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Abstract— A significant advantage of buffered crossbar (com-
bined input-crosspoint queueing - CICQ) switches is that they
can directly operate on variable-size packets, thus saving the
costs and inefficiencies of packet segmentation and reassembly
(SAR). However, in order to support multiple priority levels,
separate queues per priority are needed at each crosspoint,
in order to prevent HOL blocking and buffer hogging; these
queues are expensive because they each need a size of at least
one maximum-size packet. In this paper we propose a scheme
that uses only two queues per crosspoint to effectively support
multiple priorities. We adaptively adjust the priority levels of the
two queues so that most traffic goes through the “lower” queue,
while the “upper” queue remains usually available for higher
priority packets to overtake the former. Through simulation, and
assuming 8 priority levels, we compare our scheme to an ideal
system that uses 8 queues per crosspoint. For realistic traffic,
the two systems perform almost identically, although ours uses 4
times less memory in the crossbar. Even under a highly irregular
traffic pattern Bursts60, our system will not increase the average
delay of any priority level by more than 75 percent compared to
the ideal system.

1 . INTRODUCTION

Combined Input-Crosspoint Queueing (CICQ), also called
Buffered Crossbar, is a packet switch architecture that has re-
cently become popular, because it features simple and efficient
scheduling [1] [2] [3] [4], including weighted fair scheduling
[5] [6], and owing to advances in CMOS technology that made
its implementation feasible. Compared to the traditional buffer-
less crossbar with input (virtual output) queueing (VOQ),
CICQ is efficient enough (when crosspoint buffers are larger
than a few cells each) to the point where internal speedup [7] is
no longer needed to compensate for scheduling inefficiencies;
note that speedup is still necessary to cope with the throughput
increase that results when variable-size packets are segmented
into fixed-size cells.

Zhang [1], Christensen [8], and the present authors [9]
observed that buffered crossbars have the additional advantage
of being able to operate directly on variable-size packets,
without requiring prior segmentation into fixed-size cells.
In [9] we showed that such architectures can dramatically
reduce cost: internal speedup is no longer needed –neither to
compensate scheduling inefficiencies, nor to cope with packet
segmentation and reassembly (SAR); in turn, output queues are
not needed, given the lack of speedup and packet reassembly.
In exchange for these major cost savings, one has to bear
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the relatively minor cost of larger crosspoint buffers: each of
them needs to fit, at least, not only one flow-control window –
as they always needed to– but also one maximum-size packet,
additionally. When packet size is limited up to 1500 bytes (e.g.
packets that have crossed an Ethernet link), crosspoint buffers
in the range of 2 KBytes each are needed; these are feasible
in modern technology for crossbars with 24 to 32 ports [9].

Multiple priority levels are desirable as a means for ser-
vice differentiation and quality of service (QoS); e.g. IEEE
802.ID/Q defines eight classes of service by means of priorities
[10]. Proper priority mapping, at the application or packet
level, can provide efficient utilization of network resources
and increase the “user-perceived” utility [11]. A CICQ switch
needs a separate queue per priority (class of service), in order
to prevent head-of-line (HOL) blocking, and each of these
queues needs a minimum reserved space in order to prevent
buffer hogging (sec. 2.2).

This paper deals with supporting multiple priority levels
in a buffered crossbar that directly operates on variable-size
packets. Each crosspoint buffer must contain multiple, per-
priority queues. However, these queues cannot dynamically
share the buffer space, because that would require queues
implemented via linked lists of dynamically-allocated memory
blocks [4], thus re-introducing packet segmentation and the
need for speedup. The solution is to use circular queues, each
of them implemented inside a static partition of the buffer
memory. This has the advantage of trivially solving the buffer
hogging problem (each queue has a statically allocated and
reserved space), but has the disadvantage of requiring large
crosspoint buffers: one flow-control window (e.g. 512 bytes)
plus one maximum-size packet (e.g. 1500 bytes), times the
number of priority levels (e.g. 8), amounting to 16 KBytes per
crosspoint in this example, or 16 MBytes in a 32×32 switch
chip.

