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Abstract-Modern switches and routers often use dynamic RAM 
(DRAM) in order to provide large buffer space. For advanced 
quality of service (QoS), per-flow queueing is desirable. We 
study the architecture of a queue manager for many thousands 
of queues at OC-192 (10 Gbps) line rate. It forms the core of the 
“datapath” chip in an efficient chip partitioning for the line 
cards of switches and routers that we propose. To effectively 
deal with bank conflicts in the DRAM buffer, we use pipelining 
and out-of-order execution techniques, like the ones originating 
in the supercomputers of the 60’s. To avoid off-chip SRAM, we 
maintain the pointers in the DRAM, using free buffer 
preallocation and free list bypassing. We have described our 
architecture using behavioral Verilog (a Hardware Description 
Language), at the clock-cycle accuracy level, assuming Rambus 
DRAM. We estimate the complexity of the queue manager at 
roughly 60 thousand gates, 80 thousand flip-flops, and 4180 
Kbits of on-chip SRAM, for 64 K flows.  

 

I. INTRODUCTION 

The explosive growth of Internet traffic has created an acute 
demand for integrated-service networks of ever increasing 
bandwidth. Networking companies are called upon to design 
and manufacture the fastest possible switches and routers. 
Line (port) speed is one parameter that must grow, and 
valence (number of ports) is the other such parameter. Port 
speed is in the OC-12 to OC-48 (622 Mbps to 2.5 Gbps) 
range today, and will grow to OC-192 (10 Gbps) very soon. 
The number of ports is in the tens to hundreds range today, 
and will need to grow to thousands. 

High valence, high-speed switches/routers usually consist 
of a switching fabric, an ingress module for each input link 
and an egress module for each output link. The 
implementation of the switching fabric is challenging; 
however, it is not a topic of this paper. This paper 
concentrates on the architecture of ingress and egress 
modules.  Both of the ingress and egress modules provide 
buffering and scheduling. In addition, the ingress module 
provides header processing and routing decisions.  Since the 
ingress functions are usually a superset of the egress ones, we 
will focus mostly on the former module architecture.  

Besides raw throughput, the customers of modern networks 
also demand Quality of Service (QoS) guarantees.  In our 
opinion, the provision of advanced QoS guarantees requires 
true flow isolation that can only be achieved using per-flow 
queueing [3], [4] in connection with a good scheduler [2]. 

Per-flow queueing, for many thousands of flows, was 
considered an excessively expensive architecture up to a few 
years ago. Modern technology, however, provides the means 
to implement such architectures within a fraction of an 
integrated chip (IC) [1]. 

This paper studies the implementation of such architectures 
at OC-192 (10 Gbps) line rates. We show that, although 
challenging, this implementation is feasible, using the 
advanced hardware techniques that were developed for 
supercomputers in the 60’s and are used in high-end 
microprocessors now-a-days. We present our precise model 
of such an implementation; it was written using the “Verilog” 
Hardware Description Language, at the accuracy level of 
individual clock cycles. 

Section II presents a chip partitioning for the ingress 
module that economizes on chip-to-chip communication, so 
that pin count and power consumption are reduced. Section 
III describes the buffer memory technology (Rambus). In 
order to effectively use DRAM buffer memory, accesses have 
to be scheduled in the presence of bank conflicts.  We use 
multiple, pipelined control processes to achieve out-of-order 
scheduling of DRAM accesses. The data dependencies 
among successive operations are handled using Tomasulo’s 
dynamic scheduling techniques (operand renaming) [5], [6]. 
These sophisticated techniques also handle variable header 
processing time in an efficient manner. Section IV reports on 
our method of economizing off-chip memories and chip pins 
by locating a fraction of the queue manager data structures in 
the buffer memory itself, and using free list bypassing [7] and 
buffer preallocation. Section V describes the structure of the 
advanced queue manager pipeline. Finally, section VI 
estimates the implementation cost based on our cycle-
accurate Verilog hardware description. 

