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Abstract—We view the ‘packet-switching problem’ (from N 
inputs towards N outputs) from the perspective of game theory 
and we prove that, if the rates of flows are weighed then ‘weighed 
max-min fair service rates’ are the unique Nash equilibrium 
point of a natural strategic game in which throughput is granted 
on a ‘least-demanding first-served’ principle. We prove that a 
crossbar switching device with suitably randomized schedulers 
converges to this equilibrium point without pre-computing it.  

Crossbar network switches, non-cooperative strategic games. 

I.  INTRODUCTION 
In the ‘network-switching problem’ data packets from N 

sources are forwarded through a single node towards N 
destinations creating N × N flows of data. A switching device 
in this node has to be assigned the task of handling the relevant 
traffic control. Suppose that each flow of data f from a source 
to a destination is assigned a weight wf by which we weigh its 
rate of service rf . The question is: on what principle(s) should 
our device operate? If the utility given to f is defined as rf /wf , 
what service rates should be given to the flows in order to 
achieve ‘fairness’, i.e., to equalize utilities as far as possible? 
And how can we be convinced that a specific device performs 
as desired?  

On this question various active themes of research 
converge, and among a quite extensive literature various 
interesting starting points, more closely related to this work, are 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In an attempt to face the afore-
mentioned issue it has been proposed that the rates of service 
for the N × N flows should be granted according to the 
‘weighted max-min fairness’ (WMMF) principle [1, 2, 3, 10]: 
the rate granted to each flow is ‘maximized’ in the sense that it 
cannot be further increased unless the rate of some other flow 
receiving equal or less utility is decreased. However reasonable 
one may consider the WMMF-rates to be, they do raise a reverse 
engineering issue: a solution is suggested (a switching fabric or 
a relevant algorithm), yet we are seemingly lacking a rigorous 
definition of the problem it solves—a situation quite suggestive 
of a fiercely advancing technological era. (This state of affairs 
is met again: see [12] about the TCP/IP protocol.)  

In this work we offer such a problem: Following a game 
theory approach, we suggest to let the flows decide the utility 
they will get. More specifically we define a natural auction 
game which grants utilities to flows according to a ‘least-
demanding first-served’ principle and prove that (a) this game 

has a unique Nash equilibrium which moreover corresponds to 
the ‘WMMF’ principle; (b) this equilibrium can be attained by at 
least one implementable device (here a crossbar switch with 
randomized schedulers). Thus we are able to answer on firm 
foundational ground at least a pair of crucial issues: (a) Which 
is the problem and which is its solution; and (b) that some 
implementable device does indeed offer this solution.  

Notice (a) that the ‘least-demanding first-served’ principle 
applied is a quite reasonable principle for allocating a common 
resource (here: throughput); and (b) that this principle is 
compatible with the, seemingly forthcoming, ‘pay-more get-
more’ principle: a flow f can simply ‘pay’ for a higher weight 
wf . The reader might want to compare our result with [13] 
where it is shown that if users are allowed to select their 
‘priorities’ by paying a higher cost for a higher priority, then in 
a network supporting a continuum of priorities, a weighted 
max-min fair allocation (with suitably defined weights) is, 
again, achieved  as a Nash equilibrium. Our result 
complements [13] (since we deal with how given weights 
should be interpreted), yet we should indicate that the game we 
consider here is defined differently from that of [13].  

Since WMMF is an already widely accepted principle, our 
results should not be interpreted simply as arguments in favor 
of WMMF, but mainly as a further analysis of its properties.  

In Section II we review the ‘weighted max-min fairness’ 
idea. In Section III we present a switching game and prove that 
its unique Nash equilibrium coincides with ‘weighted max-min 
fairness’. In Section IV we prove that a crossbar switching 
device with suitably randomized schedulers indeed attains the 
afore-mentioned Nash equilibrium. Section V is an epilogue. 

