
Packet Mode Scheduling
in Buffered Crossbar (CICQ) Switches

Georgios Passas and Manolis Katevenis

Inst. of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH)
member of HiPEAC

ICS-FORTH, P.O. Box 1385, Vassilika Vouton, Heraklion, Crete, GR-711-10 Greece
http://archvlsi.ics.forth.gr/bufxbar/ -

�
passas, katevenis�@ics.forth.gr

Abstract— Buffered crossbars have emerged as an advanta-
geous switch architecture mainly due to their scheduling effi-
ciency and capacity to operate directly on variable size packets.
Such operation requires crosspoint buffers at least as large as
one maximum packet each. When we cannot afford that large
crosspoint buffers, we are forced to segment packets. Although
variable-size segments can be used to avoid padding overheads,
we are still left with the cost of reassembly buffers and the
associated delays. This paper appliespacket mode schedulingto
buffered crossbars in order to remedy these shortcomings: the
segments of a variable-size packet are switched consecutively
in time. We propose two scheduling schemes:probabilistic and
deterministic packet mode scheduling. The probabilistic case
allows cut-through forwarding and operates with independent
crossbar output schedulers, but it requires reassembly buffers.
Deterministic scheduling sacrifices some scheduler independence
in order to eliminate the reassembly buffers. Using simulation
we show that it performs very close to buffered crossbars with
no segmentation and large buffers at the crosspoints.

1. INTRODUCTION

Crossbars are the building blocks for modern switching
fabric and router systems. Traditional crossbars are bufferless
–with buffering provided only on the ingress and egress line
cards– hence transmissions through the switch have to be
synchronized with each other, leading to operation with fixed-
size segments, calledcells. As illustrated in Fig. 1, variable-
size packets are segmented at the inputs (where virtual-output
queues, VOQs, reside), the cells are switched through the
crossbar, and the packets are reassembled at the outputs (where
real-output queues, ROQs, and reassembly buffers reside),
before they are transmitted on the line.

If the switch is scheduled ignoring which cell belongs to
which packet,Cell Modeoperation results, as illustrated in the
first part of the figure: the cells of a packet (say�) arrive at the
egress line card interleaved in time with cells of other packets
(� , �) arriving from other inputs. Packet transmission on the
output line cannot start until the egress line card is certain
of receiving the last cell of the packet. Given that scheduler
decisions cannot be predicted, reassembly buffers are required
andstore-and-forwardoperation is enforced.

Packet Mode Scheduling[1] [2] (see also [3] [4] [5]) is the
alternative illustrated in the second part of the figure: when the
switch makes a “connection” from an ingress to an egress line
card for the first cell of a packet, that connection is maintained

A1

B2B1

C1

A2

B3 B4

C2 C3

A1 A2
B1 B2 B3 B4

C1 C2 C3

A1 A2 C1 C2 C3 B1

A1 A2
B1 B2 B3 B4

C1 C2 C3

C1 C2 C3B4B3B2B1A1 A2

S
w

itc
hi

ng
S

w
itc

hi
ng

P
ac

ke
t M

od
e

C
el

l M
od

e
(R

R
)

A
rr

iv
al

s

1 2 3 4 5 6 7 8 9 10 time

Departures:

cell times

Dep:

A

B

C

D

S
eg

m
en

ta
tio

n
&

 V
O

Q
s

R
ea

ss
em

bl
y

&
 R

O
Q

s

S
w

itc
hi

ng

Fig. 1. Packet mode versus cell mode switch scheduling

until all cells of the packet are switched. Since the egress line
card knows that all cells of a packet will arrive consecutively
in time, (a) it needs no reassembly buffer, and(b) it may start
transmitting the packet right away, i.e.cut-throughis allowed.
Fig. 1 illustrates1 that packet mode scheduling reduces packet
delay. The advantages are particularly important in systems
requiring low latency (e.g. multi-processor cluster intercon-
nects), and when traffic includes large packets (e.g. jumbo
frames [6]).

Recently, buffered crossbars(combined input-crosspoint
queueing, CICQ) have emerged as an advantageous switch
architecture; they contain small buffers at their crosspoints,
and use backpressure to the ingress line cards to prevent these
crosspoint buffers from overflowing. The first observation

1The timing diagrams of Fig. 1 were drawn ignoring the delay (assuming
zero delay) of the line card and scheduler logic: a cell can beswitched in the
same time slot when it arrives; a packet departure may start in the same time
slot when its last cell is known to have been scheduled.

c
�

Copyright IEEE 2006 - to appear in Proceedings of HPSR 2006, Poznan, Poland, 7-9 June 2006 1

about buffered crossbars concerned the simplicity and high
efficiency of their scheduling [7] [8] [9] [10]; no internal
speedup is needed to compensate for scheduler inefficiencies,
thus allowing the increase of port speed. A subsequent obser-
vation was that buffered crossbars can directly switchvariable-
size packets [7] [11]. Doing so, without any segmentation,
eliminates the need for speedup to cope with cell-padding
overhead; in turn, the lack of speedup eliminates egress
queueing, and the lack of segmentation eliminates reassembly
buffers, thus reducing cost [12].