 

II. INGRESS MODULE CHIP PARTITIONING 

The ingress module has considerable complexity, and thus its 
implementation as a single chip would be problematic, even 
using modern VLSI technology. This complexity is due to 
both the number of functions to be performed (routing, 
buffering, scheduling), and to the number and size of 
memories required (routing/classification tables, buffer 
memory, queueing data structures, scheduling parameters and 
state). 



We assumed a partitioning of the ingress module into three 
chips plus the off-chip memories, as shown in figure 1. This 
partitioning reduces the chip-to-chip communication 
throughput, so as to reduce both pin count and power 
consumption. Packet bodies account for the majority of bits 
under manipulation, when compared to packet headers. Thus, 
packet bodies are kept in single chip boundaries when being 
buffered in (necessarily off-chip) memory and when entering 
or leaving the ingress module. Header processing represents a 
considerable amount of work that only communicates with 
the rest of the module though packet headers and flow 
identifiers; thus we assumed that it is positioned in a separate 
chip. The same is true for scheduling, which only 
communicates with the other chips through narrow words: 
flow identifiers. 

When packets enter the datapath chip, their bodies have to 
wait until header processing has identified the flow to which 
they belong; subsequently, queue management must identify 
a buffer address; then, DRAM memory has to become 
available (see section III-A). During this waiting period, 
packet bodies are kept in a memory, which we call “transit 
buffer” (figure 4) and are not moved from processing stage to 
processing stage, so as to avoid additional power 
consumption. 
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Fig. 1. Ingress Module Chip Partitioning 

 

III. INTERLEAVED DRAM ACCESSES AND OUT-OF-ORDER 
SCHEDULING 

A crucial design decision at such high rates is the choice of 
the buffer memory technology. SRAM provides high 
throughput but limited capacity, while DRAM offers 
comparable throughput1 and significantly higher capacity per 
unit cost. Thus, we chose DRAM [8]. Among DRAM 
technologies, we chose Rambus [9] over DDR-SDRAM, 
because Rambus offers higher throughput at lower pin count.   

                                                           
1 Memory chip throughput is a matter of I/O interface rather 
than storage core; SRAM and DRAM both use similar I/O 
interface techniques, today.  

A.  Rambus DRAM Technology 

Rambus technology [9] provides 12.8 Gbps peak throughput 
per memory chip (RDRAM) by using a 2-byte data bus at 
400 MHz with double clocking (i.e. 800 Mbps/pin). A RIMM 
module contains up to 16 RDRAM chips and provides 128 
MBytes total capacity. Each RDRAM chip is partitioned into 
16 banks (a RIMM module contains 256 banks) in order to 
provide interleaving (i.e. to allow multiple parallel accesses). 
Up to four accesses to different banks can be in progress, 
simultaneously. The memory access latency is about 60ns, 
while successive accesses to the same or adjacent banks may 
be performed every 100ns due to the bank-precharging 
interval.  

 

B. Out-of-Order DRAM Accesses 

When a memory transaction tries to access a currently busy 
bank (a bank that has not yet been precharged), as opposed to 
an available bank, we say that a bank conflict has occurred. 
This conflict causes the new transaction to be delayed until 
the bank becomes available, thus reducing memory 
utilization.  When random accesses are made to an 
interleaved DRAM, some bank conflict will inevitable occur, 
as illustrated in figure 2, left, where a memory consisting of 4 
banks (A, B, C, D) is assumed. If the bank cycle time is 3 
time units, we can access the same bank every 3 time units. 
Therefore, the second and the successive transactions would 
be delayed two time units. 

To reduce the number of bank conflicts, thus increasing 
memory utilization, we can rearrange the order of memory 
accesses, as in the simple example of figure 2, right. This 
implies out-of-order execution [5], which requires some 
control hardware complexity (section V-B), but is quite 
beneficial to performance.  
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Fig. 2. Non-Interleaved versus Interleaved Transactions 

 

IV. QUEUE POINTER MANAGEMENT 

Modern switching fabrics operate on fixed size segments, 
because that simplifies the hardware, reduces the cost, and 
increases system speed. Moreover, implementing multiple 
queues inside a shared memory is almost impossible unless 
all memory allocation is done in multiples of a fixed-size 
unit. We assumed a 60-byte-size data segment since this size 
is relatively small, so as to reduce the delay for high priority 
traffic, and it is close to the ATM cell size. 