II. A ‘FAIR’ SOLUTION FOR THE SWITCHING PROBLEM 

A.  An abstract switching device 
Our switching device D is abstractly defined by the 

following: (a) A size N ≥ 2; (b) N inputs i = 1, ..., N, and N 
outputs j = 1, ..., N; (c) An N × N matrix of positive weight 
parameters wi,j. (We can avoid zero weights by replacing them 
with a sufficiently small value ε > 0.) 

The intended meaning of the above is the following: 
(1) Each pair (i, j) ∈ [1, Ν ] × [1, Ν ] is a flow (of data packets) 
entering through input i and destined to leave through output j;. 

(2) Device D operates at discrete time-steps, t = 1, 2, 3, ... . At 
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each time-step a subset M ⊆ [1, Ν] × [1, Ν] of the flows is 
served, i.e., for each (i, j) ∈ M a packet belonging to flow (i, j) 
is either received from input i, or forwarded to output j, or both.  

(3) During T time-steps, for each (i, j) let si,j be the number of 
data packets of flow (i, j) transferred  from input i to output j. If 
D has devoted  pi,j

 T  units of time to receive input from (i, j) 
then we say that (i, j) has been served with input rate pi,j. 
Symmetrically for output rates qi,j. If a steady state is reached 
as T → ∞, then flow (i, j) is served with rate ri,j = lim

T→∞
si,j /T . 

The ratio ui, j = ri, j / wi, j  is the utility granted to flow (i, j).  

(4) For any n × n matrix a we define Ri(a) as the sum 

,1
n

i jj a=∑ of the elements of the i th row. Similarly we define 

Cj(a) as the sum ,1
n

i ji a=∑ . For every flow (i, j) its weight wi,j is 
a measure of its priority depending in whatever way on this 
flow. In principle we would like the service rate ri,j of each 
flow (i, j) to be proportional to its weight wi,j , i, j = 1, ..., N. 
This is achievable along a row of matrix w by setting 
ri,j = wi,j /Ri(w) (or along a column of w) yet this is not always 
achievable for all i, j without sacrificing some throughput of D. 
(In this work we do not deal with the issue of handling flows 
(i, j) composed of many sub-flows with individual weights.) 

B. The WMMF rates for servicing N × N flows 
Given a matrix of weights w we recall an algorithm, 

proceeding in 2N rounds, that computes the WMMF-rates 
r = [ri,j] = WMMF(w): We characterize each row or column of w 
as ‘fixed’ or not—initially none of the rows or columns is 
fixed—and at each round we consider only non-fixed rows or 
columns. An element (i, j) is said to be fixed if either row i or 
column j is fixed. For each row i let Fi,0 denote the sum of the 
rates ri,j assigned to fixed elements along i, and let Wi,0 denote 
the sum of the weights of the non-fixed elements along i. 
Analogously, for each column j. The WMMF-algorithm is: 

Set Wi,0←Ri(w),Fi,0←0 & W0,j←Cj(w),F0,j←0 
Repeat 

 For non-fixed rows ρi ← (1−Fi,0)/Wi,0 
 For non-fixed columns κj ← (1−F0,j)/W0,j 
 Find i with min ρi among non-fixed rows 
 Find j with min κj among non-fixed columns 
 If ρi < κj Then  
 { For (i,j)=non-fixed elements of row i; 
   Set ui,j ← ρi; ‘Fix’ row i } 
 Else 
 { For (i,j)=non-fixed elements of column j; 
   Set ui,j ← κj; ‘Fix’ column j } 
 Update Wi,0, Fi,0 & W0,j, F0,j 
Until all elements have been fixed 
For all (i,j) { set ri,j to ui,j ⋅ wi,j }. 
 

