
Efficient Per-Flow Queueing in DRAM at OC-192 Line Rate
using Out-of-Order Execution Techniques

Aristides Nikologiannis† and Manolis Katevenis†

Institute of Computer Science, Foundation for Research and Technology (FORTH),
Science and Technology Park of Crete, Vassilika Vouton, P.O. Box 1385, Heraklion, Crete, GR 711 10 Greece

http://archvlsi.ics.forth.gr/muqpro/queueMgt.html anikol@ics.forth.gr kateveni@ics.forth.gr
Tel: +30 (81) 391660, Fax: +30 (81) 391661

† Also with the Dept. of Computer Science, University of Crete, Heraklion, Crete, Greece

Abstract-Modern switches and routers often use dynamic RAM
(DRAM) in order to provide large buffer space. For advanced
quality of service (QoS), per-flow queueing is desirable. We
study the architecture of a queue manager for many thousands
of queues at OC-192 (10 Gbps) line rate. It forms the core of the
“datapath” chip in an efficient chip partitioning for the line
cards of switches and routers that we propose. To effectively
deal with bank conflicts in the DRAM buffer, we use pipelining
and out-of-order execution techniques, like the ones originating
in the supercomputers of the 60’s. To avoid off-chip SRAM, we
maintain the pointers in the DRAM, using free buffer
preallocation and free list bypassing. We have described our
architecture using behavioral Verilog (a Hardware Description
Language), at the clock-cycle accuracy level, assuming Rambus
DRAM. We estimate the complexity of the queue manager at
roughly 60 thousand gates, 80 thousand flip-flops, and 4180
Kbits of on-chip SRAM, for 64 K flows.

I. INTRODUCTION

The explosive growth of Internet traffic has created an acute
demand for integrated-service networks of ever increasing
bandwidth. Networking companies are called upon to design
and manufacture the fastest possible switches and routers.
Line (port) speed is one parameter that must grow, and
valence (number of ports) is the other such parameter. Port
speed is in the OC-12 to OC-48 (622 Mbps to 2.5 Gbps)
range today, and will grow to OC-192 (10 Gbps) very soon.
The number of ports is in the tens to hundreds range today,
and will need to grow to thousands.

High valence, high-speed switches/routers usually consist
of a switching fabric, an ingress module for each input link
and an egress module for each output link. The
implementation of the switching fabric is challenging;
however, it is not a topic of this paper. This paper
concentrates on the architecture of ingress and egress
modules. Both of the ingress and egress modules provide
buffering and scheduling. In addition, the ingress module
provides header processing and routing decisions. Since the
ingress functions are usually a superset of the egress ones, we
will focus mostly on the former module architecture.

Besides raw throughput, the customers of modern networks
also demand Quality of Service (QoS) guarantees. In our
opinion, the provision of advanced QoS guarantees requires
true flow isolation that can only be achieved using per-flow
queueing [3], [4] in connection with a good scheduler [2].

Per-flow queueing, for many thousands of flows, was
considered an excessively expensive architecture up to a few
years ago. Modern technology, however, provides the means
to implement such architectures within a fraction of an
integrated chip (IC) [1].

This paper studies the implementation of such architectures
at OC-192 (10 Gbps) line rates. We show that, although
challenging, this implementation is feasible, using the
advanced hardware techniques that were developed for
supercomputers in the 60’s and are used in high-end
microprocessors now-a-days. We present our precise model
of such an implementation; it was written using the “Verilog”
Hardware Description Language, at the accuracy level of
individual clock cycles.

Section II presents a chip partitioning for the ingress
module that economizes on chip-to-chip communication, so
that pin count and power consumption are reduced. Section
III describes the buffer memory technology (Rambus). In
order to effectively use DRAM buffer memory, accesses have
to be scheduled in the presence of bank conflicts. We use
multiple, pipelined control processes to achieve out-of-order
scheduling of DRAM accesses. The data dependencies
among successive operations are handled using Tomasulo’s
dynamic scheduling techniques (operand renaming) [5], [6].
These sophisticated techniques also handle variable header
processing time in an efficient manner. Section IV reports on
our method of economizing off-chip memories and chip pins
by locating a fraction of the queue manager data structures in
the buffer memory itself, and using free list bypassing [7] and
buffer preallocation. Section V describes the structure of the
advanced queue manager pipeline. Finally, section VI
estimates the implementation cost based on our cycle-
accurate Verilog hardware description.