In order to organize the segments in multiple queues, two 
pointers per queue are required: one pointing to the head of 
queue and the other to its tail. The head/tail pairs of all the 



system queues are kept in the Queue Table. Additionally, a 
pointer is needed per memory segment, pointing to the next 
segment in a queue, as shown in figure 3.  The memory that 
maintains these pointers is called Next Pointer Memory.  

Head Tail
Queue Table Next Pointer 

Memory

64 K

null  
Fig.  3. Queue management data structures. 

 
A. Next-Pointers in Buffer Memory           

In order to economize on off-chip memories and minimize 
the number of chip pins, we locate the next pointers in the 
DRAM buffer memory instead of a separate off-chip SRAM.  
This choice adds an overhead of 4 bytes per memory segment 
(4 bytes next pointers + 60 bytes data = 64 bytes memory 
segments). It also grows the latency of accessing next 
pointers, because the access time for DRAM is about half an 
order of magnitude longer than for SRAM. Additionally, 
locating the next pointers in the buffer memory would 
normally double the number of buffer memory accesses per 
enqueue or dequeue operation, because two accesses at 
different addresses would have to be performed: an access to 
the data field and an access to the next pointer field2.  

 

B. Buffer Preallocation Technique  

To avoid the increase of memory accesses, we used buffer 
preallocation: one free buffer is preallocated for every queue, 
and linked as the last buffer in the queue. When a new 
segment is to be enqueued, it is always written into the 
preallocated buffer; at the same time, we write into the same 
buffer the pointer to a new free block, which is thus 
preallocated and linked into the queue.    

 

C. Free List Bypassing Technique 

Another drawback of placing the next pointers in the buffer 
memory is the need for additional accesses to this memory 
when manipulating the free list. In the case of enqueueing 
and dequeueing a segment in the same time slot, four 
memory accesses would have to be performed: read the 
departing and write the incoming segment plus a read and a 
write operations to update the free list head and tail, 
correspondingly. To avoid this, we use free list bypassing [7]: 
rather than dequeueing a departing buffer from an output 
queue and enqueueing that buffer into the free list, and rather 
than extracting a buffer from the free list and enqueueing it 
                                                           
2 When the next pointers are located in a separate memory, 

the next pointer accesses are performed in parallel with the 
data accesses, thus keeping the rate of buffer memory 
accesses down to one per enqueue or dequeue operation. 

into another queue upon arrival, we combine the two 
operations: the buffer into which an arriving segment is 
placed, is precisely the buffer from which a segment is 
departing during the same time slot; thus, there is no free list 
operation. This technique requires only two memory 
accesses: write the data field of the arriving segment and read 
the data field of the departing segment. Note that, for this 
technique to be applicable, multicast segments have to depart 
at once –not multiple times: the buffer of every departing 
segment has to be freed right away. During time slots when 
there is no incoming traffic, a free list enqueue operation is 
performed instead. When there is no outgoing traffic, free list 
dequeues are performed instead.    

 

V. MULTI-PIPELINE STRUCTURE 

At least two Rambus channels are needed in order to support 
incoming and outgoing link rates of 10 Gbps. Each Rambus 
channel provides a throughput of one 64-byte block every 40 
ns, i.e. 12.8 Gbps. Thus, two channels just suffice for 10 
Gbps incoming traffic, 10 Gbps outgoing traffic, 4 Gbps of 
fragmentation loss3, plus 1.6 Gbps for a small speedup, for a 
total of 25.6 Gbps.  We assumed two Rambus channels in our 
design; the architecture would be similar if one decided to use 
more channels in order to support a higher speedup factor 
and/or shorter packet sizes (higher fragmentation loss).   