Another view of the WMMF algorithm is the following: 
Given w, a pair of matrices can be defined by pi,j = wi,j /Ri(w) 
and qi,j = wi,j /Cj(w), i, j = 1, ..., N. In such a pair (p, q) a 
majorized column j is one such that pi,j ≥ qi,j for all rows i. 
Similarly a majorized row i is one such that qi,j ≥ pi,j for all 
columns j. In any such pair of matrices, (p, q), at least one 

majorized row or column will always exist: Setting 
V = {Rk(w): k = 1, ..., N } ∪ {Cl(w): l = 1, ..., N } then either 
the row i for which Ri(w) = max V, or the column j for which 
Cj(w) = max V, is easily seen to be majorized. If column j is 
majorized then we fix for each row i = 1, ..., N  the rate ri,j of 
flow (i, j) by setting ri,j = qi,j ≤ pi,j , and distribute the excess-
rate ( pi,j − qi,j) to the other flows (i, l ) l = 1, ..., N, l ≠ j, in the 
same row, proportionally to their weights wi,l. Column j is 
further ignored. We act analogously if we have a majorized 
row. Repeating the above procedure we obtain the WMMF-rates. 

A matrix a = [ai, j] where ai, j ≥ 0, i, j = 1, ..., N, is said to be 
doubly stochastic iff Ri(a) = 1 for all i = 1, ..., N, and Cj(a) = 1 
for all j = 1, ..., N. Matrix a is said to be in max-min form iff 
every element ai, j is the maximum element either in row i or in 
column j. Matrix a is said to majorize matrix b iff for all i, j we 
have ai, j ≥ bi, j . The following are ‘folklore’ facts about WMMF: 

Fact 1: The WMMF-algorithm returns a matrix r of rates of 
service for which the following three hold: (a) r is a doubly 
stochastic matrix; (b) the utility matrix u is in max-min form; 
(c) r majorizes the matrix f = [min{pi,j , qi,j}], where 
pi,j = wi,j /Ri(w) and qi,j = wi,j /Cj(w), i, j = 1, ..., N. The converse 
is also true.   

III. NETWORK SWITCHING AS A STRATEGIC GAME 

A. A ‘throughput game’ and its Nash equilibria 
We shall view the switching problem as a strategic game. 

Our game can be supposed to be non-cooperative simply 
because the breathtaking speed at which switching fabrics are 
able and expected to be operated, renders any ‘cooperation’ a 
prohibitively time-consuming luxury. 

Let us recall the notion of a (strategic) game [14]: Let 
k = 1, ..., m be the m players of our game. Each player k has a 
set of available strategies Sk to follow. A vector of strategies 
(s1, ..., sm) where sk ∈ Sk, k = 1, ..., m is a (strategy) profile. For 
any strategy profile S ∈ S1 × S2 × ... × Sm, each player k enjoys 
a gain (or payoff ) defined by a function gaink(S)∈ R. For any 
strategy profile S, any player k = 1, ..., m, and any strategy 
s ∈ Sk, we denote by S ← [k, s] the strategy profile obtained by 
replacing in S the strategy sk of k th player by s. A Nash 
equilibrium point is a profile S ∗ such that no player can 
increase its payoff  by modifying S ∗ unilaterally (here is where 
‘non-cooperativeness’ enters the scene) i.e.: for all players 
k = 1, ..., m and all strategies of k, s ∈ Sk: gaink(S ∗ ← [k, s]) ≤ 
gaink(S ∗). Our switching game is defined as follows: 

Definition 2 (throughput-auction game): (a) We have N × N 
players, each corresponding to a flow (i, j), i, j = 1, ..., N. Each 
player (flow) is characterized by a weight ,i jw , i, j = 1, ..., N  
(the highest the weight, the highest its ‘priority’); (b) The 
strategy of each player (i, j) is a positive real number, Ui, j ∈ R, 
(to be interpreted as the required utility, expressing that flow 
(i, j) ‘requires’ a rate of service equal to Ui, j ⋅ wi, j). Thus a 
strategy profile is an N × N matrix of required utilities U; (c) 
the game is played as follows: for each input i, the required 
utilities Ui, j,  j = 1, ..., N, are examined in increasing order and 
are granted a tentative input rate Pi, j = Ui, j ⋅ wi, j as long as the 
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total rate granted for input i remains ≤ 1. Flows for which the 
remaining input rate is not sufficient to cover what they require 
receive zero input rate Pi, j = 0. Symmetrically for each output j 
a tentative output rate Qi, j = Ui, j ⋅ wi, j is granted. The gain for 
each (i, j), is defined by: gain(i, j)(U) = gi, j = min(Pi, j , Qi, j ).   