Buffered crossbars that use no segmentation have a lim-
itation: the required buffer size per crosspoint is at least
one maximum-size external packet [12]. That buffer space
becomes expensive in high valency switches (the number of
crosspoint buffers equals the square of the port count) and in
switches supporting large packets (e.g. jumbo frames).

To overcome this limitation, segmentation and reassembly
(SAR) has to be re-introduced in buffered crossbars. However,
buffered crossbars can switch variable-size segments, thus
padding overheads are avoided and no internal speedup is
needed for this purpose [13]. It is a good thing that SAR
can be introduced in buffered crossbars without incurring a
speedup penalty, but how about the reassembly delay (and
preclusion of cut-through) and the reassembly buffer cost that
SAR implies?

This work resolves these issues applying packet mode
scheduling to buffered crossbars. The application is not a
trivial extension of the bufferless case. Fig. 2 illustrates the
two kinds of crossbar. In bufferless crossbars (left), a central
scheduler determines input-output port pairings (connections);
packet mode scheduling is simple: once a connection is made,
keep it until the last cell of the packet. In buffered crossbars
(right), scheduling is distributed and independent: each input
selects a non-full crosspoint and sends to it; each output selects
a non-empty crosspoint and reads from it. Two or more inputs
(A and B in the figure) may send to the same column; two
or more outputs (1 and 2 in the figure) may read from the
same row. Thus, the scheduling process doesnot necessarily
determine input-output pairings.

We describe two scheduling schemes. The first one al-
lows for distributed and independent schedulers, associated
to switch input and output ports, as in the classical buffered
crossbar architecture; whenever the independent decisions of
the schedulers pair an input to an output port, the sched-
ulers synchronize in order to maintain the pairing for the
lifetime of the corresponding packet transmission. We call
this first schemeprobabilistic packet mode schedulingand
we describe it in Section 3. Section 4 describes our second
method,deterministic packet mode scheduling, which reduces
scheduler independence in order to obtain determinism and
hence eliminates reassembly buffers.

Section 5 presents our simulation results, evaluating the
performance of our schemes and comparing them to previ-
ous systems. We show that deterministic scheduling achieves
performance very close to buffered crossbars with very large
crosspoint buffers and no SAR. Furthermore, it performs better

A

B

A

B

1 21 2

Fig. 2. Bufferless (left) versus buffered crossbar (right)

than packet mode scheduling in bufferless crossbars, even if
we factor-out the padding overheads imposed by the bufferless
architecture. Probabilistic packet mode scheduling performs
even better than the deterministic scheme for some traffic
patterns, while it performs similar for the rest.

2. SYSTEM ARCHITECTURE

We study a classical buffered crossbar switch with VOQs
in the ingress line cards and one, small FIFO buffer at each
crosspoint in the switch core (see Fig. 3). External packetsare
converted into segments in the ingress path; a packet with size�

is segmented to�� �� �
internal segments of fixed size

�
,

and one last, variable-size segment of size
� � �� �� � � �

and without any padding bytes. The resulting segments are
switched through the buffered crossbar.

Schedulers are placed(i) on the ingress path of each line
card (� ��), to resolve input contention;(ii) at each output port
of the crossbar (�

), to resolve output contention; and(iii)
on the egress path of each line card, to serve contending re-
assembled packets when packet reassembly is required. Egress
schedulers are simple round-robin schedulers. The operation of
� �� and	�

is the subject of this paper, discussed in Sections
3 and 4.

Credit flow control is used between the line cards and the
fabric in order to prevent the crosspoint buffers from over-
flowing. Control lines, separate from data lines, run from the
crossbar to the line cards carrying the flow control credits.The
bandwidth of each control line suffices for the transmissionof
one credit during each minimum-external-packet time. Credit
queues buffer credits which result from segments that depart
at about the same time from the same crossbar row; contenting
credits are served round-robin.

Each crosspoint buffer should be at least one maximum
internal segment plus one backpressure RTT window large,
as shown in [12]. A RTT value around 400ns at 10 Gbps line
rate, including scheduling times, propagation times, SERDES
delays, etc, is reasonable in realistic systems [12] [13].