II. INGRESS MODULE CHIP PARTITIONING

The ingress module has considerable complexity, and thus its
implementation as a single chip would be problematic, even
using modern VLSI technology. This complexity is due to
both the number of functions to be performed (routing,
buffering, scheduling), and to the number and size of
memories required (routing/classification tables, buffer
memory, queueing data structures, scheduling parameters and
state).

We assumed a partitioning of the ingress module into three
chips plus the off-chip memories, as shown in figure 1. This
partitioning reduces the chip-to-chip communication
throughput, so as to reduce both pin count and power
consumption. Packet bodies account for the majority of bits
under manipulation, when compared to packet headers. Thus,
packet bodies are kept in single chip boundaries when being
buffered in (necessarily off-chip) memory and when entering
or leaving the ingress module. Header processing represents a
considerable amount of work that only communicates with
the rest of the module though packet headers and flow
identifiers; thus we assumed that it is positioned in a separate
chip. The same is true for scheduling, which only
communicates with the other chips through narrow words:
flow identifiers.

When packets enter the datapath chip, their bodies have to
wait until header processing has identified the flow to which
they belong; subsequently, queue management must identify
a buffer address; then, DRAM memory has to become
available (see section III-A). During this waiting period,
packet bodies are kept in a memory, which we call “transit
buffer” (figure 4) and are not moved from processing stage to
processing stage, so as to avoid additional power
consumption.

CAM

RAM

o/e s/p

Fr
am

in
g

Header
Modif’n

Queue
Manager

Buf. Mem.
Controller

Fa
br

ic
 I/

F

Routing,
Label
Transl.

Flow
Classi-
fication

RDRAM
(Rambus)

Header
Xtract’n

Header Protocol
Processing Chip

Policer, Scheduler

Buffer Memory

non-CMOS
chips

fr
om

 O
pt

ic
al

 F
ib

er

to
/f

ro
m

 S
w

itc
hi

ng
 F

ab
ri

c

fl
ow

co
nt

ro
l

se
le

ct
ed

 h
ea

de
r f

ie
ld

s

ne
w

 h
ea

de
r f

ie
ld

 v
al

ue
s en

qu
eu

e
flo

w
ID

de
qu

eu
e

flo
w

ID

flowID

Datapath & Queue Management Chip

Fig. 1. Ingress Module Chip Partitioning

III. INTERLEAVED DRAM ACCESSES AND OUT-OF-ORDER
SCHEDULING

A crucial design decision at such high rates is the choice of
the buffer memory technology. SRAM provides high
throughput but limited capacity, while DRAM offers
comparable throughput1 and significantly higher capacity per
unit cost. Thus, we chose DRAM [8]. Among DRAM
technologies, we chose Rambus [9] over DDR-SDRAM,
because Rambus offers higher throughput at lower pin count.

1 Memory chip throughput is a matter of I/O interface rather
than storage core; SRAM and DRAM both use similar I/O
interface techniques, today.

A. Rambus DRAM Technology

Rambus technology [9] provides 12.8 Gbps peak throughput
per memory chip (RDRAM) by using a 2-byte data bus at
400 MHz with double clocking (i.e. 800 Mbps/pin). A RIMM
module contains up to 16 RDRAM chips and provides 128
MBytes total capacity. Each RDRAM chip is partitioned into
16 banks (a RIMM module contains 256 banks) in order to
provide interleaving (i.e. to allow multiple parallel accesses).
Up to four accesses to different banks can be in progress,
simultaneously. The memory access latency is about 60ns,
while successive accesses to the same or adjacent banks may
be performed every 100ns due to the bank-precharging
interval.

