size, while that of MSM is very
much affected. The delay of SF under smooth traffic is within
four times that of OQ. This must be due to the large number
of contention points that a segment goes through during its
sojourn inside the SF fabric.

6.3 Overloaded Outputs & Bursty Traffic

Speaking for multistage switches, a major advantage of the
architecture proposed in this paper is that it protects well-
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fabric, b=12 segment, RTT=12 segment-times. Only the queueing delay is
shown, excluding all other fixed delays.

behaved flows against the congestion levels at oversubscribed
destinations. Figure 7, presents the delay of these well behaved
flows (non-hotspot traffic), for varying numbers of congested
outputs. All flows (connections), congested or not, are fed by
Bernoulli sources. For comparison, we also plot segment delay
when no hotspot is present, denoted by h/0, and the OQ delay.
To see how well SF isolates flows, observe that the delay of h/4
(i.e., in the presence of four (4) congested outputs) is virtually
identical to that of h/0.

Nevertheless, in figure 7 we see the delay of well-behaved
flows increasing with the number of hotspots, with the increase
being more pronounced for large numbers of hotspots. If
the well-behaved flows were subject to backpressure signals
coming from queues that feed oversubscribed outputs, these
flows’ delay could probably grow unboundly, even at very
moderate loads. However, this is not the case. The marginal
delay increases that we witness is not due to congestion effects,
but because the hotspot traffic increases contention for the
well-behaved segments along the shared paths inside fabric,
before these reach their fabric output-port buffer; hence, in a
sense, the presence of hotspots increases the within the fabric
effective load. For instance, when fifty (50) out of the sixty-
four output ports of the fabric are oversubscribed (h/50), and
the load of the remaining fourteen (14) output flows is 0.1, the
effective load, at which each fabric-input injects segments, is
close to 0.82.

To verify this behaviour, we have marked in figure 7 the
delays of h/50 at load 0.1 and of h/0 at load 0.82. We see that
these two delays are almost identical15! Analogous behavior
can be seen in the MSM plots. (Consider that MSM contains
N large VOQs inside each A-switch, which are being shared
among all upstream ingress linecards, in order to isolate output
flows.)

Not shown in the figure is the throughput (utilization) of

15the delay of h/50 at load 0.1 is actually a bit lower than the delay of
h/0 at load 0.82. This is so because in h/50 under (non-hotspot) load 0.1, the
output load for the uncongested packets, whose delays we measure, is 0.1,
whereas in h/0 under load 0.82, the output load is 0.82 for all flows.
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the hotspot destinations (the load offered at them is 100%).
In SF, all hotspots were measured to be 100% utilized, for
any load of the uncongested flows; by contrast, in MSM, the
respective utilization ranged from 90-100% because, for 100%,
the prerequisite of the CRRD scheme is to desynchronize its
RR pointers, which can be only achieved under persistent
VOQs. When some VOQs are not in that state, as that of
the well-behaved flows in our experiments, pointers clash,
rendering considerable throughput losses.

Lastly, we examine the effect of burstiness on switch
performance. The results are shown in figure 8. It worths note
first, that, with bursty traffic, SF delay is longer by a factor
of 1.5 compared to OQ, i.e., more close to the ideal system
than with smooth traffic16. In most non-blocking fabrics, the
primary source of delay under bursty traffic is the severe
(temporal) contention for the destination ports, many of which
may receive parallel bursts from multiple inputs [32][5]. For
the same reason, under bursty traffic, the incremental delay that
well-behaved flows experience in the presence of hotspots is
less pronounced than with Bernoulli arrivals –figure 8 versus
figure 7.

6.4 Output Port Bandwidth Reservation

Our results so far used RR schedulers, yielding uniform
service to connections. With the experiments that follow, our
target is to demonstrate that, besides output flow protection, the
SF architecture also features flow isolation, which can be used
to differentiate, e.g. using weights, when distributing output
link bandwidth among the competing VOQs. To that end,
we place WRR/WFQ credit admission schedulers to perform
the buffer reservations for the fabric-output buffers. All other
schedulers within the fabric are left intact (RR).

