
Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 1 -

Nash Equilibria
as a Fundamental Issue Concerning Network-Switches Design

GEORGE F. GEORGAKOPOULOS

Dept. of Computer Science, University of Crete, Knossou Av., Heraklion, Greece, GR-71409
ggeo@csd.uoc.gr

Abstract. This work deals with an issue of foundational value concerning the design principles of
network switches: We view the ‘packet-switching problem’ (from N inputs towards N outputs) from
the perspective of game theory and we prove that the already proposed ‘fair solution’ of weighted
max-min fair service rates is the unique Nash equilibrium point of a natural strategic game: namely
that of an auction where throughput is granted by the principle ‘least-demanding first-served’.
Subsequently we prove that a crossbar switching device with suitably randomized schedulers
converges to this equilibrium point (and, moreover, without the need to pre-compute it).

1 Introduction
In large networks, since connecting directly each node with each other is unaffordable, switching devices
are necessarily used in order to route information from many sources to many destinations. Research in
this area may investigate materials, fabrication processes, designs or architectures in order to decrease
production cost and achieve reliability, efficiency, etc. But since the raison d’ être of a manufactured
digital device is to be incorporated into a system and offer a function within this system, the engineering
community faces also a more theoretically oriented issue: given some application context, which are the
‘proper’ functions which we should attempt to implement by our devices? And how can we be convinced
that we have succeeded so?

In the ‘switching problem’, specifically, data packets from N sources are directed through a single
network node towards N destinations. A switching device in this node has to be assigned the task to
handle the relevant traffic control. The question is: on what principle(s) should our device operate?

On this question various active themes of research converge: designs, architectures, analyses,
simulations, experiments, etc. (Among a quite extensive literature various interesting starting points, more
closely related to this work, are [1, 2, 3, 4, 5, 6, 7, 8, 9].) In the literature one frequently meets ‘fairness’
or ‘quality of service’ as guiding principles regarding the functional design of a switching device.
(The former principle is usually interpreted as offering to the ‘users’ equal shares of service and the latter
as offering at least a minimum amount of service.) But terms like ‘fairness’ or ‘quality’—however useful
they may sound for everyday reference—are not, to the author’s opinion, appropriate for foundational
purposes: We should make a ‘general theory of fairness’, or ‘of quality’ available to us for this purpose...

Instead, in this work we follow and support another approach: namely that game theory—a deep and
rich discipline—should be preferred as a tool for analyzing situations, like network design and operation,
in which agents meet and compete for receiving a service.

From this perspective we offer in this work two main results regarding our subject:
(1) That under the conditions switching devices are used, they ‘should’ operate according to the so

called ‘weighted max-min fairness’ principle since, as it turns out, this principle corresponds to the
unique Nash equilibrium of a fairly natural non-cooperative strategic auction game.

(2) That this function (i.e., offering ‘weighted max-min fairness’) can indeed be attained by at least one

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 2 -

implementable device—in our case this can be a crossbar switch with randomized schedulers.
If something is of interest in the afore-mentioned results is that, in the practically rather important case

we here deal with (network switches), we are able to answer—on firm foundational ground—both crucial
issues: (a) Which is the proper function to be offered; and (b) that a specific implementable device does
indeed offer this prescribed function.

This work is organized as follows: In Section 2 we review the ‘weighted max-min fairness’ idea
referring to an abstract switching device. In Section 3 we review the basic definitions for non-cooperative
strategic games, in Section 3.1 we present our switching game and prove that its unique Nash equilibrium
coincides with ‘weighted max-min fairness’, and in Section 3.2 we digress shortly into an informal
discussion about the results of Section 3.1. In Section 4 we prove that a crossbar switching device with
suitably randomized schedulers indeed attains the afore-mentioned Nash equilibrium. Section 5 is an
epilogue with some comments for further work.

2 The N × N switching problem and a ‘fair’ solution for it

2.1 An abstract switching device
Our switching device D is abstractly defined by the following:
- A size N ≥ 2.
- N inputs i = 1, ..., N, and N outputs j = 1, ..., N.
- An N × N matrix of positive weight parameters wi,j. (We can avoid zero weights by replacing them

with a sufficiently small value ε > 0.)
The intended meaning of the above is the following:

- Each pair (i, j) ∈ [1, Ν] × [1, Ν] is a flow (of data packets) entering through input i and destined to
leave through output j.