We do notuse internal speedup (core overspeed), since we
do not need it to achieve top performance; we consider this
to be a key feature of buffered crossbars. Internal speedup
increases power consumption, thus limiting port and line-rate
scalability. Hence, we always consider that the external and
the crossbar links run at the same rate.

c
�

Copyright IEEE 2006 - to appear in Proceedings of HPSR 2006, Poznan, Poland, 7-9 June 2006 2

400

40512

624

984

 512

512

40 40

512

512

400

40

40

552

(out 1)

(out 2)

(out 0)

40

OS
0

 1

2

(head is at xpoint)

OS OS

40

40

1500B packet tail & body

R

R

credits

VOQs

buffer

credit line

credit Q

IS

RTT

output

Crossbar Fabric

packet

R

 1to egress path 0

In
pu

t L
in

k
0

R

2

512

Ingress Path

(0,1)
xpoint

segmentation

476

Fig. 3. System architecture studied in the paper. The figure assumes a� �� switch with 512-byte maximum internal segments, RTT below 512 byte
times and 1-Kbyte crosspoint buffers. We only show one line card and its
corresponding part in the switch core.

3. PROBABILISTIC PACKET MODE SCHEDULING

3.1. Scheduling Operation

We assume independent round-robin input and output sched-
ulers which serve flows at segment granularity. In the resulting
scheduling process, we define that an

�� � � �
pairing occurs

when a maximum segment of a packet
�

is being written to
crosspoint buffer

�� � � �
by input

�
while the same or a previous

segment of
�

is concurrently being read by output
�

from the
same crosspoint buffer. When such a pairing occurs, under
some appropriate timing constraints, input scheduler� � � and
output scheduler	�

will keep serving the same flow� �

until the whole packet

�
has been completely forwarded to

the crossbar fabric and to the egress card respectively. We will
say that the schedulers operate inpacket modefor packet

�
of flow � �
 .

	�

can infer a pairing at the time of its occurrence; it just

needs to observe both the read and write enable signals of the
crosspoint buffer, while also checking that the same packetis
being read and written. Typically, an input scheduler cannot
observe a pairing sooner than half�	 	 from the moment it
occurs; although the input sees the output decisions, via the
returned flow control credits, for simplicity we assume thatit
is notified of a pairing by receiving aspecial notificationfrom
the crossbar.

We claim that if an
�� � � �

pairing occurs while the crosspoint
reads a (max) segment
� and writes a (max) segment
��
 of
a packet

�
, it is safe for	�

to enter packet mode scheduling
for

�
if �

� �
�
� � �

�
� � ��� � � � � � �	� � �

(1)

where

�
� denotes the time
� starts being read from buffer�� � � �

and

�
� denotes the time
��
 starts being written to

buffer
�� � � �

; �
�
� is the maximum segment time,

�
� � is the

input scheduling time and
� �	�

is the signal propagation
time2. We name the time interval

�
� �

�
� synchronization

2Additional delays, such as memory access and SERDES delays,are not
reported for the shake of presentation; consider that they are included in� ���

.

distance(
��

). The space-time diagram of Fig. 4 displays the
maximum allowable value for a packet mode transmission to
take place. If

�� � ��
��, the pairing notification reaches
input

�
before � � � makes the next scheduling decision, thus

� �� synchronizesin time. On the other hand, if
�� � ��
��,

the notification arrives at the ingress path while� �� has
probably started serving other flows. Notice that when the
segment size is smaller than the maximum, it contains the
entire tail of the packet, and thus	�

can enter packet mode
scheduling independent of� � �. Also note that our method
works only as long as

�
� � � � � � �	� � �

�
�.

Summarizing, in the proposed scheme the input and output
schedulers toggle between two modes. Insegment mode, they
serve flows round-robin on a per-segment basis. Inpacket
mode, they keep serving the same flow until the entire packet
has been forwarded. An output scheduler transits from seg-
ment to packet mode, when it observes a pairing and the
synchronization distance is smaller than the maximum; at the
time it transits to packet mode, it sends a notification to the
input scheduler it synchronized to and to the egress path. An
input scheduler transits from segment to packet mode when
it receives a pairing notification from an output scheduler.
It is guaranteed that at most one pairing notification arrives
at an input when the scheduler is in segment mode, and no
pairing notification arrives while it is in packet mode. Both
input and output schedulers transit from packet to segment
mode scheduling when the current packet has been totally
forwarded from the input and the crossbar output respectively.
A scheduler at the egress path can start transmitting a packet
on the line when the last segment of the packet starts arriving
at the egress path or when a packet mode notification for this
packet is received.

3.2. Discussion

Under light load, when input and output contention is rare,
input-output pairings occur with great probability in (buffered)
crossbar scheduling, thus packet mode transmissions are very
likely to occur. As the load increases and flows become
congested, the schedulers are unlikely to synchronize and our
method’s effectiveness degrades. Simulation results, presented
in Section 5.2, confirmed these hypotheses.

