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Abstract— Buffered crossbars can directly switch variable size
packets but they require significant crosspoint buffering to do
so, especially when the traffic includes large packets. When we
cannot afford large crosspoint buffers we are forced to restrict the
maximum internal transfer unit by segmenting packets. Packet
segmentation implies a reassembly delay cost which is an issue
in systems requiring low latency. We drastically reduce reassem-
bly delay by applying packet mode scheduling to the buffered
crossbar architecture. Packet mode scheduling has been studied
in input queued switches: when the central switch scheduler
establishes a connection from a switch input to a switch output
port, it maintains that connection until all the cells of the packet
are switched. In buffered crossbars the scheduling is distributed
at switch input and output ports, thus the extension is not trivial.
We synchronize the input and output port schedulers so as
whenever their independent decisions result to an input-output
port pairing they maintain that pairing for the lifetime of the
packet transmission. Using simulation we study our system’s
performance. We show that reassembly delay is significantly
reduced, especially under light loads.

I. INTRODUCTION

Crossbars are the building blocks for modern switching fab-
rics and router systems. Traditional crossbars are bufferless
–with buffering provided only on the ingress and egress line
cards– hence transmissions through the switch have to be syn-
chronized with each other, leading to operation with fixed-size
cells (segments). As illustrated in figure 1, variable-size pack-
ets are segmented at the inputs (where virtual-output queues
(VOQ) reside), the cells are switched through the crossbar, and
the packets are reassembled at the outputs (where real-output
queues (ROQ) / reassembly buffers reside), before they are
transmitted on the line.

If the switch is scheduled ignoring which cell belongs to
which packet, Cell Mode operation results, as illustrated in
figure 1: the cells of a packet (say � ) arrive at the egress line
card interleaved in time with cells of other packets ( � , � )
arriving from other inputs. Packet transmission on the output
line cannot start until the egress line card is certain of receiving
the last cell of the packet. Given that future decisions of the
scheduler cannot be predicted, store-and-forward operation is
enforced, and cut-through cannot be used.
�
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Fig. 1. Packet mode versus cell mode switch scheduling

Packet Mode Scheduling [1], [2], [3] is the alternative il-
lustrated at the bottom of figure 1: when the switch makes
a “connection” from an ingress to an egress line card for
the first cell of a packet, that connection is maintained until
all cells of that packet are switched. Since the egress line
card knows that all cells of a packet will arrive consecutively
in time, (a) it needs no reassembly buffer, and (b) it may
start transmitting the packet right away, i.e. cut-through is
allowed. Figure 1 illustrates that, under some circumstances,
packet-mode scheduling reduces packet delay1; the advantage
is particularly important in systems requiring low latency (e.g.
multi-processor cluster interconnects), and becomes especially
noticed when cut-through is supported and when traffic in-
cludes large packets (e.g. jumbo frames).

1the timing diagrams of fig. 1 were drawn ignoring the delay (assuming
zero delay) of the line card and scheduler logic: a cell can be switched in the
same time slot when it arrives; a packet departure may start in the same time
slot when its last cell is known to have been scheduled.
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To the best of our knowledge, packet mode scheduling has
only been studied for bufferless crossbars. Recently, buffered
crossbars (combined input-crosspoint queueing - CICQ), have
emerged as an advantageous architecture; they contain small
buffers at their crosspoints, and use backpressure to the ingress
line cards to prevent these crosspoint buffers from overflowing.
The first observation about buffered crossbars concerned the
simplicity and high efficiency of their scheduling [6]-[10];
no internal speedup is needed to compensate for scheduler
inefficiencies, thus allowing the increase of port speed. A sub-
sequent observation was that buffered crossbars can directly
switch variable-size packets [6] [11]. Doing so, without any
segmentation, eliminates the need for speedup to cope with
cell-padding overhead; in turn, the lack of speedup eliminates
egress queueing, and the lack of segmentation eliminates re-
assembly buffers, thus reducing cost [12].

Buffered crossbars that use no segmentation at all have a
limitation: the required buffer size per crosspoint is at least one
maximum-size packet plus one round-trip-time (RTT) worth of
data [12]. That buffer space becomes expensive in high valency
switches (the number of crosspoint buffers equals the square
of the port count), and in switches supporting large packets
(e.g. jumbo frames).