- Device D operates at discrete time-steps, t = 1,2,3, At each time-step a subset M ⊆ [1, Ν] × [1, Ν]
of the flows is served , i.e., for each (i, j) ∈ M a packet belonging to flow (i, j) is either received from
input i, or directed to output j, or both.

- During T time-steps, for each (i, j) let si,j be the number of data packets of flow (i, j) transferred from
input i to output j. If our device D has devoted pi,j

 T units of time to receive input from flow (i, j)
then we say that (i, j) has been served with input rate pi,j. Analogously if our D has devoted qi,j

 T
units of time to direct flow (i, j) to output j then we say that (i, j) has been served with output rate qi,j.
Assuming that a steady state is reached as T → ∞, flow (i, j) is served with rate ri,j = lim

T→∞
si,j.

- The ratio ui, j = ri, j / wi, j is said to be the utility granted to flow (i, j).

To continue, the following two definitions will be useful: For any n × n matrix a we define Ri(a) as
the sum ,1

n
i jj

a
=∑ of the elements of the i th row. Similarly we define Cj(a) as the sum ,1

n
i ji

a
=∑ of

the elements of the j th column.

- The role of the weights w = [wi,j], i, j = 1, ..., N, is slightly more complex: For every flow (i, j) its
weight wi,j is a measure of its priority depending in whatever way on the type of this flow. In
principle we would like the service rate ri,j of each flow (i, j) to be proportional to its weight wi,j ,
i, j = 1, ..., N. This is achievable along a row of matrix w by setting ri,j = wi,j /Ri(w), or along a

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 3 -

column of w by setting ri,j = wi,j /Cj(w)— yet this is not always achievable for all i, j without
sacrificing some throughput of D.

2.2 The WMMF rates for servicing N × N flows
In an attempt to find a compromise for the issue mentioned in the previous paragraph, it has been
proposed that the rates of service for the N × N flows should be granted according to what is called the
‘weighted max-min fairness’ (WMMF) principle [1, 8]: the rate granted to any flow (i, j) is ‘maximized’ in
the sense that it cannot be further increased unless the rate of some other flow receiving equal or less
utility is decreased.

We present below a simple algorithm which given a matrix of weights w returns the
matrix r = [ri,j] = WMMF(w) of the WMMF-rates w.r.t. w. The algorithm proceeds in rounds:
We characterize each row or column of w as ‘fixed’ or not—initially none of the rows or columns is
fixed—and at each round we pay attention only to the non-fixed rows or columns. An element (i, j) is said
to be fixed if either row i or column j is fixed. For each row i let Fi,0 denote the sum of the rates ri,j
assigned to fixed elements along i, and let Wi,0 denote the sum of the weights of the non-fixed elements
along i. Analogously, for each column j let F0, j denote the sum of the rates ri,j assigned to fixed elements
along j, and let W0, j denote the sum of the weights of the non-fixed elements along j. We use N variables
ρi (one for each row i), and N variables κj (one for each column j). The following invariant is maintained:

‘for every row i: ρi = (1−Fi,0)/ Wi,0 and for every column j: κj = (1−F0, j)/ W0, j ’

The WMMF-algorithm is:
 Initialize Wi,0←Ri(w), Fi,0←0, ρi←1/Ri(w) and W0,j←Cj(w), F0,j←0, κj←1/Cj(w);

 Repeat

 Find row i with minimum ρi among non-fixed rows
 Find column j with minimum κj among non-fixed columns
 If ρi < κj then
 { For (i,j)=non-fixed elements of row i set ui,j ← ρi; ‘Fix’ row i }
 Else

 { For (i,j)=non-fixed elements of column j set ui,j ← κj; ‘Fix’ column j }
 Update Wi,0, Fi,0, ρi and W0,j, F0,j, κj;
 Until all elements have been fixed;

 For all (i,j) {set the rate ri,j for flow (i,j) to ui,j ⋅ wi,j}

Notice that in the above algorithm the ‘remaining throughput’ 1−Fi,0 for row i, or 1−F0, j for column j,
is divided among the remaining non-fixed flows along the row i or column j to be fixed, according to their
relative weights: ri, j = (1−Fi, 0) wi, j /Wi, 0 , or ri, j = (1−F0, j) wi, j /W0, j .