B. Out-of-Order DRAM Accesses

When a memory transaction tries to access a currently busy
bank (a bank that has not yet been precharged), as opposed to
an available bank, we say that a bank conflict has occurred.
This conflict causes the new transaction to be delayed until
the bank becomes available, thus reducing memory
utilization. When random accesses are made to an
interleaved DRAM, some bank conflict will inevitable occur,
as illustrated in figure 2, left, where a memory consisting of 4
banks (A, B, C, D) is assumed. If the bank cycle time is 3
time units, we can access the same bank every 3 time units.
Therefore, the second and the successive transactions would
be delayed two time units.

To reduce the number of bank conflicts, thus increasing
memory utilization, we can rearrange the order of memory
accesses, as in the simple example of figure 2, right. This
implies out-of-order execution [5], which requires some
control hardware complexity (section V-B), but is quite
beneficial to performance.

conflict

idle

time
time unit

transaction 1 2 3 4 5 6

tr. 1 > A

tr. 1 > A

tr. 1 > B

tr. 1 > C

time
time unit

transaction 1 2 3 4 5 6

tr. 1 > A

tr. 1 > B

tr. 1 > C

tr. 1 > A

Fig. 2. Non-Interleaved versus Interleaved Transactions

IV. QUEUE POINTER MANAGEMENT

Modern switching fabrics operate on fixed size segments,
because that simplifies the hardware, reduces the cost, and
increases system speed. Moreover, implementing multiple
queues inside a shared memory is almost impossible unless
all memory allocation is done in multiples of a fixed-size
unit. We assumed a 60-byte-size data segment since this size
is relatively small, so as to reduce the delay for high priority
traffic, and it is close to the ATM cell size.

In order to organize the segments in multiple queues, two
pointers per queue are required: one pointing to the head of
queue and the other to its tail. The head/tail pairs of all the

system queues are kept in the Queue Table. Additionally, a
pointer is needed per memory segment, pointing to the next
segment in a queue, as shown in figure 3. The memory that
maintains these pointers is called Next Pointer Memory.

Head Tail
Queue Table Next Pointer

Memory

64 K

null
Fig. 3. Queue management data structures.

A. Next-Pointers in Buffer Memory

In order to economize on off-chip memories and minimize
the number of chip pins, we locate the next pointers in the
DRAM buffer memory instead of a separate off-chip SRAM.
This choice adds an overhead of 4 bytes per memory segment
(4 bytes next pointers + 60 bytes data = 64 bytes memory
segments). It also grows the latency of accessing next
pointers, because the access time for DRAM is about half an
order of magnitude longer than for SRAM. Additionally,
locating the next pointers in the buffer memory would
normally double the number of buffer memory accesses per
enqueue or dequeue operation, because two accesses at
different addresses would have to be performed: an access to
the data field and an access to the next pointer field2.

B. Buffer Preallocation Technique

To avoid the increase of memory accesses, we used buffer
preallocation: one free buffer is preallocated for every queue,
and linked as the last buffer in the queue. When a new
segment is to be enqueued, it is always written into the
preallocated buffer; at the same time, we write into the same
buffer the pointer to a new free block, which is thus
preallocated and linked into the queue.

C. Free List Bypassing Technique

Another drawback of placing the next pointers in the buffer
memory is the need for additional accesses to this memory
when manipulating the free list. In the case of enqueueing
and dequeueing a segment in the same time slot, four
memory accesses would have to be performed: read the
departing and write the incoming segment plus a read and a
write operations to update the free list head and tail,
correspondingly. To avoid this, we use free list bypassing [7]:
rather than dequeueing a departing buffer from an output
queue and enqueueing that buffer into the free list, and rather
than extracting a buffer from the free list and enqueueing it

2 When the next pointers are located in a separate memory,

the next pointer accesses are performed in parallel with the
data accesses, thus keeping the rate of buffer memory
accesses down to one per enqueue or dequeue operation.

into another queue upon arrival, we combine the two
operations: the buffer into which an arriving segment is
placed, is precisely the buffer from which a segment is
departing during the same time slot; thus, there is no free list
operation. This technique requires only two memory
accesses: write the data field of the arriving segment and read
the data field of the departing segment. Note that, for this
technique to be applicable, multicast segments have to depart
at once –not multiple times: the buffer of every departing
segment has to be freed right away. During time slots when
there is no incoming traffic, a free list enqueue operation is
performed instead. When there is no outgoing traffic, free list
dequeues are performed instead.