When the schedulers do not synchronize, packets are trans-

t r

tw

time at ingress time at output

segment

maxSD

buffer starts
being read

being written

PROP

PROP
notification

buffer starts

∆ st

ISt

t OS

Fig. 4. Maximum allowable synchronization distance

c
�

Copyright IEEE 2006 - to appear in Proceedings of HPSR 2006, Poznan, Poland, 7-9 June 2006 3

mitted in segment mode, possibly interleaved with segmentsof
other packets from/to other links. Thus, per-input reassembly
buffers are needed at the egress path to collect these segments.
Since no guarantee for packet mode transmission is provided,
each reassembly buffer needs to be large enough to store a
maximum packet.

The first contribution of the proposed scheme is the of-
fered opportunity for cut-through transmission; cut-through is
beneficial under light loads, since it greatly reduces packet
latency. Second, at heavier loads, our method constricts the
packet interleaving in the switch core and thus also reducesthe
occupancy of the reassembly buffers. Hence, at heavier loads
probabilistic packet mode scheduling reduces total queueing
delay by reducing the queueing delay at the egress path
(Section 5.2).

4. DETERMINISTIC PACKET MODE SCHEDULING

4.1. Scheduling Operation

The protocol described in Section 3 preserves scheduling
independence at the expense of egress reassembly buffers. Two
or more outputs may start reading from the buffers of the
same input (at the same crossbar row), even if partly stored
packets reside there. Then, it is impossible to set-up packet
mode transmissions between that input and all of these outputs,
and thus, some (parts of) packets are transmitted in segment
mode.

Let ��
denote the part of the packet stored at crosspoint

buffer
�� � � �

, � the line rate, and�
�

the time interval within
which the remaining part of the packet is known to start
arriving at crosspoint

�� � � �
. In order for all packets to be

transmitted in packet mode, output scheduler	�

should start

serving a flow� �
 only when it is guaranteed that�
�
� � ���

.
To guarantee that always�

�
� � � ��

, the buffered
crossbar is scheduled as follows, ensuring that all three points
are adhered to:

1. A flow � �
 is eligible for 	�

if and only if a packet

is completely stored in the crosspoint buffer
�� � � �

, or�� � ��	 	 � �
�
� � � � ; �

�
� represents the max-

size segment time.	�

serves the eligible flows round-

robin and when it starts the transmission of a packet
whose tail is pending at the ingress path, it requests
synchronization with the corresponding input asserting
a flag in the first flow control credit released during the
packet mode transmission. A credit is released each time
a segment starts departing from the crossbar output and
corresponds to the size of that segment.

2. Before	�

starts transmitting a partly stored packet at

a crosspoint
�� � � �

, it has to acquire alock associated
with input

�
(see Fig. 5). There is one lock per input,

and locks are shared among all output schedulers. If
lock acquisition fails, because that input is currently
connected to another output,	�

proceeds serving the
next eligible flow in the round-robin schedule. Notice
that lock acquisition is an operation entirelyinternal to

output 0 output 1 output 2 output 3

input 0

input 1 output
scheduling
decision

packet
fully buffered

 rejected granted

lock request
mask

LOCK

LOCK

Fig. 5. Proposed (asynchronous) buffered crossbar scheduling. The lock
acquisition phase is involved only when an output schedulerattempts to serve
a flow whose head packet is partly stored in the crosspoint buffer. A masking
operation is used to mark flows as ineligible. Two inputs and four outputs are
shown in the figure.

the buffered crossbar chip, and does not involve any
transaction with the ingress line cards. As long as the
lock for input

�
has been acquired by	�

, all flows� �� � � �� � �
having a partly stored packet at crosspoint�� � � �

are ineligible until the lock is released. A lock
is released when the last segment of the packet starts
arriving at the crosspoint.

3. When an ingress line card
�

receives a synchronization
request from output

�
(as indicated by the respective bit

in the credit signal),� � � synchronizes with	�

(i.e.

enters packet mode scheduling for output
�
) right after

its current segment transmission, if there is one, or right
away if it is idle. If no synchronization request is received,
� �� serves flows round-robin on a per-segment basis.

With constraint (1), we guarantee that when an input re-
ceives a synchronization request, it may delay honoring it
for a max-segment time, in case it is busy transmitting a
(maximum) segment to another crosspoint. With constraint (2)
we guarantee that no additional requests arrive at an input
while that input is paired to another output.

In case RTT is large, it is possible that an input has
finished the transmission of the last segment of the packet
when it receives the synchronization request for that packet.
To avoid synchronizing for different packet transmissions,
when an input scheduler receives a synchronization credit
corresponding to a packet already departed from the VOQs, it
simply discards the synchronization request3.