We characterize the Nash-equilibria of the game of Def. 2: 

Theorem 3: Referring to the game of Def. 2, let gi, j be the 
granted rates. Profile U is a Nash equilibrium for this game if 
and only if the following three conditions hold: (a) The rates 
gi, j form a doubly stochastic matrix; (b) The finally granted 
utilities matrix ui, j = gi, j / wi, j is in max-min form; (c) The rate-
matrix g majorizes f = [min{pi,j , qi,j}], where pi,j = wi,j /Ri(w) 
and qi,j = wi,j /Cj(w), i, j = 1, ..., N. 

Proof: Necessity is proved as follows: (a) The proof has two 
steps: (1) If in matrix g for some i, j we have Ri(g) < 1 and 
Cj(g) < 1 then we examine two cases: Case 1.1: If gi, j = 0 then 
flow (i, j) can set (possibly reducing) its strategy Ui, j to a 
sufficiently small value δ > 0 so as to be served before other 
flows and thus be granted an amount δ of both input and output 
rate. So (i, j) can unilaterally increase its payoff from 0 to δ, 
therefore strategy profile U is not a Nash equilibrium point; 
Case 1.2: If gi, j > 0 then flow (i, j) has received the utility (thus 
rate also) it has required, and since by our hypothesis the rate 
for input i and the rate for output j have not been exhausted, 
flow (i, j) can alter its strategy Ui, j increasing it by a 
sufficiently small value δ > 0 so as to be still served (perhaps as 
the last one, either in row i or column j). Both input and output 
tentative rates (Pi, j , Qi, j) will be increased thus securing 
greater payoff. So again U is not Nash. (2) So if for some row i 
we have Ri(g) < 1 then by (1) we must have Cj(g) = 1 for all 
j = 1, ..., N, which gives: 1 1( ) ( )N N

i ji jR C N= == =∑ ∑w w . But 

since for all i = 1, ..., N, Ri(g) ≤ 1, all Ri(g)’s must be also equal 
to 1—a contradiction. A symmetric argument holds if for some 
j we have Cj(g) < 1. Thus g is a doubly stochastic matrix.  

(b) Let ui, j = gi, j / wi, j be the granted utilities and suppose 
that for some i, j and k, l the following two hold: ui, j < ui,l and 
ui, j < uk, j , i.e., ui, j is not the maximum either in the i-row or in 
the j-column. But in this case a sufficiently small increase in 
(i, j)’s strategy Ui, j can be granted (both for the input and 
output rates) because (i, j) cannot be the last served flow either 
in row i (since flow (i, l) has been granted a strictly greater 
rate) or in column j (since flow (k, j) has been granted a strictly 
greater rate). So (i, j) can unilaterally increase its payoff, 
therefore strategy profile U is not Nash. 

(c) Let gi, j < min{wi,j /Ri(w), wi,j /Cj(w)} for some i, j. Since 
by (a) above for all i = 1, ..., N we have Ri(g) = 1 and for all 
j = 1, ..., N, we have Cj(g) = 1, there must exist k, l so that gi, l > 
wi,l /Ri(w) and gk, j > wk,j /Cj(w). So granted rates gi, l and gk, j are 
both greater than gi, j ; yet by (b) this cannot happen. 