V. MULTI-PIPELINE STRUCTURE

At least two Rambus channels are needed in order to support
incoming and outgoing link rates of 10 Gbps. Each Rambus
channel provides a throughput of one 64-byte block every 40
ns, i.e. 12.8 Gbps. Thus, two channels just suffice for 10
Gbps incoming traffic, 10 Gbps outgoing traffic, 4 Gbps of
fragmentation loss3, plus 1.6 Gbps for a small speedup, for a
total of 25.6 Gbps. We assumed two Rambus channels in our
design; the architecture would be similar if one decided to use
more channels in order to support a higher speedup factor
and/or shorter packet sizes (higher fragmentation loss).

Because of the long and variable delay of header
processing and the long latency of buffer memory accesses,
an enqueue or a dequeue operation require many time slots to
complete. Without operation overlap, the accomplished
operation rate would be inferior to the required operation rate.
Thus, in order to achieve the expected rate of 25.6 Gbps, the
queue manager must be designed in a pipelined fashion.

A. Control Processes

Due to the interleaved management of DRAM accesses and
the placement of the next pointers in buffer memory,
advanced pipelining techniques are required. In our design,
the queue manager architecture consists of five parallel and
pipelined processes: three for enqueue, and two for dequeue.

The first enqueue process receives the incoming packets
and places them in the transit buffer (figure 4). Additionally,
it extracts the packet header fields and transmits them to the
header processor for routing and classification. As soon as the
header processor identifies the flow that an incoming packet
belongs to, the second enqueue process issues an enqueue
operation for that packet. More precisely, this process must
issue multiple enqueue operations corresponding to the
number of segments that the packet is fragmented in; this will
be discussed thoroughly in section V-C. The issue of an
enqueue operation means the acquisition of its operands. An
enqueue operation has two operands: the pointer to the
preallocated buffer for writing the incoming segment in, and
the pointer of a new free buffer for linking it in the queue
(pre-allocation). Finally the third enqueue process executes

3 Computed for an average packet size of 270 bytes, using 60-

byte segments.

an enqueue operation and updates the queue manager data
structures. The third enqueue process is separate and
asynchronous relative to the second because of the variable
delay of out-of-order DRAM accesses, while waiting for
bank conflict resolution.

The first and second dequeue process have corresponding
functionality with the second and third enqueue processes.
When the scheduler of packet departures decides to dequeue
a segment from a queue, the first dequeue process receives
this information and issues a dequeue operation in the system.
Next, it tries to acquire the dequeue operand: the pointer to
the head of queue. Finally, the second dequeue process
executes the dequeue operation and updates the queue
manager data structures.

Rambus Controller

Queue
Table

(head/tail
Pointers)