4.2. Comparison to Bufferless Crossbar Scheduling

At first glance, deterministic packet mode scheduling resem-
bles the classical request-grant-accept scheduling algorithms
for bufferless crossbars. Resemblance concerns “large packet”
transmissions: the transmission of packet segments to the
crossbar core is analogous to the request phase for packet
mode transmissions; output scheduling corresponds to the

3Packets and credits should carry ids for this to be possible.

c
�

Copyright IEEE 2006 - to appear in Proceedings of HPSR 2006, Poznan, Poland, 7-9 June 2006 4

grant phase; lock acquisition is the equivalent of the accept
phase.

However, our three-phase matching process yields asyn-
chronous operation, contrary to the synchronous operation
of the bufferless crossbar architecture. Concerning transmis-
sions of packets that can be totally buffered at the cross-
points, scheduling reduces to (asynchronous) buffered crossbar
scheduling [12] [13]. When large packets are involved, inputs
need not synchronize before transmitting to the crossbar
because buffers at the crosspoints absorb temporary output
conflicts; inputs synchronize in the long-run by the scheduling
and flow control protocol. Furthermore, outputs need not
synchronize with inputs before they start transmitting, again
because there is a buffered segment to read until the input
eventually synchronizes. On the other hand, outputs need to
be coordinated in order to eliminate input contention when
large packets are involved, but this does not imply synchronous
operation. As a result, our scheme can switch variable size
packets, with fine-grained packet size4. By contrast, scheduling
in bufferless crossbars assumes cell granularity for packet size
–a typical cell-size is 64 or 128 Bytes– incurring padding
overheads and requiring internal speedup –by a factor of 2
in the worst case5.

4.3. Locked Configurations

Packet mode scheduling in bufferless crossbars may “lock”
the switch in a fixed configuration because “exact” pairingsat
all timesare required. Consider a heavily loaded switch where
all input ports are currently connected to one output each, and
conversely all output ports are being fed by an input each.
Connections are held for an entire packet duration. Consider
a case where, when one of the connections is terminated –
because the corresponding packet has been delivered in its
entirety–no otherconnection happens to have terminated at
the same time. Then, there is only asingle inputand asingle
output port that have become available for new pairing(s),
hence the scheduler is forced to again pair the same input to the
same output. Fig. 6 shows an example of such a traffic pattern.
Under such traffic, the scheduler is forced to maintain the
crossbar configuration locked into a fixed set of connections
(flows ��� � ��� � ��� � ��� in the figure), thus starving all other
flows.

Although with our proposal a packet-mode pairing between
input

�
and output

�
may be configured at the time a segment

is being transmitted from input
�

to a different output
�

–i.e. a
�� � � �

segment-mode pairing may exist concurrently
with a

�� � � �
packet-mode pairing– packet-mode pairings are

still exact –i.e. a
�� � � �

packet-mode pairing cannot exist
concurrently with a

�� � � �
one. Thus, the problem remains in

our method. By contrast, buffered crossbars with maximum-
packet crosspoint buffers [12] allowtemporarysituations of
“inexact” pairings, i.e. times when multiple inputs forward
packets to a same output or multiple outputs read packets

4Size granularity equals to the crossbar datapath width (4 Bytes in [12]).
5E.g. with 65-byte packets in a 64-byte-cell switch.

Space

f00
f11
f22
f33

f00 f00

 time slotpacket mode transmission

Time

from input 0 to output 0

releases
 only input 0 and output 0 are idle input 0 and output 0

 is the only eligible flow since

Fig. 6. A staircase-like traffic pattern that leads a packet mode scheduler
for a bufferless crossbar to “lock” in a fixed configuration. Assume a� � �
switch; the figure shows the 4 flows that are constantly served; other flows
with non-empty queues exist, but are never served.

from crosspoint buffers that had been fed by a same input
at different times in the past. These periods of inexact input-
output pairings, allow buffered crossbars with one maximum
packet worth crosspoint buffers to escape from the above
locked configurations.

5. PERFORMANCESTUDY

5.1. Method

We developed a byte-time-accurate simulator to model the
buffered crossbar switch. It handles variable size packetsat
the switch interfaces and variable size segments in the core;
it keeps track of time using the discrete event simulation
approach [14]. We modelled the probabilistic scheme, labelled
PPM below, and the deterministic scheme, labelledDPM.
We comparePPM and DPM to buffered crossbars with full,
variable-size packets (no SAR, round-robin scheduling on a
per-packet basis) [12], labelledVPS, and to buffered crossbars
with SAR and plain segment mode scheduling (round-robin
on a per-segment basis, blind of packet boundaries), labelled
SM.