In figure 9, we configured three connections in a 64-port
fabric: 1→1, 2→1, and 9→1, each one being the only active
connection at its input linecard, with a weight of twenty (20),
nine (9), and one (1) respectively. (The remaining inputs send
a uniform but bursty “background” traffic to output ports 2

16the same performance trends can be found in [10].
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Fig. 9. Sophisticated output port bandwidth distribution, under WRR/WFQ
output admission schedulers; 64-ports fabric, b=12 segments, RTT=12
segment-times.

to 64.) All three connections send traffic at the same rate,
which is shown on the horizontal axis. The vertical axis shows
the normalized service (throughput) that each connection gets;
each point in the figure corresponds to distinct “run”, using
different connection load.

Consider that when output port 1 becomes saturated at
connections’ load 1/3, the fair shares of these connections
are 2/3 for connection 1→1, 9/30 for connection 2→1, and
1/30 for connection 9→1. Before saturation, all connections
receive equal rate, equal to what each one demands. But once
saturation is reached, bandwidth from 9→1 is reallocated to
connections 1→1 and 2→1. Essentially, up to that point, con-
nection 9→1 utilized unused bandwidth belonging to the other
two connections; so, when these demand for more bandwidth,
9→1, has to return it back. Next, comes connection’s 2→1
turn; when connections 1→1 and 2→1 start demanding more
than what is available, 2→1 backs off, allowing to 1→1 reach
its fair share. In this way, when each connection demands more
than what it receives, all three connections stabilize to their
output fair shares (0.66, 0.30, and 0.033).

6.5 Weighted Max-Min Fair Schedules

In this section, we place WRR credit schedulers, as we did
in section 6.4, as well as WRR ingress request schedulers
inside the input linecards –see section 4.3.1. The number of
“bit” requests that a VOQ may have outstanding is limited by
32 –see section 4.4. Each active VOQ sends traffic at 100%
load, in order to to model persistent VOQ sources.

The left table in figure 10(a) depicts connections weights in
a 4-port fabric, comprised of 2-port switches. Each connection,
i→j, has a unique weight; this unique weight is being used by
the WRR request scheduler inside ingress linecard i, as well
as by the WRR credit scheduler for output port j inside the
central scheduler. Note that the grant schedulers inside central
scheduler, as well as any other packet scheduler inside the
fabric, are oblivious of connections’ weights, i.e., they perform
pointer-based round-robin scheduling.

In the experiment corresponding to figure 10(a) we con-
figured a “chain” of dependent connections as in [31]. When
connection 1→1 is active with weight 64, it deserves 2/3 of
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Fig. 10. Weighted max-min fair allocation of input/output ports band-
width, using WRR/WFQ schedulers; 4-ports fabric, b=12 segments, RTT=12
segment-times.

its ports’ bandwidth, and each subsequent connection along
the diagonal of the connection matrix deserves 1/3, 2/3, 1/3,
etc. As shown in the upper corner of the connections’ “cells”
inside the left matrix of the figure, the weighted max-min fair
(WMMF) shares match the simulated rates of the SF fabric17.
When 1→1 is inactive –shown in the lower corner of the
matrices “cells”–, the fair shares of the remaining connections
are reversed, becoming 2/3, 1/3, 2/3, etc. Again the simulation
rates match the WMM fair shares.

In figure 10(b) we configured 16 active connections in the
4-port fabric; their weights, their WMMF shares, as well as
the SF simulated rates are shown in the matrices. We again
see how close the rate allocation of the SF fabric approximates
the ideal WMMF allocation.

6.6 Variable-Size Multipacket Segments

Our results up to now assumed fixed-size segment (cell)
traffic. In this last experiment, we present some preliminary
results using variable-size multi-packet segments that carry the
payload of variable-size packets. In addition to the mecha-
nisms used in our simulations so far, in these experiment we
additionally use reassembly buffers inside the egress linecards,
performing packet reassembly, after segments leave the reorder
buffers. We assume 10 Gb/s sources sending variable-size
packets uniformly over all destinations, with exponential inter-
arrival times (Poisson packet sources). We assume packet size
following a Pareto distribution, from 40 Bytes up to 1500
Bytes. Segments range from 40 to 260 Bytes. We compare
the SF architecture to a buffered crossbar with 2 KBytes per
crosspoint buffer and no segmentation or reassembly (Vari-
able Packet-Size (VPS) crossbar), similar to the architecture
evaluated in [22].