Because of the long and variable delay of header 
processing and the long latency of buffer memory accesses, 
an enqueue or a dequeue operation require many time slots to 
complete. Without operation overlap, the accomplished 
operation rate would be inferior to the required operation rate. 
Thus, in order to achieve the expected rate of 25.6 Gbps, the 
queue manager must be designed in a pipelined fashion. 

 

A. Control Processes 

Due to the interleaved management of DRAM accesses and 
the placement of the next pointers in buffer memory, 
advanced pipelining techniques are required. In our design, 
the queue manager architecture consists of five parallel and 
pipelined processes: three for enqueue, and two for dequeue. 

The first enqueue process receives the incoming packets 
and places them in the transit buffer (figure 4). Additionally, 
it extracts the packet header fields and transmits them to the 
header processor for routing and classification. As soon as the 
header processor identifies the flow that an incoming packet 
belongs to, the second enqueue process issues an enqueue 
operation for that packet. More precisely, this process must 
issue multiple enqueue operations corresponding to the 
number of segments that the packet is fragmented in; this will 
be discussed thoroughly in section V-C. The issue of an 
enqueue operation means the acquisition of its operands. An 
enqueue operation has two operands: the pointer to the 
preallocated buffer for writing the incoming segment in, and 
the pointer of a new free buffer for linking it in the queue 
(pre-allocation). Finally the third enqueue process executes 

                                                           
3 Computed for an average packet size of 270 bytes, using 60-

byte segments. 



an enqueue operation and updates the queue manager data 
structures. The third enqueue process is separate and 
asynchronous relative to the second because of the variable 
delay of out-of-order DRAM accesses, while waiting for 
bank conflict resolution. 

The first and second dequeue process have corresponding 
functionality with the second and third enqueue processes. 
When the scheduler of packet departures decides to dequeue 
a segment from a queue, the first dequeue process receives 
this information and issues a dequeue operation in the system. 
Next, it tries to acquire the dequeue operand: the pointer to 
the head of queue. Finally, the second dequeue process 
executes the dequeue operation and updates the queue 
manager data structures.         
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Fig.  4. Queue Manager Architecture Block Diagram 

 

B. Pending Operation Tables 

Rearranging enqueue and dequeue operations in a different 
order than the order they are issued is a suitable solution to 
maximize memory throughput utilization in the presence of 
memory bank conflicts. To achieve it, we used the Pending 
Write Table (PWT) and the Pending Read Table (PRT), as 
shown in figure 4. The former holds pending write 
transactions generated by enqueue operations, while the latter 
holds pending read transactions generated by dequeue 
operations. An operation is characterized as pending in two 
cases: when it cannot be executed due to a memory bank 
conflict, or when it has not yet received its operands because 
they are not yet available in the queue management data 
structures. PWT is the means of communication between the 
second and third enqueue processes; the second enqueue 
process places pending write tasks into the PWT, while the 
third enqueue process consumes them from the PWT. 
Similarly, the PRT is the means of communication between 
the first and second dequeue processes. Note that the PWT 
and the transit buffer are related and have the same number of 
entries. A transit buffer entry keeps the body of a segment 
that is waiting to be written into the buffer memory, while the 
corresponding entry in the PWT keeps the control 
information for this write transaction. A transit_id is assigned 
to each PWT entry in order to identify the pending write 
operations in the system. We considered that a PWT with 128 
entries is large enough. Respectively, we assign a transit_id 

to each PRT entry in order to identify the pending read 
operations. The PRT contains 128 entries, but this choice is 
independent of the PWT capacity.      

 

C. Data Dependencies Handling (Operand Renaming) 

If two successive enqueue or dequeue operations are directed 
to the same flow, the second operation may find the state of 
the queue tail/head pointer as pending because the first has 
not updated it yet. In this case a data hazard occurs. The 
tail/head pointer may remain in the pending state for many 
time slots due to the memory access rearrangement and the 
high memory access latency. We handle this situation by 
using the operand renaming technique; this technique 
originates in Tomasulo’s dynamic scheduling [5], [6]. For 
simplicity, we will only examine the enqueue operation; the 
dequeue has identical logic. Whenever an enqueue operation 
acquires the queue tail operand, it sets the queue tail state as 
pending and stores its transit_id in the corresponding tail field 
of the Queue Table. A successive enqueue operation that 
finds the state of the queue tail as pending, acquires the 
transit_id of the enqueue operation, which will create the 
expected operand. Then, the newly issued enqueue operation 
is kept in a PWT entry and waits the updated value of the 
queue tail. As soon as the expected queue tail is available, it 
must be communicated to the proper pending enqueue 
operation.  