To overcome that limitation, segmentation and reassembly
(SAR) has to be re-introduced into buffered crossbars. How-
ever, SAR can be re-introduced in such a way that no padding
overhead is incurred (as in bufferless crossbars), hence no
internal speedup is needed: in a previous paper [13], we pro-
posed SAR using variable-size multi-packet segments to achieve
this goal. The maximum segment size can be much smaller
than the maximum packet size, thus drastically reducing cross-
point buffer size; the segment size is variable, thus eliminating
padding overhead; and multiple (small) packets can be placed
in a same segment, thus avoiding small segments so as to
reduce relative header overhead. It is a good thing that SAR
can be introduced into buffered crossbars without incurring
a speedup penalty, but how about the reassembly delay (and
preclusion of cut-through) and the reassembly buffer cost that
SAR implies?

This paper applies packet-mode scheduling to CICQ switches,
so as to reduce the reassembly delay on average, when these
switches are forced to use SAR. In particular, cut-through be-
comes possible, which is especially beneficial for delay under
light loads. Packet-mode scheduling in buffered crossbars is
not a trivial extension of the bufferless case. Figure 2 illustrates
the two kinds of crossbar. In bufferless crossbars (left), there
is a central scheduler which determines input-output port pair-
ings (connections). Packet-mode scheduling is simple: once a
connection is made, keep it until the last cell of the packet. In
buffered crossbars (right), scheduling is distributed and inde-
pendent: each input selects a non-full crosspoint and sends to
it; each output selects a non-empty crosspoint and reads from
it. Two or more inputs (1 and 2 in the figure) may send to the
same column; two or more outputs (A and B in the figure) may
read from the same row. Thus, the scheduling process does not
necessarily determine input-output port pairings. Packet mode,

A B A B

1

2

1

2

Fig. 2. Bufferless (left) versus buffered (right) crossbar

however, requires such pairings.
We perform pairings in a distributed way, without any cen-

tral scheduler: when an output scheduler observes that a pair-
ing is taking place - the enqueue and dequeue signals of
the corresponding crosspoint memory are both active - it en-
ters packet mode, until all the segments of the packet are
transmitted to the output. Morever, it sends a notification to
its input counterpart and commands it to follow on packet
mode. The notification is piggybacked to the flow control
credit which corresponds to the segment that revealed the
occurrence of the pairing. In section III, we present the details
of our synchronization protocol. Before that, in section II, we
give a precise description of the queueing/scheduling archi-
tecture we study. We evaluate our system’s performance in
section IV using simulation. We show that our method reduces
reassembly delay by more than 90% for loads up to 70%. The
reduction is between 40 and 80% for the rest range of loads,
up to 98%.

Related Work was indicated in the above discussion. Two
additional studies on variable size packets in bufferless cross-
bars are [4], concerning the Alpha 21364 router pipeline and
[5], where packet mode scheduling is connected to the pro-
vision of QoS guarantees. This is the first study on applying
packet mode scheduling on buffered crossbars.

II. DESCRIPTION OF THE STUDIED ARCHITECTURE

AT THE SYSTEM LEVEL

Figure 3 shows the queueing organization and the placement
of the schedulers in the system we study, in a small, for
the sake of presentation, configuration with two input and
output links. It is a classical CICQ switch architecture with
VOQueueing in the ingress datapath, small buffers inside the
switch core (one fifo queue at each crosspoint) and small per-
input buffers in the egress path.

We consider variable size packets at the switch interfaces
and packet segmentation in the ingress path. So, we need
egress buffering for packet reassembly. The segmentation method
we use is not new, but it is based on our previous work [13] and
we prefer it because of its efficiency; we briefly repeat it here
for reasons of completeness. We use variable size segments
while merging multiple external packets or packet fragments
into each segment. The size of the segment is defined by the
queue’s backlog and the maximum internal transfer unit ( � ),
a system parameter. Whenever, the backlog is greater than � ,
a chunk of � bytes is candidate for transfer. Whenever the
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Fig. 3. System Level Architecture

backlog is less than or equal to � , the whole backlog forms a
single segment. Thus, the system switches segments ignoring
packet boundaries. Segment size variability entails no padding
bytes in the segments. The encapsulation of multiple packet
fragments into each segment is coherent with the memory
management operations when DRAM is used for the buffering
at the linecards and, furthermore, it reduces the overhead of
the internal headers; DRAM blocks are usually multipacket
structures to save throughput and memory space. For more
information on how memory management is connected to our
segmentation method refer to [13]. Figure 4 shows the result-
ing segments in an example where the backlog of a VOQ is
580 bytes and S is 256 bytes. Four packets are queued and
their sizes are shown in the figure.