Pending
Write
Table

Pending
Read
Table

Transit
Buffer

Header
Modif’n

Header
Xtract’n

Fr
am

in
g

TransitID
Assign’t

Segmen-
tation

Free List
head/tail

Fa
br

ic
 I/

F
to

 S
w

itc
hi

ng
 F

ab
ri

c

fr
om

 L
in

e
In

selected
header
fields

trID

trID

trID

new hdr
field
values

trID

enqueue
flowID

enqueue
flowIDRambus 1 Rambus 2

write
address

read
address

qID qID

nxt_pnxt_p

bufferID bufferID

Free List
bypass

get
buffer

free
buffer

proceed

allocate
release

Fig. 4. Queue Manager Architecture Block Diagram

B. Pending Operation Tables

Rearranging enqueue and dequeue operations in a different
order than the order they are issued is a suitable solution to
maximize memory throughput utilization in the presence of
memory bank conflicts. To achieve it, we used the Pending
Write Table (PWT) and the Pending Read Table (PRT), as
shown in figure 4. The former holds pending write
transactions generated by enqueue operations, while the latter
holds pending read transactions generated by dequeue
operations. An operation is characterized as pending in two
cases: when it cannot be executed due to a memory bank
conflict, or when it has not yet received its operands because
they are not yet available in the queue management data
structures. PWT is the means of communication between the
second and third enqueue processes; the second enqueue
process places pending write tasks into the PWT, while the
third enqueue process consumes them from the PWT.
Similarly, the PRT is the means of communication between
the first and second dequeue processes. Note that the PWT
and the transit buffer are related and have the same number of
entries. A transit buffer entry keeps the body of a segment
that is waiting to be written into the buffer memory, while the
corresponding entry in the PWT keeps the control
information for this write transaction. A transit_id is assigned
to each PWT entry in order to identify the pending write
operations in the system. We considered that a PWT with 128
entries is large enough. Respectively, we assign a transit_id

to each PRT entry in order to identify the pending read
operations. The PRT contains 128 entries, but this choice is
independent of the PWT capacity.

C. Data Dependencies Handling (Operand Renaming)

If two successive enqueue or dequeue operations are directed
to the same flow, the second operation may find the state of
the queue tail/head pointer as pending because the first has
not updated it yet. In this case a data hazard occurs. The
tail/head pointer may remain in the pending state for many
time slots due to the memory access rearrangement and the
high memory access latency. We handle this situation by
using the operand renaming technique; this technique
originates in Tomasulo’s dynamic scheduling [5], [6]. For
simplicity, we will only examine the enqueue operation; the
dequeue has identical logic. Whenever an enqueue operation
acquires the queue tail operand, it sets the queue tail state as
pending and stores its transit_id in the corresponding tail field
of the Queue Table. A successive enqueue operation that
finds the state of the queue tail as pending, acquires the
transit_id of the enqueue operation, which will create the
expected operand. Then, the newly issued enqueue operation
is kept in a PWT entry and waits the updated value of the
queue tail. As soon as the expected queue tail is available, it
must be communicated to the proper pending enqueue
operation.

In our implementation, operand communication is done by
organizing all the pending enqueue operations for the same
flow in a single linked list. Each enqueue operation in the list
updates the operands of its next pending enqueue operation
during its execution period. As soon as a pending enqueue
operation acquires its operands, it is characterized as “ready
for execution”. The data structures for the pending lists are
kept in the PWT. Similarly, dequeue operations for the same
flow are organized in a pending list, which is kept in the PRT.

Multiple enqueue operations per packet arrival (section V-
A) are handled in the same way as the operand
communication, above. The first enqueue process (section V-
A) organizes the incoming segments of a packet in a linked
list. The data structure for such a list is kept in the PWT. The
list of successive enqueue operations for a flow and the list of
enqueue operations for the packet segments in the same flow
are merged in the same list; for more details see [10].

VI. HARDWARE IMPLEMENTATION COST

We described our design using the Verilog hardware
description language, in a behavioral style, at the accuracy
level of individual clock cycles; some modules were
described in structural Verilog form. We assumed a clock
frequency of 100 MHz; each Rambus channel is carried over
a 128-bit wide datapath, inside the chip, at that clock
frequency. This clock frequency is conservative for, e.g., a
0.18-micron technology; this simplifies logic-partitioning and
pipelining tasks; one access to an on-chip memory plus
several levels of combinational logic will normally fit within
a clock cycle.

Table I shows the on-chip memory requirements for the
datapath chip when 64 thousand queues are supported and the
transit buffer, the PWT, and the PRT have 128 entries each.
The PWT, PRT, and Queue Table are composed of multiple
memory blocks each, in order to allow independent parallel
accesses to various of their fields. Table II shows the number
of Verilog code lines used to describe the queue manager and
Rambus memory controller architecture. Finally, we estimate
very roughly the hardware complexity of our architecture to
be in the range of 60 thousand gates, 80 thousand flip-flops,
and 4180 Kbits of on-chip SRAM, for 64 K flows; for more
details see [10].