The goal of this paper is to solve the above memory space
problem: a 32×32 variable-packet-size buffered crossbar chip
in a modern 0.13-micron ASIC technology can fit 2 MBytes
of 2-port SRAM memory (2 KBytes per crosspoint) [9], but
8 times that much memory (for 8 priority levels) is too
expensive. We develop and evaluate an innovative architecture,
whereby just two queues per crosspoint support as many
priority levels as desired, with an efficiency not much worse
than that of separate, per-priorirty queues. For the above
typical numbers, using our new architecture, a 24×24 multi-
priority switch chip is feasible today (4 KB per crosspoint, or
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2.3 MB total), and a 32×32 chip (4 KB per crosspoint, 4 MB
total) can be implemented using embedded DRAM today or
will be feasible in 2005-2006 using 2-port SRAM.

The basic idea of our new architecture is to dynamically
and adaptively map the multiple priority levels onto the two
existing queues, for each crosspoint buffer. The mapping is
such that the “lower queue” usually contains packets of the
top-most non-empty priority level, while the “upper queue”
is usually empty, thus being available for the high-priority
packets that occasionally appear to quickly bypass the lower-
priority traffic. We call this a two-lane system, because its
operation is analogous to a two-lane highway, where cars drive
in one lane and overtake using the other.

Section 2 starts by describing a baseline architecture, with
a separate lane for each priority level, used for comparisons.
Section 2.1 reviews the problems of HOL blocking and of
buffer hogging. Sections 2.2 and 2.3, present our general
methods to reduce their negative effects: (1) Packet push-
out resolves HOL blocking and buffer hogging, even with
one queue per crosspoint, at the expense of increased delay
relative to baseline; (2) wait-to-drain reduces that delay, by
pro-actively policing the traffic sent to the crosspoint queues.
Section 2.4 describes our overall system, 2Q, with two queues
per crosspoint. In section 3, we show through simulation, that
when eight priorities are supported, even under highly irregular
traffic, 2Q will not increase the average delay of the top-most
priority level by more than 75 percent, when compared to a
system with a separate crosspoint queue for each priority (i.e. 4
times more buffering); intermediate priorities experience much
smaller discrepancies. Under smoother patterns, like typical
network traffic, we find that the two systems perform almost
identically (the same holds for Poisson arrivals). Section 5
discusses the hardware complexity of our methods and section
6 concludes.

To the best of our knowledge, this is the first published
study of how to effectively map multiple priority levels onto a
reduced number of queues in a buffered crossbar –and perhaps
in any kind of switch. The importance of the paper stems from
this novelty and from the importance of buffered crossbars
–especially variable-packet-size ones– as a likely emerging
architecture of choice for future commercial crossbar products.

2 . SYSTEM & METHODS

The system considered in this paper is a buffered cross-
bar that supports L priority levels (L > 2) and directly
switches variable-size packets. Separate, per-priority virtual
output queues (VOQ) are maintained at the input line cards:
N ·L VOQ’s per line card for an N×N switch. Each crosspoint
buffer contains two (2) queues, as shown in figure 1, used to
support multi-priority operation. We compare this system of
ours to a traditional, “baseline” system that contains L queues
per crosspoint, each of them statically allocated to a specific
priority level. We assume that each crosspoint queue –in either
system– has Sq buffer memory space statically allocated to it.

Credit-based flow control provides lossless transmission
between the input line cards and the crosspoint queues. Credits
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Fig. 1. The system assumed in this paper, supporting three priority levels.

destined to the same input are sent in FIFO order; the credit
rate per input line card is one credit every minimum-packet-
size (Smin) time. For flow control to be deadlock-free, the size
of each crosspoint queue must be Sq ≥ Smax, where Smax is
the size of one maximum-size packet. In order to sustain full
output-link utilization even with a single active flow, we need
an Sq ≥ Smax + R · tRTT , where R is the line rate and tRTT

is the round-trip time from the generation of a credit till the
first word of a packet that utilized this credit at the input is
transmitted on an output line of the crossbar [9].