Sufficiency also holds: Let gi, j satisfy all three conditions of 
Theorem 3. Then the strategy profile U = [ gi, j / wi, j], 
i, j = 1, ..., N, is a Nash equilibrium point: By (c) all flows are 
granted a non-zero rate; by (b) they are the last served either in 
their row or column; finally, by (a) they exhaust either all the 
remaining input or all the remaining output rate. Thus no flow 

can unilaterally increase its payoff since: (1) decreasing its 
requirement (‘strategy’) does not help because it has already 
been granted what it requires; (2) increasing its requirement 
also does not help because it will not be served earlier, while it 
already exhausts either all input / output rate available to it.   

By Fact 1 and Theorem 3, our game has a unique Nash 
equilibrium point: the granted rates equal the WMMF-rates. 

B. The game approach: a short informal discussion 
The following two issues might be of interest to the reader: 

The first issue is: In an actually played game shouldn’t 
everyone involved be aware of it? We consider this issue as a 
delicate one: On the one hand the answer is ‘no’: As 
evolutionary game theory has revealed [14, 15] game theory 
can explain phenomena involving very simple organisms in 
which no rationality or even awareness is observed. On the 
other hand awareness is not something we ‘begin-with’, but 
something we ‘become-of’. After all, history has reserved a 
very distinctive role for scientific research in this latter 
process... The second issue is the difference between the 
‘fairness’ and the ‘game’ approach: In the latter case the 
designer observes the strategic game users are indeed—
knowingly of unknowingly—playing, computes its equilibrium 
points, and (possibly) claims: «This is the game you are 
involved in, this is provably the best each one of you can obtain 
from it, however selfishly each of you may act, and here is a 
device that obtains the same instead of you». Notice that 
instead of discussions about what is fair, or what could be a 
reasonable approximation to it, an exact optimum is offered. 
We see no guarantee that the two approaches will always 
coincide—as it happens in our case. 

IV. A RANDOMIZED SWITCH CONVERGING TO NASH 
Notice that, with a device cycle of just a few nano-seconds, 

even computing the WMMF-rates by running the algorithm of 
Section II.B is prohibitively time and hardware consuming. 
Instead we shall show (inspired by [2, 3]) that a suitably 
randomized device can converge to the WMMF-rates without 
pre-computing them. An attractive architecture for such a 
device is the ‘crossbar switch’  (implementable easily and 
cheaply on-chip [2, 16]). More specifically D is defined by 
what is mentioned in Section II.A, plus the following: (a) An 
N × N matrix of buffers of size B, i.e., variables bi,j which take 
values in [0, B]. If bi,j = 0 then the (i, j) buffer is called empty, 
else if bi,j = B it is called full. (b) N schedulers: one in

iS  for 

each row i, and one out
jS  for each column j. Schedulers run a 

scheduling algorithm returning a number in [0, N]. At each 
time-step for each i = 1, ..., N input-scheduler in

iS  selects a 
column l∈[0, N]. If l ≠ 0 and (i, l) is not full then a packet is 
transferred from input i to buffer (i, l) which is set to value 
bi,l +1. Output-schedulers out

jS  operate symmetrically. (Here 
we suppose that input comes from a set of input queues and 
backpressure is applied.). The scheduling algorithm of our 
device D will be an ‘oblivious repetitive sampling’: 

in
iS : if all buffers along row i are full return 0, else pick 
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j ∈ [1, N] with probability pi,j = wi,j / Ri(w) until a non-full 
buffer (i, j) is encountered.  

out
jS :  (symmetrically). 

Theorem 4: Let D be a crossbar switching device with buffers 
of size B, weight parameters w, and schedulers performing 
oblivious repetitive sampling, and let Rate(T, B) be the matrix 
of service rates ri, j achieved in T time-steps. The following 
holds: lim lim Rate( , )

T B
T B

→∞ →∞
= WMMF(w). 