For all buffered crossbar models, RTT always equals 500
byte times. For the models that use packet segmentation
the maximum segment size is 512 Bytes and the crosspoint
buffers worth 1 KByte each (one maximum segment plus one
RTT window). VPS uses 9-Kbyte buffers (one full external
packet plus one RTT window). A scheduling operation is
initiated a scheduling time before the completion of the current
transmission and the scheduling time equals 18 byte times. In
DPM we assume that the time to acquire a lock equals the
output scheduling time and locks are granted to requesting
outputs round-robin; output scheduling starts two scheduling
times before the completion of the current transmission. We
experimented with��

�
�� switches.

We also wrote a slotted-time simulator for the bufferless
crossbar architecture with input queueing (VOQs) and a central
scheduler. TheiSLIP scheduling algorithm (IQ-CM) [15] and
its packet mode modification (IQ-PM) from [3] were simu-
lated. We assumed 64-byte cells, one scheduling iteration,and
a ��

�
�� switch.

For the buffered crossbar we considered minimum packet
size 40 Bytes and maximum 8 KBytes with 1-byte packet size

c
�

Copyright IEEE 2006 - to appear in Proceedings of HPSR 2006, Poznan, Poland, 7-9 June 2006 5

granularity. For the bufferless crossbar we consider minimum
packet size 64 Bytes (1 cell) and maximum 8 KBytes (128
cells), with one-cell packet size granularity. Although this
integer-cell-size granularity favorsIQ (padding overhead is
a serious disadvantage ofIQ - Section 4.2), we made this
assumption in order to compare pure scheduling efficiency,
factoring out padding overheads. Three packet size distribu-
tions were used:

� bimodal- 95% of the packets are minimum sized and 5%
are maximum sized.

� uniform- packet size is uniformly distributed in the range
between the minimum and the maximum size.

� constant- all packets have the maximum size.

For the buffered crossbar we assumed Poisson packet ar-
rivals, while for the bufferless crossbar we modelled packets
as bursts of cells, following the same approach as [2]. We
chose the traffic models such that they offer insight on the
scheduler performance under some “clear and extreme” traffic
circumstances, rather than using just a single, “real life”traffic
model. The maximum packets were 8 KBytes large in order to
show that our methods efficiently switch very large packets.In
sections 5.2, 5.3 we assume uniform destinations. In Section
5.4 we present results for non-uniform traffic.

The total queueing delay of a packet in the switch was
computed as the time interval between the first byte of
the packet arriving to a VOQ and its first byte departing
from the reassembly buffer, when the system requires packet
reassembly, or departing from the crossbar output port, when
it does not6. The delay of a packet at the egress path was
defined as the time interval between the first byte of the packet
arriving and its first byte departing from the reassembly buffer.
Constant delays, such as propagation and scheduling times,
were subtracted. The delay was averaged over the number of
packets with each packet delay contributing the same portion
to the average. The reported delay values are in units of 512
byte times (the transmission time of a 512-byte segment).
The simulations were run long enough to assure a confidence
interval better than 7% with confidence greater than 95%.

5.2. Probabilistic packet mode scheduling (PPM)

We first comparePPM to SM and report the results for
bimodal packet size. WithSM, the large packets were delayed
in the reassembly buffers for around one packet store time (16
segment times) and for loads up to 0.2. In the rest of the load
range, this delay increased due to the packet interleaving in the
switch core. WithPPM, the delay of the large packets in the
egress buffers was almost zero for loads up to 0.5, because cut-
through transmissions were possible at the egress path and the
packet interleaving was limited.PPM becomes less efficient
for higher loads: egress delay reduction, compared toSM, goes
down from almost 100% for light loads, to 80% for loads
around 0.7, and to only 30% for a load of 0.95. The delay
of small packets was almost the same in both systems. Fig. 7

6We made this assumption in order for the packet delay to be independent
of packet size.

 0.1

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1A
vg

 q
ue

ue
in

g
de

la
y

-
la

rg
e

pk
ts

 o
nl

y
 (

in
 u

ni
ts

 o
f 5

12
 B

yt
e-

tim
es

)

Input load

SM

PPM

VPS

Fig. 7. Performance of probabilistic packet mode scheduling (PPM)
compared to segment mode scheduling (SM). The traffic is uniformly destined
and the packet size distribution is bimodal.

shows average total delay of large packets;VPShas also been
included in the plot as the reference system. Under uniform
and constant packet size, similar results were seen withPPM
being slightly worse as average packet size increases.

5.3. Deterministic packet mode scheduling (DPM)

Fig. 8 comparesDPM to PPM, VPSand IQ-PM assuming
all of the three packet size distributions.