Each input and output line has a non-preemptive, priority,
round-robin scheduler: when queues of different priorities are
eligible for service, the highest priority is selected; if multiple
queues are eligible at that priority, we use round-robin to select
one of them; round-robin is on a byte-count basis (equalizes,
in the long-term, the number of bytes served from each back-
logged queue). Crosspoints provide cut-though.

2.1. HOL Blocking and Buffer Hogging

At the crosspoints, separate queues per priority are desired
in order to provide flow isolation and protection. When a
crosspoint queue is shared among multiple priorities, a high-
priority packet queued behind a low-priority one may suffer
excessive delay, because the output scheduler may postpone
serving the low-priority packet, due to its low priority, not
knowing that a high-priority packet is waiting behind it; this
is known as head of line (HOL) blocking –figure 2. Even if
each priority level has a dedicated logical queue, but these
queues share a common buffer space, a similar effect can
occur if low-priority packets fill up the entire shared space:
high-priority packets will have to wait at the line card, due
to unavailability of buffer space (no flow-control credits), and
thus the high-priority crosspoint queue will appear empty to
the output scheduler; this is known as buffer hogging. The
multi-priority buffered crossbar in [4] uses multiple queues in
a shared space, at each crosspoint, and is thus subject to buffer
hogging.

In the worst case, either HOL blocking or buffer hogging
may lead to starvation for a high-priority flow, if its packets
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Fig. 2. HOL blocking, buffer hogging, and how we resolve them with
packet push-out and special control packets.

happen to wait behind low-priority packets at the relevant
crosspoint: if sufficient medium-priority traffic exists from
other inputs to the same output, the output scheduler will keep
selecting the latter, thus starving the low-priority packets –
which is OK– but also, indirectly, starving the high-priority
flow too. Our system queues variable-size packets; thus, as
mentioned in section 1, our queues cannot dynamically share
buffer space with each other, because that would require packet
segmentation, hence speedup. Our solution is to statically
allocate space to each crosspoint queue, thus solving the buffer
hogging problem too.

2.2. High Pushes Low Out of the Way

In our system with two lanes (two queues per crosspoint) –
like in any system with less lanes than priority levels– there are
cases when a queue must be shared among packets of different
priorities. To resolve the HOL blocking problem that may arise
in such cases, we employ a push-out discipline: the “effective
priority” of a crosspoint queue, for output scheduling purposes,
is the highest of the priorities of the packets currently queued
in it. Figure 2 illustrates this in the simple case of one lane: a
high-priority packet arrives in the top queue, but it is blocked
behind a low-priority packet; rather than wait, the high-priority
packet “pushes” the low-priority one out of the queue, by
declaring to the scheduler that this queue now has high priority.
This case is analogous to an ambulance behind a normal car
in a single-lane road: as long as there is no space for the car to
pull out of the way, that car has to rush ahead at the “effective
priority” of the ambulance. The disadvantage of the push-
out discipline is that some low-priority packets –e.g. ”low”
in figure 2– depart before other, higher-priority packets, thus
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Fig. 3. The wait-drain-discipline: Congestion at higher-priority levels can be
speculated at the input by means of unacknowledged higher-priority packets

increasing their delay, and this happens not just for packets in
the same queue, but also for higher-priority packets in other
crosspoints of the same column –e.g. ”med1” and ”med2” in
figure 2.