TABLE I
DATAPATH CHIP MEMORY REQUIREMENTS

Memory
Block

Organization Capacity
(Kbits)

Ports ASIC area
(0.18µm)

Queue Table 64K x 64 4096 1 port 50 mm2

Pending
Write Table

128 x 96 12 2 ports 0.36 mm2

Pending
Read Table

128 x 64 8 2 ports 0.24 mm2

Transit
Buffer

128 x 512 64 2 ports 1.96 mm2

TABLE II

VERILOG CODE LINES

Processes Code Lines

Enqueue 1900

Dequeue 2300

Rambus Memory
Controller

3800

VII. CONCLUSION

We presented the design and evaluation of a high-
performance queue manager architecture that operates at OC-
192 line rate. It uses modern DRAM (Rambus) technology
for buffer memory, which provides high throughput and
adequate buffer space. In order to fully utilize the DRAM
throughput, in the presence of bank conflicts, we perform
out-of-order transactions. By placing the next pointers in the
buffer memory we economize on off-chip memories; when
combined with buffer pre-allocation and free list bypass,
access performance does not suffer. We showed how the
dynamic scheduling techniques, originating in the
supercomputers, are applied in our architecture. Finally, we
wrote a clock-cycle accurate model, in Verilog, and estimated
the hardware complexity of our architecture.

ACKNOWLEDGMENT

We would like to thank Europractice and the Univ. of Crete
for providing many of the CAD tools used, and the Greek
General Secretariat for Research & Technology for the
funding provided.

REFERENCES

[1] G. Kornaros, C. Kozyrakis, P. Vatsolaki, M. Katevenis:
“Pipelined Multi-Queue Management in a VLSI ATM
Switch Chip with Credit-Based Flow Control”, in Proc.
ARVLSI'97 (17th Conf. on Adv. Research in VLSI),
Univ. of Michigan, Ann Arbor, MI, Sept. 1997, IEEE
Comp. Soc. Press, ISBN 0-8186-7913-1, pp.127-144;
http://archvlsi.ics.forth.gr/atlasI/atlasI_arvlsi97.ps.gz

[2] S. Keshav: “An Engineering Approach to Computer

Networking”, Addision-Wesley, 1997, chapter 9.

[3] V. Kumar, T. Lakshman, D. Stiliadis: “Beyond Best

Effort: Router Architectures for the Differentiated
Services of Tomorrow's Internet”, IEEE
Communications Magazine, May 1998, pp152-164.

[4] B. Suter, T.V. Lakshman, D. Stiliadis, A.K. Choudhury:

“Buffer Management Schemes for Supporting TCP in
Gigabit Routers with Per-Flow Queueing”, IEEE
Journal in Selected Areas in Communications, August
1999.

[5] J. Hennessy, D. Patterson: “Computer Architecture: A

Quantitative Approach”, Second Edition, Morgan
Kaufmann Publishers, 1996, ISBN 1-55860-329-8,
chapter 4.

[6] D. Krning, S. Mller, P. Wolfgang: “A Rigorous

Correctness Proof of the Tomasulo Scheduling
Algorithm with Precise Interrupts”, Proc. of the
SCI'99/ISAS'99 International Conference, 1999.

[7] P. Andersson, C. Svensson (Lund Univ. of Sweden): “A

VLSI Architecture for an 80 Gb/s ATM Switch Core”,
IEEE Innovative Systems in Silicon Conference, Oct.
1996.

[8] Tzi-cker Chiueh, Varadarajan: “Design and evaluation

of a DRAM-based shared memory ATM”, 1997 ACM
International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 97)
Seattle, WA, USA, 1997.

[9] http://www.rambus.com

[10] A. Nikologiannis: “Efficient Per-Flow Queueing in

DRAM at OC-192 Line Rate using Out-of-Order
Execution Techniques”, Master of Science Thesis,
University of Crete, Greece; Technical Report FORTH-
ICS/TR-279, Institute of Computer Science, FORTH,
Heraklion, Crete, Greece, November 2000;
http://archvlsi.ics.forth.gr/muqpro/queueMgt.html