Proof: Let C be the following finite Markov chain: A single 
buffer of size B, can be in one of B +1 states b ∈ [0, B]: at state 
b the buffer holds b packets. At discrete time-steps our buffer is 
(independently of its state and of other buffers) probed for 
input with probability p and if it is not full it receives a packet 
(otherwise the ‘chance is lost’). At the same step our buffer is 
similarly probed for output with probability q. We define the 
service-rate function s(⋅,⋅) as follows: 

s( p, q) = the rate of service achieved by our buffer if it is 
probed for input (resp. output) with probability p (resp. q).  (1)   

Let e( p, q) be the probability that the buffer will be empty, 
and let f ( p, q) be the probability that it will be full. A packet 
will be received from input with probability p(1−f ( p, q)) and 
will be delivered to output with probability (1−e( p, q)) q. 
These expressions must be equal to the service rate s( p, q) 
achieved by this buffer, so the following holds: 

 ( , ) [ ( , )] /f p q p s p q p= − ,   ( , ) [ ( , )] /e p q q s p q q= −  (2) 

If at row i we are probing buffer (i, j) for input with 
probability pi, j then at each time-step we are ‘visiting (at least 
once)’ this buffer with an actual probability ,i jp  no less than 
pi, j , since it may happen to probe (i, j) on our first probe or 
after some other buffer. Similarly we are output-probing (i, j) 
with probability ,i jq ≥ qi, j. Thus the service rate of (i, j) will 
actually be , ,( , )i j i js p q . The following hold for every (i, j): 

,1 ,1 ,1 , , , , ,
, ,

,1 ,

( , ) ( , )
... ...

1 1
i i i i j i N i N i N i j

i j i j
i i N

p f p q p p f p q p
p p

p p
= + + + +

− −
 (3) 

1, 1, 1, , , , , ,
, ,

1, ,

( , ) ( , )
... ...

1 1
j j j i j N j N j N j i j

i j i j
j N j

q e p q q q e p q q
q q

q q
= + + + +

− −
 (4) 

Equation (3) arises from the following considerations:  
We may probe buffer (i, j) on our first probe (with probability 
pi,j), or we may probe buffer (i, j) after some other buffer (i, k) 
(k = 1, ..., N,  k ≠ j) as follows: (1) Probe buffer (i, k) at least 
once (with probability ,i kp  by the definition of ,i kp ); (2) Find 

that buffer (i, k) is full (with probability , ,( , )i k i kf p q );  
(3) ‘Switch’ to buffer (i, j) (with the relative probability 
pi, j /(1−pi, k) ): notice that probing subsequently the same buffer 
(i, k) obliviously and repetitively m ≥ 0 times, and switching 
afterwards to (i, j), has total probability , ,0

m
i j i kmp p∞

= =∑  

, ,/(1 )i j i kp p− . Equation (4) arises analogously. 

Let P (or Q) be the space of all N × N matrices with 
elements in the range [0,1]. Probabilities ( , )p q  appear on both 
sides of  (3) and (4), so we have to view the above 2N 2 
equations as an operator F(⋅,⋅): P × Q → P × Q of which we 
seek a fixed point ( , )p q . Our next lemma gives a fixed point 
of F under the ideal circumstances: 

Lemma 5: Let the pair (p, q) ∈ P × Q arise from w by 
pi,j = wi,j /Ri(w) and qi,j = wi,j /Cj(w), and suppose that for all 
buffers the service-rate function s( x, y) = min{x, y}. Let 
( , )p q be the fixed point of the operator F. Then min ( , )p q = 
WMMF(w), i.e., the service rates achieved are the WMMF-rates. 

Proof: Using (2) we rewrite (3) and (4) as follows: 

( ) ( ),1 ,1 ,1 , , , , ,
, ,

,1 ,

( , ) ( , )
... ...

1 1
i i i i j i N i N i N i j

i j i j
i i N

p s p q p p s p q p
p p

p p
− −

= + + + +
− −

 (5) 

( ) ( )1, 1, 1, , , , , ,
, ,

1, ,

( , ) ( , )
... ...