The same problem can appear in the buffer hogging form,
as illustrated in the middle row of figure 2: that queue is filled
up, so when the high-priority packet arrives at the line card
it cannot even reach the crosspoint buffer so as to raise its
effective priority, due to lack of credits. To resolve this, we
assume that the line card sends a special control packet to
signal the necessary priority upgrade to the crosspoint, rather
than sending the actual packet itself. Control packets are not
stored in crosspoint queues –they merely change the effective
priority of the queue– but they are subject to scheduling at the
input, and they are transmitted through the same link as normal
packets. We assume their size to be equal to a minimum-size
packet, so that scheduling rate is not affected.

2.3. Low Waits for High to Drain

When a queue must be shared among packets of different
priorities, the converse of the above situation occurs when the
next packet to be sent from the line card to the switch has a
priority level below the previous packet that was sent.

In this case, we observed by simulation that the following
heuristic pays off, on the average. The line card adopts a non-
work-conserving discipline: first wait for all higher-priority
packets to drain out of the crosspoint queue, and only then
send the low-priority packet, provided of course that it still
is the “top-of-the-list” packet in the line card. We attribute
this gain to the following effect, illustrated in figure 3: the
presence of high-priority packets destined to a specific output
in the part of the system that is visible by a line card (the
upper line card in figure 3) –i.e. in the line card itself or at the
corresponding crosspoint– is an indication of current network
activity at this high-priority level, destined to this specific
output: more packets at this level for this output may exist in
other crosspoints (from the lower line cards in figure 3), or the
arrival of more of them, belonging to a same burst, through the
same input, may be imminent. Under these circumstances, if
the line card refrains, for a while, from forwarding background

c© Copyright IEEE - Proc. of the IEEE Global Communications Conference (Globecom), Dallas, USA, 29 Nov. - 4 Dec. 2004 3



(low-priority) traffic to the crosspoint queue, it will give the
newly-arriving high-priority packets a chance to bypass the
low-priority ones on the way to the shared queue.

The precise policy that we implemented in our simulated
system, under the name wait-to-drain, is as follows: as long as
the top candidate priority, from an input line card to a specific
crosspoint queue, is below the highest unacknowledged-packet
priority level in that queue, the scheduler in the line card
does not send any packet to that queue. A packet remains
unacknowledged until the line card receives the credit that
corresponds to that packet, indicating that the packet has
started departing from the crosspoint 1. Note that if congestion
is not actually present, then the method can cause output
under-utilization, if the unacknowledged high-priority packet,
that causes the scheduler at the input to remain idle, has size
smaller than R · tRTT . Our simulation results indicate not
significant throughput reduction under the wait-to-drain disci-
pline. More importantly, this reduction affects only the lower-
priority levels, while the higher levels benefit considerably.

2.4. Two Queues with Adaptive Mapping

Having established methods to react to HOL blocking and
buffer hogging, we next consider a system with two lanes
(queues) per crosspoint –see figure 1. Call UP one of these
lanes, and DOWN the other. Input scheduling is as follows:
at each input line card, for each output, consider the highest-
priority non-empty VOQ, and decide whether that VOQ is
candidate for transmission to the UP lane, or to the DOWN
lane, or to none of the two. These lane assignments are
performed on a per packet basis, i.e., priority levels are
not statically assigned to specific crosspoint lanes. The input
scheduler selects one of the eligible VOQs, as described in
section 2.

Our goal is for high-priority packets to use the “upper”
queue to bypass lower priority packets that may be blocked in
the “lower” queue. Hence, the lower queue is the default lane,
and the upper lane is used as auxiliary. To keep the upper lane
uncongested, for all flows except top-most priority ones, we
are conservative when mapping their packets UP, to account
for future packet arrivals of even higher priority. In addition
to this simple strategy, our method uses the push-out and the
wait-to-drain disciplines, described in the previous sections.