An internal switch header is prepended to every segment and
comprises three fields: a switch source and destination port id
and a neops field indicating the number of packets ending
inside the segment. In case the external packet headers do not
contain information about the packet size, such information
must be included in an additional field in the internal headers.

Each crosspoint buffer is at least � bytes large. The egress
buffers are one maximum packet long each one. The VOQs
are considered to have infinite size.

The input, output and crossbar links run at the same rate.
Credit based flow control is used between the inputs and the
crosspoints to prevent from crosspoint buffer overflow. The
bandwidth of the control lines suffices for the transmission of
one credit for the departure of each minimum internal packet
segment. Credit queues are used to store credits correspond-
ing to segments which almost simultaneously depart from the
same crossbar row and thus the credit bandwidth demand is
instantaneously greater than the available.

A scheduler (IS) is placed at the ingress path to resolve input
contention, at each crossbar output port (OS) to resolve output
contention and at the egress path (ES) to serve contending
reassembled packets. Scheduling (CS) is also needed at the
credit queues. CS and ES are simple round robin schedulers.
The operation of IS and OS is the subject of this paper and it

300 160

256

580 bytes

68

8040

256
3 segments,  S=256 B

Fig. 4. Segmentation to variable size, multipacket segments

is determined in section III.
Non zero round-trip time is considered between the cards

and the switch core. This time includes packet or credit prop-
agation time, memory accesses, scheduling times etc.

Last, we assume per flow packet and time counters inside
the crossbar chip; both of them are needed by the method we
describe in section III. The packet counters keep track of the
complete packets that are stored in each crosspoint buffer and
the time counters indicate the waiting time of the tail segment
in each crosspoint buffer. Packet counters are also used in the
egress path to indicate the number of the reassembled packets
in each Real Output Queue (ROQ). Packet boundaries can
be easily recognised by the packet size information contained
in the external or internal header. The update of the packet
counters is easy considering the neops field in the internal
headers.

III. DISTRIBUTED PACKET MODE SCHEDULING

In this section we describe how the input and output sched-
ulers can be synchronized so that packet mode transmissions
can be jointly decided. The core idea is that when a pairing���������

occurs, both ��� � and ��� � decide to maintain it - we
say they are synchronized. The packet associated to the pairing
is the one at the head of the segment which is being written
to output

�
and the pairing is maintained for as long as that

packet’s transmission to the output requires. First we probe
the “types” of pairings and specify which ones and why are
considered to be valid, i.e. result to scheduler synchronization
and packet mode transmission. Next we describe how the
schedulers actually operate.

A. Input-Output Port Pairings Leading to Synchronization

An
���������

pairing emerges at the time input
�

writes to the
crosspoint buffer of output

�
� a fragment � of a packet � (or a whole packet � ) while

output
�

reads the same fragment � (or whole packet � )
(type 1), or� a fragment of a packet � while output

�
reads a fragment

��� of the same packet � (type 2), or� a fragment of a packet � � while output
�

reads from the
same crosspoint buffer a fragment of a different packet
�"! (type 3).

We discard pairings of type (3) because they cause starva-
tion side effects. To see why, suppose that we maintain an

�����#���
pairing which results from the write of a segment belonging
to packet �$� and the read of a segment belonging to packet
�"! . It is possible that when the transmission of packet �%� to
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the crossbar is completed, input
�

starts transmitting a second
packet �'& to output

�
. In this case a second pairing is possible

to emerge during the write of �(& and the read of �"! or �(� .
Similarly, if input

�
persists transmitting to output

�
, output�

will keep serving
�

and the rest of the inputs are going to
starve.

Not all pairings of type (1) or (2) are considered valid.
Assume that input

�
writes to output

�
a segment � � of a packet

� and output
�

reads a segment �'! of the same packet � . We
want both ��� �

and ��� � scheduler to become aware of the
pairing before they complete the transmission of segments �$!
and �$� in order to be synchronized. Alternatively, they should
have to wait for some time resulting to the insertion of bubbles
between the transmission of segments. If one of them, say ��� ,
proceeds serving other flows while ��� observing the pairing
has already entered packet mode transmission for packet � ,
buffer underflow occurs.