1) Comparison to PPM : DPMimposes a crosspoint buffer
delay which is reflected on the average delay metric for light
loads (up to 0.3) and when the average packet size is large
(uniform and constant packet size); if desired, one can patch-
up this inefficiency by combiningDPM with PPM. For loads
between 0.4 and 0.7, average total delay is almost the same
for both systems and for all of the packet size distributions. A
trade-off appears under heavier loads: withPPMpackets suffer
a delay at the egress path while withDPM the delay in the
system increases because the matching capabilities of buffered
crossbar scheduling are restricted. As a result, under bimodal
packet sizeDPM total delay is smaller by at most 20% for
loads between 0.85 and 0.97 while at a load of 0.98PPMdelay
matchesDPM delay. Under uniform packet sizeDPM and
PPMare very close for loads up to 0.95 while for greater loads
PPM becomes better by at most 30%. Under constant packet
size and for loads up to 0.93, total packet delay is the same for
bothDPM andPPM; for heavier loadsPPMbecomes better up
to 50%. Note that the superiority ofPPM becomes greater and
appears at a lighter load as the average packet size increases.
The results confirm the cost of the lock acquisition phase in
DPM, which is more frequently involved as the percentage of
large packets in the traffic mixture increases, restrictingthe
matching capabilities of buffered crossbar scheduling.

2) Comparison to VPS:When packet size is bimodal, the
difference betweenVPS and DPM is withing the range of
statistical error. This is an encouraging result since realistic
traffic patterns are usually a mixture of small (control) and
large (data) packets [16]. On the other hand, for uniform and
constant packet size,VPS is better by around 30% and 40%
respectively for loads between 0.4 and 0.95; for a load of 0.98
VPSbecomes better by 40% under uniform packet size and

c
�

Copyright IEEE 2006 - to appear in Proceedings of HPSR 2006, Poznan, Poland, 7-9 June 2006 6

 0.1

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

A
vg

 q
ue

ue
in

g
de

la
y

 (
in

 u
ni

ts
 o

f 5
12

 B
yt

e-
tim

es
)

Input load

IQ-PM

DPM

PPM

VPS

 0 0.2 0.4 0.6 0.8 1

Input load

IQ-PM

DPM

PPM

VPS

 0 0.2 0.4 0.6 0.8 1

Input load

IQ-PM

DPM

PPM

VPS

(a) Bimodal packet size (b) Uniform packet size (c) Constantpacket size

Fig. 8. Performance of deterministic packet mode scheduling (DPM) compared to probabilistic packet mode scheduling (PPM), round-robin scheduling in
buffered crossbars with full size packets (VPS) and packet mode scheduling in bufferless crossbars (IQ-PM). The trafficis uniformly destined.

60% under constant packet size. Note thatVPSuses 9-Kbyte
crosspoint buffers -which is always greater than the average
packet (burst) size- whileDPM uses only 1-KByte buffers.

3) Comparison to IQ-PM:Last, we compare packet mode
scheduling in buffered to bufferless crossbars. When packet
size is bimodal, packet delay in the buffered crossbar switch
is almost half the delay of the bufferless case for loads between
0.4 and 0.98. For uniform packet size the difference drops to
20% for loads up to 0.98.DPM comes closer to input queueing
when packet size is constant.

5.4. Non-uniform Traffic

We experimented with non-uniform traffic using a destina-
tion distribution model which is based on the Zipf’s law and
which was proposed in [17]. In a switch with

�
input/output

ports all inputs are 100% loaded and input 0 sends to output�
with probability

� �� � ��� � ���
��
�

�
� �� � (2)

The distribution of destinations for each of the rest of the
inputs results from a different cyclic shift of the distribution
of input 0 so that the traffic is admissible; fig. 9 shows an
example for

� � � and
� � �. For

� � 	 the traffic is
uniform while for

�
 �
it is totally directional.

Fig. 10 displays results for most of the simulated models
when the packet size is bimodal and the Zipf order is in
the range from 0 to 6. We also run experiments assuming
uniform and constant packet size for the buffered crossbar
switch; similar results were seen. The first observation is
that the curves corresponding to buffered crossbar models
are almost indistinguishable. The second observation is that
the packet mode modification of iSLIP yields significantly
higher throughput than its original proposal and very closeto
buffered crossbars. The superiority of packet mode scheduling
under non-uniform traffic in bufferless crossbar scheduling was

0.702 0.176 0.078 0.044

0.0780.1760.7020.044

0.078 0.044 0.702 0.176

0.7020.0440.0780.176

Zipf order k = 2

1.0

1.0

1.0

1.0

1.0 1.0 1.0 1.0

Switch outputs

S
w

itc
h

in
pu

ts

Fig. 9. Example of the distribution of destinations in a� �� switch according
to the Zipf law and when the Zipf order, k, equals 2.