1 1
j j j i j N j N j N j i j

i j i j
j N j

q s p q q q s p q q
q q

q q
− −

= + + + +
− −

 (6) 

 Suppose that s(⋅,⋅) = min{⋅,⋅} and let the WMMF-algorithm 
fix at his first step the j th column. Then the j th column is 
majorized: for i = 1, ..., N we have min{ pi,j , qi,j} = qi,j = the 
WMMF-rate for (i, j). 

For the fixed point ( , )p q  (to be defined stepwise) we have 

, , ,( )i j i j i jp p other terms p= + ≥ , and we can ‘fix’ ,i jq  to be 
equal to qi, j . Since finally we shall have 

, , , , ,min( , ) { , }i j i j i j i j i js p q p q q= = , we shall achieve along the 
j th column the same rates as those given to the flows by the 
WMMF-algorithm. We act symmetrically if WMMF-algorithm 
fixes at its first step the i th row. Passing these values to the rest 
of equations of F and ignoring in further rounds all fixed rows 
or columns suffices to prove, inductively, our Lemma.   

Lemma 6: For the afore-mentioned finite Markov chain C, 
lim ( , ) min( , )

B
s p q p q

→∞
=  for  all p, q ∈ [0, 1]. 

Proof: Define parameters λ and the vector VB by : 

( )
1 2 1

1 2 1

(1 ) , ,..., , , (1 )

(1 ) ... (1 )

B B

B B

q p

q p

λ λ λ λ

λ λ λ λ

−

−

− −
=

− + + + + + −
BV  

where λ = q(1–p)/[p(1–q)].Vector VB is an eigenvector of C 
with eigenvalue 1: this can be easily verified since the 
transition matrix of C has only 5 types of columns. Thus VB 
gives the steady-state probabilities for our Markov chain C. For 
q < p we get that the probability e(p, q) of the buffer to be 
empty (i.e., the 1st component of VB) tends to zero as B → ∞, 
so by (2) we get s(p, q)  →  q = min{p, q}. Symmetrically for 
p < q we get s(p, q)  →  p = min{p, q}.    

Proof of Theorem 4 (continued): By Lemma (6) s(⋅,⋅) tends to 
min{⋅,⋅} as T, B → ∞. Thus by Lemma (5) the actual probing 
probabilities for the buffers—given by the fixed point ( , )p q  of 
F—will satisfy in-the-limit min ( , )p q = WMMF(w). Since s(⋅,⋅) 
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tends to min{⋅,⋅} the achieved rates will be asymptotically 
equal to the WMMF-rates, thus establishing Theorem 4.  

Finally, since ‘oblivious repetitive sampling’ is too time 
consuming, we may turn to direct-sampling schedulers:  

Lemma 6: Let p be a probability distribution over elements 
[1, n] and let G ⊆ [1, n ] be the only ‘eligible’ ones. We select 
repetitively an element in [1, n] according to p until we select 
one in G. Let *kp  be the probability that element k is selected. 

Then * /k k ii Gp p p∈= ∑ for k ∈ G and * 0kp =  for k ∉ G. 

Proof: (Straightforward.)   

So, finally, the schedulers for our crossbar switch are: 
in
iS : Let the non-full buffers in row i be {(i, l): l ∈ G}, where 

G ⊆ [1, N ]. If G = ∅ return 0 else return column j ∈ G with 
probability *

, , ,/i j i j i ll Gp w w∈= ∑ . 

out
jS : (Symmetrically). 

V. EPILOGUE AND FURTHER WORK 
Concerning Section III all directions are open: a maximal 

target would be to apply it to all sorts of similar problems in 
network design. Concerning Section IV one important issue is 
left open: Random bits are not so cheap and several G/sec of 
them may be needed in modern large network switching 
fabrics. Can we apply instead some form of fast deterministic 
sampling [16, 17, 18, 19] for the same purpose?  
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