We define as time window ) the time interval between the
moment the input starts writing to the crosspoint buffer to the
moment that crosspoint buffer starts being read. In the “space-
time diagram” of fig. 5 we display the maximum allowed )
in order for both the schedulers to observe the pairing in time.
The horizontal direction represents space while the vertical one
time. The arrows denote messages and the arrow heads events.
To save throughput, we start input and output scheduling *�+�,
time before the completion of the segment transmission, where
*-+., is the scheduling time.

)0/2143657*-+98 � *;:=<?>=:0@A*;B�+C@D*;>'+C@A*;E=, �
* + stands for the transmission time of the maximum segment.
Note that in case the segment size is less than the maximum,
no synchronization is needed because the segment already
carries the ending bytes of a packet. * :F<?>=: is twice the propa-
gation time from the linecards to the crossbar chip. �HG stands
for the credit transmission time. We need to include this time
to account for the delay the credit probably meets at the credit
queues. ��� always gives priority to credits that are connected
to scheduler synchronization, so the delay at credit queueus is
at most one credit transmission time.

CELL
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PKT
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BUSY
synch.

segment!synch,
eop 

wakeup
&&

!eligible
wakeup && eligible

!eop 

CELL
MODE

MODE
PKT

IDLE

BUSY

wake−up && eligible
&&

eligible

 !eligible
&& 

synch.
&&

!synch, wakeup

!synch,

!eop 

synch. && eop

!eop 

pkt  || credit
eop 

Output Controller Ingress Scheduler

Fig. 6. State machines for IS and OS.

When *-+JI � *;:F<?>":H@6*;B4+$@6*;>"+$@6*;E", � none of the pairings
is valid, the schedulers are never synchronized and no packet
mode transmission is started. In order for the schedulers to be
synchronized the RTT must be smaller than transmission time
of a maximum segment2. The latter is a system parameter and
it should be set to be greater than the RTT.

B. Scheduler Operation and Synchronization

In fig 6 we show the finite state machines of IS and OS.
When all crosspoint buffers are empty, OS remains in the
IDLE state. When a segment arrives, scheduling is triggered
(BUSY state) and the scheduler decides in a round robin man-
ner which input

�
to serve. Afterwards, it checks for the oc-

currence of a valid pairing, which happens when all of the
following conditions hold:� The enqueue signal of buffer

�
is asserted at the time of

check� The packet counter corresponding to buffer
�

is zero (this
means that the paring has the type (1) or (2) specified in
the previous section).� The waiting time ) of the tail segment in buffer

�
is

smaller than the value )K/2143 specified in the previous
section. The waiting timing is computed by the time coun-
ters.

If the above conditions hold, OS transits to packet mode state
and keeps transmitting bytes of the same packet. Furthermore,
it asserts an ACK flag into the credit corresponding to the
first segment transmitted on packet mode and, in the header
of that first packet, it asserts a “cut-through flag”. The ACK
is used to command the input scheduler to follow on packet
mode and the cut-through flag is used to notify the egress
scheduler that it can start transmitting the packet before it is
completely stored. When the last segment of the packet starts
being transmitted, OS transits to cell mode.

If the conditions for valid pairings do not hold, OS transmits
the current segment (in cell mode state) and wakes up �(G time
before the completion of the segment transmission in order

2For simplicity we assume that the RTT comprises scheduling and propa-
gation times. In a real system more time constants should be included, such
as memory access times.
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to reschedule and serve probably another input, selected in a
round robin manner.

IS operates symmetrically. The difference is in the flow
eligibility and the way it gets synchronized. Flows are eligible
as in the classical crossbar scheduling. IS gets synchronized
by receiving an ACK credit when in cell mode.

Figure 7 displays an example of the scheduler synchroniza-
tion when there is no congestion in the system:

1) Input sends the first segment � of a large packet � .
2) Output serves that segment, after a scheduling delay time

and observes a valid pairing. A credit flagged ACK is
sent back to the input and a cut-through notification to
the output.

3) Input sees the ACK and gets synchronized.
4) The output “sees” the cut-through flag and start trans-

mitting the packet right away.
Note that our connection set up process incurs minimal

traffic overheads: one bit per flow control credit. Also note that
the traffic is piggybacked on the headers of the flow control
traffic.

C. Discussion

There will be cases where the schedulers fail to get syn-
chronized. In these cases, some packets will be transmitted
on a cell mode possibly interleaved with segments of other
packets from/to other links. Our protocol does not provide
deterministic guarantees for packet mode transmission because
buffered crossbar scheduling does not necessarily result to
input-output port pairings. Our simulations show that under
light loads such pairings will almost always happen since
congestion is absent. This is important because we care about
cut-through transmission especially under light loads for a
wide range of traffic patterns. Furthermore, they show that

even under heavy loads packet mode connections will occur
with a high frequency, resulting to reduced reassembly delay.