Our results are shown in figure 11. We see that SF delivers
comparable delays to that of the buffered crossbar; at low
loads, the dominant delay factors in SF are the VOQ delay,

17for algorithms computing WMMF schedules see [30].
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Fig. 11. Packet delay performance for variable-size packet arrivals, under
variable-size, multipacket segments; uniform Poisson packet arrivals on 10
Gb/s input lines. Pareto packet size distribution (40-1500 Bytes), with a mean
packet size of 400 Bytes; 64-ports fabric, 260 Bytes (variable-size) segments;
b=7 (maximum-size) segments. Packet delay measures include request-grant
cold-start delay, segment scheduling and propagation delay, as well as segment
reordering, and packet reassembly delays.

–in this experiment, VOQ delay includes 0.5 ms of request-
grant cold-start delay–, as well as the reordering and the re-
assembly delays. Excluding the request-grant delay overhead,
the delay of SF is within 1.5 times the delay of this “ideal”
buffered crossbar, directly operating on variable-size packets.
We perform further research on variable-size packets, and on
how to remove the request-grant delay overhead.

6.7 Internal Buffers Rarely Fill-Up

In section 3, we discuss that, SF does not need buffer
reservations for A or B buffers before segment injection,
thanks to Benes non-blocking capacity, and thanks to succesful
load balancing (inverse multiplexing). However, perfect load
balancing can only be achieved in a fluid model. Our load
balancing method, being quantized in segment units, may
cause internal buffers to fill up, and in effect block segments
in the shared queues of the fabric, due to HOL blocking. To
verify that this occurs rarely, we additionally measured the
times that a scheduler inside the SF fabric stayed idle, whereas
there was at least one segment waiting for service in the queues
before the scheduler. Using these measurements, we estimated
the probability p=P[idle | backlogged], during the life time
of a simulation run. (Essentially, 1-p “measures” the work
conserving operation of the fabric links under solicited traffic.)
We made separate measurements for: (i) schedulers inside the
ingress linecards, which serve the solicited VOQs –i.e., those
that received a grant–, subject to indiscriminate credit-based
backpressure from A switches; and, (ii) for schedulers inside
the A switches, which serve their crosspoint buffers subject
to indiscriminate credit-based backpressure exerted from the
crosspoint buffers in B switches18.

18hop-by-hop backpressure never stops a (solicited) segment inside the B

switches, thanks to the superimposed request-grant credit flow-control of the
buffers in C switches. A segment never stops inside the C switches, because
our current model does not use any backpressure exerted from the egress
linecards on the C stage.
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Our results showed that redundant blocking appears more
frequently on the links connecting VOQ linecards with A
switches, than on the links connecting A with B switches.
But, for both cases, results showed p probabilities to be very
small. As expected, p probabilities are dependent on buffer
size B –p decreases with increasing B–, and also dependent
on load, but rather inelastic to traffic type. The dependence on
buffer size B becomes marginal for B ≥ 10-12 segments: p
drops to zero under loads smaller than 80%, reaching 0.0004
at 98% load (3-4 redundant stops in every 104 samples); even
at full 100% load, p stays close to 0.004. We found that these
results do not change with bursty traffic or overloaded outputs.
Ending this section, we need to comment that the blocking
probability measured is an average extracted from long-lasting
simulations. In the very short term, p probabilities may rise
due to distribution pointers clashing.

7 . CONCLUSIONS & FUTURE WORK

We proposed and evaluated a novel, effective, and realistic
scheduling architecture for non-blocking switching fabrics. It
relies on multiple, independent, single-resource schedulers,
operating in a pipeline. It unifies the ideas of central and
distributed scheduling, and it demonstrates the latency - buffer
space tradeoff. It provides excellent performance at realistic
cost.

Work in progress includes completing our study of variable-
size segment performance, designing schemes to route back-
pressure and control signals more efficiently, and simulating
various protocols that eliminate the request-grant delay under
light load. These will have been completed in the final version
of the paper.

Other future work includes a careful comparison against the
RECN protocol, a study of other scheduling disciplines besides
RR or WFQ/WRR (as that proposed in [13] for networks with
finite buffers), and a study of multicast capabilities.
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