The output scheduler considers all the non-empty UP and
DOWN queues in its column, and serves the one with the high-
est effective priority; when both the UP and DOWN queues
in a crosspoint have equal effective priority, it chooses UP. At
any time, the input considers that the effective priority of a
queue equals to the priority of the highest priority packet that
is currently unacknowledged inside it. By EffPr[{UP,DOWN}]

1A positive by-product of the wait-to-drain policy is to simplify the circuit
that keeps track of the effective-priority of a crosspoint queue: that priority
rises upon arrival of higher-priority packets, and only drops (to the bottom-
most level) when the last packet departs from the queue. Without wait-to-
drain, a mechanism would be needed to find the highest priority level among
all remaining packets after departure of a packet at the previously-highest
priority.
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Fig. 4. The candidate priority level, c, is mapped either UP (U ), or DOWN
(D), or nowhere (X), depending on its priority and on the effective priority
of the two lanes, as estimated at the input.

we denote the effective priority of a crosspoint queue, as seen
at the input.

Figure 4, illustrates our 2Q discipline. Call c the priority
level of the candidate VOQ, at the input line card, for a specific
crosspoint, as defined earlier in this section 2.4. If both lanes
are empty, (i.a), then VOQ c is mapped DOWN. Next (cases
(i.b), (i.c), (i.d)), assume that the upper lane is empty, while
EffPr[DOWN] = d (as seen on the line card). If c > d, (i.b),
then c is mapped UP to bypass the lower-priority packets that
are pending DOWN. If c = d, (i.c), then c keeps using DOWN,
as it has already been doing. If c < d, (i.d), then c is ineligible
because “low waits for high to drain” (section 2.3).

In the second row of figure 4, both lanes have packets inside
them, and EffPr[UP] = u, EffPr[DOWN] = d. Normally, u >

d, except for rare situations not considered here –see [12],
fig. 18. In case (ii.a), c has higher priority than both lanes
and is mapped UP. If not enough credits exist for c to use
UP, a special control packet is sent to force the upper lane to
drain with effective priority c, as discussed in section 2.2. In
case (ii.b), c = u and thus c will continue using UP, but only
if an additional condition is satisfied, aimed at keeping the
upper lane uncongested, as discussed shortly, in section 2.5;
if the condition fails, we consider VOQ c ineligible for UP,
and possibly for DOWN as well. In (ii.c), when d < c and
c < u, c is ineligible for UP, and may also be ineligible for
DOWN –see section 2.5. In case (ii.d), c = d, then c keeps
using DOWN, as it has already been doing. Finally, in (ii.e),
c < d, and VOQ c is marked as ineligible.

2.5. Keeping the upper lane uncongested

A crucial point of our 2Q discipline is to keep the upper lane
empty most of the time 2; to achieve this, we “hesitate” to route
consecutive packets of an intermediate priority flow through
that upper lane, as noted above and as marked by Ucond
in figure 4(ii.b). A simple discipline to do that is to allow
only a limited number, say K, of unacknowledged packets
of a flow to be pending UP (see section 2.3 for the term
“unacknowledged”). We simulated this discipline for K = 1,
called noRTT, and found that it reduces the delay of the top
priority levels. However, for small K or for short packets –

2except for packets of the top-most priority level
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relative to tRTT – this discipline will place a quite low bound
on the throughput that its flow can achieve.

To address this issue, our 2Q discipline uses the round-trip
time, tRTT , to define how many consecutive packets a flow is
allowed to send UP: record the time, tu, when a flow sent its
first packet UP; allow this flow to send UP until tu + tRTT ;
after that point, a credit must arrive before we allow more
packets of this flow to be sent UP.

In case (ii.b) when the above condition fails, and in case
(ii.c) (figure 4), instead of considering c ineligible, we can
send c packet(s) through the DOWN lane; we call this policy
try-down (TD). Through simulations we observed that TD
deteriorates the performance for almost all of the intermediate
priority levels. We attribute this behavior to the following.
In the cases under discussion, the upper lane contains unac-
knowledged packets; this is an indication of heavy traffic at
that priority level, and hence even heavier traffic at the DOWN
level. TD sends c DOWN, but it is likely that c could have
gone through the UP lane earlier that the time it will take
to reach the HOL of the DOWN queue, given that, in the
second case, c will have to “push-out” lower-priority packets
that currently reside in the DOWN lane.