Since our proposal does not provide deterministic guaran-
tees for packet mode transmission, egress reassembly buffers
must be as large as the respective ones in cell mode scheduling:
N maximum packets memory space. In bufferless crossbars
[3] only one maximum packet worth memory space is needed
for the packet reassembly. On the other hand, our scheduling
method is distributed and much more scalable than the central
scheduler needed in [3].

A second important advantage of our system compared to
[3] is that it can operate with variable size segments and thus
no speed up is needed for the segmentation overheads. On the
other hand, bufferless crossbars require fixed length cells and
segmentation overheads may be high.

IV. PERFORMANCE STUDY

A. Method

We developed a byte-time accurate simulator to model the
buffered crossbar system described in section II. We model
variable size transfer units at the switch interfaces and the core,
so in order to keep track of time we follow the discrete event
simulation approach [15]. Information relative to the simulator
can be found in [12].

The RTT is considered 400 byte times, the default segment
size is 512 bytes and the default crosspoint buffer size 512
bytes as well. We experiment with 32 input/output ports.

Packet mode scheduling is compared to cell mode round
robin scheduling in buffered crossbars. The delay in the ideal
output queueing serves as a lower bound.

The traffic consists of packets with Poisson arrivals and
bimodal packet size. 95% of the packets are 40 bytes long
and 5% of the packets 10 Kbytes. We use that large packets
to model switching of jumbo frames. Switch destination ports
are uniformly selected.

We measure the mean delay of the large packets at the
queues of our system as the time interval between their first
byte arriving to the system to the their first byte departing
from it, after subtracting constant delays such as propagation
and scheduling times. The reported values are multiples of the
transmition time of a maximum segment.

B. Numerical Results

In fig. 8 we show the mean queueing delay at reassem-
bly buffers (ROQs) for our system (“PM baseline”) and the
relative one with classical cell mode round robin schedulers
(“CM”). For light loads PM baseline presents zero queueing
delay (at ROQs) because almost always cut-through transmis-
sion is achieved. On the other hand CM presents one packet
store & forward delay (20 segments). Delay at ROQs increases
in PM baseline as loads become heavier because due to con-
gestion cut-through cannot start from the starting bytes of the
packets and some segments are transmitted on cell mode. In
the CM system ROQ delay increases because the interleaving
of packets increases with load. For a load of 98% the ROQ
delay is reduced by 30% when using packet mode scheduling.
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The curve PM optimized shows the ROQ delay in our sys-
tem when the schedulers described in section III are slightly
modified: when synchronization fails, instead of polling the
next crosspoint buffers in the round robin schedule, the output
scheduler revisits the same crosspoint buffer, to check if it is
not empty, i.e. to check for a possible respond of the input. In
that case it serves the same input and gets synchronized with
it. For a load of 0.8 the improvement is around 60%.

Figure 9 displays the total queueing delay: at VOQs, cross-
point buffers and ROQs. The output queueing system has been
included in this plot; we assume cut-through at the output
buffers. The curve labelled “bursty” shows the queueing delay
in out system when the 10K byte streams form 20 discrete
packets - with size equal to the segment size - instead of
a single one. Under this traffic we have the same burtsiness
compared to the traffic described in the previous section and
thus the delay at VOQs is identical. However the reassembly
delay is almost zero. This curve shows what is the best we
can do with packet mode scheduling. We observe that the
PM baseline indeed improves the total delay compared to CM
and with the aforementioned optimization achieves almost op-
timum performance.

Ongoing work:
Simulations with unbalanced traffic - based on the pattern de-
fined in [8] - are running. Preliminary results suggest a worst-
case throughput of around 85% when using one maximum
segment crosspoint buffers.

CONCLUSION

We presented a novel scheduling method for buffered cross-
bar switches based on the application of packet mode schedul-
ing. We described a method to synchronize the arbiters which
are distributed at the switch input and output ports. Using
simulation we concluded that with the cut-through opportunity,
which is offered by our scheduling method, the queueing delay
is significantly reduced at a great range of loads. For loads up
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to 70% the reassembly delay is reduced by more than 90%.
For greater loads the improvement is between 40 and 80%.
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