In our implementation, operand communication is done by 
organizing all the pending enqueue operations for the same 
flow in a single linked list. Each enqueue operation in the list 
updates the operands of its next pending enqueue operation 
during its execution period. As soon as a pending enqueue 
operation acquires its operands, it is characterized as “ready 
for execution”. The data structures for the pending lists are 
kept in the PWT. Similarly, dequeue operations for the same 
flow are organized in a pending list, which is kept in the PRT.  

Multiple enqueue operations per packet arrival (section V-
A) are handled in the same way as the operand 
communication, above. The first enqueue process (section V-
A) organizes the incoming segments of a packet in a linked 
list. The data structure for such a list is kept in the PWT. The 
list of successive enqueue operations for a flow and the list of 
enqueue operations for the packet segments in the same flow 
are merged in the same list; for more details see [10]. 

 

VI. HARDWARE IMPLEMENTATION COST  

We described our design using the Verilog hardware 
description language, in a behavioral style, at the accuracy 
level of individual clock cycles; some modules were 
described in structural Verilog form. We assumed a clock 
frequency of 100 MHz; each Rambus channel is carried over 
a 128-bit wide datapath, inside the chip, at that clock 
frequency. This clock frequency is conservative for, e.g., a 
0.18-micron technology; this simplifies logic-partitioning and 
pipelining tasks; one access to an on-chip memory plus 
several levels of combinational logic will normally fit within 
a clock cycle.  



Table I shows the on-chip memory requirements for the 
datapath chip when 64 thousand queues are supported and the 
transit buffer, the PWT, and the PRT have 128 entries each.  
The PWT, PRT, and Queue Table are composed of multiple 
memory blocks each, in order to allow independent parallel 
accesses to various of their fields. Table II shows the number 
of Verilog code lines used to describe the queue manager and 
Rambus memory controller architecture. Finally, we estimate 
very roughly the hardware complexity of our architecture to 
be in the range of 60 thousand gates, 80 thousand flip-flops, 
and 4180 Kbits of on-chip SRAM, for 64 K flows; for more 
details see [10].     

TABLE I 
DATAPATH CHIP MEMORY REQUIREMENTS 

Memory 
Block 

Organization Capacity 
(Kbits) 

Ports  ASIC area 
(0.18µm) 

Queue Table 64K x 64 4096 1 port 50 mm2 

Pending 
Write Table 

128 x 96 12 2 ports 0.36 mm2 

Pending 
Read Table 

128 x 64 8 2 ports 0.24 mm2 

Transit 
Buffer 

128 x 512 64 2 ports 1.96 mm2 

 
TABLE II 

VERILOG CODE LINES 

Processes  Code Lines 

Enqueue 1900 

Dequeue 2300 

Rambus Memory 
Controller 

3800 

 

 

VII. CONCLUSION  

We presented the design and evaluation of a high-
performance queue manager architecture that operates at OC-
192 line rate. It uses modern DRAM (Rambus) technology 
for buffer memory, which provides high throughput and 
adequate buffer space. In order to fully utilize the DRAM 
throughput, in the presence of bank conflicts, we perform 
out-of-order transactions. By placing the next pointers in the 
buffer memory we economize on off-chip memories; when 
combined with buffer pre-allocation and free list bypass, 
access performance does not suffer. We showed how the 
dynamic scheduling techniques, originating in the 
supercomputers, are applied in our architecture. Finally, we 
wrote a clock-cycle accurate model, in Verilog, and estimated 
the hardware complexity of our architecture. 
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