2.6. In-Order Delivery

Our two-lane system always forwards the packets of a flow
in-order, because we never send a packet of a flow UP when
another packet of the same flow is pending unacknowledged
DOWN. Since the UP queue is always selected first by the
output scheduler when both queues have the same effective
priority, if a packet is sent UP and a subsequent packet is sent
DOWN, the oldest one will depart first. Note that the effective
priority of the DOWN queue cannot increase after the second
packet is sent DOWN, e.g. because of push-out: any packet
with priority high enough to push-out the second packet would
be mapped UP.

3 . SIMULATIONS

3.1. Simulation Enviroment

We used the same simulator as in [9] to experiment with our
methods. In this paper we simulate a 32×32 switch with port
speed 10 Gbps. For simplicity we assume no internal packet-
header and consequently no speedup. The VOQs and the
crosspoint queues implement cut-through. Finally, the tRTT

is set equal to 400ns (or 500 byte time).
We explicitly model variable-size packet arrivals. Packets’

destinations are uniformly distributed and all priorities arrive
with equal probability. The uniform priorities distribution, that
has also been used in [4], stands for a worst-case benchmark:
when the “higher” priorities arrive less frequently than the
“lower” ones, buffer hogging and HOL blocking become less
pervasive.

Regarding packet arrivals, we use the Poisson process,
and a bursty one, Bursts60, which exhibits high temporal
and spatial locality. In Bursts60, a burst consists of sixty
(60) back-to-back packets and the length of idle periods is
exponentially distributed. Packets within a burst have the same
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destination and the same priority. The size of each packet
is always selected independently using a Pareto distribution:
Save 400 bytes, Smin 40 bytes and Smax 1500 bytes. This
gives us an average burst size equal to 23 KBytes. The
Bursts60 pattern models worst-case real traffic scenarios, and
additionally reveals the vulnerability of a system to HOL
blocking and buffer hogging.

We plot packets’ average delay just-before-output-service,
for each priority in separate, versus the aggregate input load.
By “p0” we denote the top-most priority level, and by “p3”
or “p7” we denote the bottom-most one, depending on the
number of priority levels that we simulate (4 or 8 respectively).

3.2. One Queue Per Crosspoint

We start by verifying the known negative effects of HOL
blocking and buffer hogging: we compare the ideal baseline
system, which has a separate queue/lane for each priority level
at each crosspoint, against: (shared-queue) a system with a
single queue per crosspoint; (push-out, wait-to-drain&push-
out) shared-queue systems augmented with the disciplines
discussed in section 2.2 and 2.3; and (shared-space), a system
with multiple logical queues per crosspoint, one for each
priority level, sharing a common crosspoint buffer space. Each
separate crosspoint queue has dedicated space equal to 2
KBytes, i.e. slightly larger than the minimum required (see
section 2). To model shared-space, we use a single credit
counter at each input for each corresponding crosspoint, that
keeps track of the available buffer space of all logical queues
in that crosspoint; this buffer space is set equal to 2 KBytes.

In this set of experiments, we use Bursts60 arrivals and
four (4) priority levels. Figure 5 presents the average delay of
priority levels p0 and p1, and figure 6 presents the average
delay of p2 and p3. As figure 5 demostrates, as the input load
increases, the performance degradation in all shared-queue
(and shared-space) systems becomes dramatic 3.

At the one extreme, with baseline, the average delay of the
top-most priority level (p0) is not affected by the increase of

3We should note that considerable performance degradation is present even
under less irregular traffic patterns [12], but certainly to a smaller extent.
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the aggregate input load, while at the other extreme, shared-
queue cannot discriminate low from high priorities, and as the
input load increases all priority levels experience more or less
the same quality of service. At low input load (i.e., 0.5 to
0.7), shared-space performs better than push-out and wait-to-
drain&push-out, owing to that buffer hogging does not appear
frequently when the crosspoint buffers are relative empty. It
performs much worse though, at higher input load, when the
crosspoint buffers fill more frequently. Finally observe that
wait-to-service&push-out performs much better than push-out
alone: it slightly increases the average delay of the bottom-
most priority level (p3), in benefit of the higher priority levels.