 1

 0.9

 0.8

 0.7

 0.6

 6 5 4 3 2 1 0

S
w

itc
h

th
ro

ug
hp

ut

Zipf order k

PPM

DPM

VPS

IQ-PM

IQ-CM

Fig. 10. Switch throughput under non-uniform (Zipf) traffic. Packet size is
bimodal.

also observed in [1] [2]; packet mode scheduling exploits the
locality of traffic reusing already made scheduling decisions
and increases the size of the match after each scheduling
operation.

c
�

Copyright IEEE 2006 - to appear in Proceedings of HPSR 2006, Poznan, Poland, 7-9 June 2006 7

6. CONCLUSION

We proposed and evaluated aprobabilistic and adetermin-
istic packet mode scheduling scheme for buffered crossbar
switches. The deterministic scheme performs virtually as well
as buffered crossbars that use no segmentation, and eliminates
egress reassembly buffers like the latter systems do, while
using crosspoint buffers whose size is only linked to the
crossbar-ingress round-trip time –and not to the maximum
packet size– hence can be much smaller than in buffered
crossbars without segmentation; performance is always better
than bufferless crossbars with packet mode scheduling. Proba-
bilistic packet mode scheduling allows cu-through forwarding
and performs even better than the deterministic scheme for
some traffic patterns, while it performs similar for the rest;
it allows independent output schedulers in the crossbar, but it
does need the extra cost of egress reassembly buffers.

ACKNOWLEDGMENTS

The authors thank Nikos Chrysos for his early observations
on the capacities of central schedulers in buffered crossbar
switches, Enrico Schiattarella for his suggestions on simulation
traffic patterns, and Alejandro Martinez for valuable discus-
sions during the last few months. This work was performed
within the projects “Scalable Intelligent Video Server System
(SIVSS)” and “Scalable Architectures (SARC)”, supported by
the European Union FP6 IST programme.

REFERENCES

[1] M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Packet
scheduling in input-queued cell-based switches,” inProceedings of the
INFOCOM’01 Conf., April 2001.

[2] A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Packet-
mode scheduling in input-queued cell-based switches,”IEEE/ACM
Transactions on Networking, vol. 10, no. 5, April 2002.

[3] S. H. Moon and D. K. Sung, “High-performance variable-length packet
scheduling algorithm for IP traffic,” inProceedings of the IEEE GLOBE-
COM’01 Conf., November 2001.

[4] X. Zhang and L. Bhuyan, “Deficit round robin scheduling for input-
queued switches,”IEEE Jour. Sel. Areas in Communications, vol. 21,
no. 4, pp. 584–594, 2003.

[5] S. Mukherjee, F. Silla, P. Bannon, J. Emer, S. Lang, and D.Webb,
“A comparative study of arbitration algorithms for the Alpha 21364
pipelined router,” inProceedings of the ACM ASPLOS-X Conf., October
2000.

[6] J. Hurwitz and W. Feng, “Initial end-to-end performanceevaluation
of 10-gigabit ethernet,” inProceedings of the IEEE Hot Interconnects
Conf.: 11th Symposium on High-Performance Interconnects, August
2003.

[7] D. Stephens and H. Zhang, “Implementing distributed packet fair
queueing in a scalable switch architecture,” inProceedings of the IEEE
INFOCOM’98 Conf., March 1998.

[8] R. Rojas-Cessa, E. Oki, and H. J. Chao, “CIXOB-k: Combined input-
crosspoint-output buffered switch,” inProceedings of the IEEE GLOBE-
COM’01 Conf., November 2001.

[9] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I. Iliadis, “A four-
terabit packet switch supporting long round-trip times,”IEEE Micro
Magazine, vol. 23, no. 1, pp. 10–24, 2003.

[10] N. Chrysos and M. Katevenis, “Weighted fairness in buffered crossbar
scheduling,” inProceedings of the IEEE Workshop on High Performance
Switching and Routing (HPSR’03), June 2003.

[11] K. Yoshigoe and K. Christensen, “A parallel-polled virtual output queued
switch with a buffered crossbar,” inProceedings of the IEEE Workshop
on High Performance Switching and Routing (HPSR’01), May 2001.

[12] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and N. Chrysos,
“Variable packet size buffered crossbar (CICQ) switches,”in Proceed-
ings of the IEEE Int. Conf. on Communications (ICC’2004), June 2004.

[13] M. Katevenis and G. Passas, “Variable-size multipacket segments in
buffered crossbar (CICQ) architectures,” inProceedings of the IEEE
Int. Conf. on Communications (ICC’2005), May 2005.

[14] S. M. Ross,Simulation. Academic Press, 3rd Edition, 2001, ISBN
0125980531.

[15] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp.
188–201, 1999.

[16] Cooperative Association for Internet Data Analysis,
http://www.caida.org.

[17] Networking Processing Forum (NPF),Fabric Benchmarking Traffic
Models, available from http://www.npforum.org/benchmarking/fabric
bm.shtml.

c
�

Copyright IEEE 2006 - to appear in Proceedings of HPSR 2006, Poznan, Poland, 7-9 June 2006 8