3.3. Two Queues Per Crosspoint

Under four (4) priority levels and Poisson arrivals, 2Q
performs identically to the baseline, while under Bursts60
arrivals, small discrepancies occur when the input load is
higher than 0.8; these discrepancies grow with increasing load,
but in our results [12], these never exceed 50%, for any priority
level. The results that we present in this section are for eight
(8) priority levels that are even more difficult to handle. In
figure 7 we used the Poisson arrivals model. As we can see
from the figure, 2Q, performs very close to the baseline; the
larger discrepancies appear at the top-most priority level and
are bellow 15% under any input load.

Next, we experiment with the Bursts60 arrivals model. We
again compare 2Q with the expensive baseline system; we
also examine the noRTT alternative of 2Q, that we describe in
section 2.5. The results of this set of experiments are presented
in two figures: figure 8 contains plots for the even priority
levels, while figure 9 contains the plots for the odd priority
levels. Two things are worth noticing in these figures. First,
the maximum discrepancy of our method, 2Q, compared to
the baseline appears at the top-most priority level, and it is
close to 75% under 0.99 input load (19 vs 11 usec delay,
see fig. 8); concerning lower priority levels the two system
perform very close. Second, under the noRTT policy, the
respective maximum discrepancy drops down to 35%. This
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happens because the noRTT policy is even more conservative
when it uses the upper queue, and thus, high-priority packets
more frequently find a free way to bypass the low-priority
ones.

Finally, in figure 10, we use a synthetic traffic pattern,
SynthBackb, that tries to emulate as much as possible back-
bone, realistic IP traffic. In synopsy, under the SynthBackb
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pattern, the packet arrivals at an input line card are generated
by multiplexing thousands of interactive (IC) and bulk (BC)
“conversations” in a FIFO queue; an IC is modeled as a
Poisson process that sends 125 packets with size 40 to 44
bytes, while a BC is modeled as a burst with average size 8
KB [9]. A uniform distribution is used to map each generated
conversation to one out of eight priority levels. Figure 10,
contains delay plots for the baseline system, for 2Q and for
TD, an alternative of 2Q which is described in section 2.5. To
make the figure readable, we present delay plots only for the
more interesting priority levels. As the figure demostrates, 2Q
performs very close to the ideal baseline system, while the
TD alternative policy increases the delay of all priority levels,
except for the bottom-most one (p7). Section 2.5 explained
the believed reasons for this behavior.

4 . HARDWARE COST

Other than the two queues per crosspoint and the priority-
aware output schedulers, the only additional circuits required
by our method within the crossbar chip is a register for each
crosspoint queue, holding the current effective priority of that
queue. Regarding the input line cards, we need a mechanism
to determine the current candidate priority level, and whether
the candidancy is valid or not, per crossbar output. This
mechanism must run at most three times per Smin interval,
i.e., at packet or credit arrival, and at packet departure. The
critical path of this mechanism (see [12], fig. 18) consists of
three to four comparisons between small values.

5 . CONCLUSIONS

We presented a novel, multiple priority, variable-packet-size
CICQ switch with only two queues per crosspoint. Our system,
is capable to provide fine-grained QoS support with no speed-
up and no output buffers. The simulation results presented
indicate, that more than two queues per crosspoint are not
worth the associated cost, especially given the large size of
queues required for variable-packet-size operation. Our “two-
lane” system performs close to a system with separate, per-
priority queues: under a worst-case scenario the maximum
discrepancy is 75%, whereas in the typical case it is only
15%.
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