We can describe what the WMMF-algorithm achieves with the help of the following: A matrix a = [ai, j]
where ai, j ≥ 0, i, j = 1, ..., N , is said to be doubly stochastic iff Ri(a) = 1 for all i = 1, ..., N, and Cj(a) = 1
for all j = 1, ..., N. Matrix a is said to be in max-min form iff every element ai, j is the maximum element
either in row i or in column j. Matrix a is said to majorize matrix b iff for all i, j we have ai, j ≥ bi, j .

Fact 1: The WMMF-algorithm returns a matrix r of rates of service for which the following three hold:

(a) throughput is exhausted, i.e., r is a doubly stochastic matrix.
(b) the rate granted to every flow (i, j) is maximized in a ‘fair sense’ in the sense that it cannot be

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 4 -

increased unless the rate of some other flow with equal or less utility is decreased, or
equivalently (as it is easily seen) the utility matrix u is in max-min form.

(c) every flow is granted a rate at least as large as its possible ‘fair’ share along its row and column,
i.e., the matrix r majorizes the matrix f = [min{pi,j , qi,j}], where pi,j = wi,j /Ri(w) and
qi,j = wi,j /Cj(w), i, j = 1, ..., N.

The converse is also true: if a matrix r satisfies conditions (a) and (b) (from which (c) follows), then r
consists of the WMMF-rates.
Proof: The first part consists of ‘folklore’ facts about the WMMF-algorithm, which can be derived from it
in a straightforward manner. Notice that condition (c) follows from (a) and (b): If (c) does not hold then
for some i, j we must have ri,j < wi,j /Ri(w) and ri,j < wi,j /Cj(w). Since by (a) we have for all i = 1, ..., N
Ri(r) = 1, there must exist a column l such that ri,l > wi,l /Ri(w). Similarly there must exist a row k such
rk,j > wk,j /Cj(w). Thus ,i lu and ,k ju are both greater than ui, j ; yet by (b) this cannot happen.

To prove the converse suppose that matrix r satisfies conditions (a) and (b). Let ui, j be the minimum
utility appearing in u. By condition (b) ui, j is the maximum element either in row i or in column j, so the
utility must be constant either along row i or along column j. Let us suppose that this holds along row i
(columns are treated symmetrically). By (a) we get that for j = 1, ..., N, ui, j = 1/Ri(w). Along row k
(k = 1, ..., N) we cannot have rk,l > wk,l /Rk(w) for all l = 1, ..., N, because then we would have Rk(w) > 1
contrary to condition (a). So for some l we must have 1/Ri(w) = ui, j ≤ uk,l ≤ 1/Rk(w), for k = 1, ..., N.
Similarly we get 1/Ri(w) ≤ 1/Cl(w), for l = 1, ..., N. Thus the minimum utility ui, j equals the minimum of
ρk = 1/Rk(w), k = 1, ..., N and of κl = 1/Cl(w), l = 1, ..., N. Therefore along the i th row the utility
ui, j = 1/Ri(w) corresponding to ri, j, j = 1, ..., N, is the same as that computed by the WMMF-algorithm: in
this algorithm we have initially ρk = 1/Rk(w) and κl = 1/Cl(w) and the minimum (here: ρi) of these is
selected to become the utility along the corresponding row or column (here: i th row). It is straightforward
to proceed inductively by ‘fixing’ i th row and mimicking the steps of the WMMF-algorithm.

However reasonable one may consider these WMMF-rates to be, adopting such a device means that a

specific way of sharing the common resource of switching time is enforced to the flows by the ‘authority’
of this device (or its designer). Thus an issue can be raised whether (or how, when, why, etc.) such an
enforcement is justified. On a high level we could say that WMMF-algorithm solves the problem of
assigning service rates to the N × N flows, but this is uninformative since any algorithm which returns any
matrix r such that Ri(r) ≤ 1, Cj(r) ≤ 1, i, j = 1, ..., N does the same. On a low level we could say that the
WMMF-algorithm computes an WMMF-matrix, but this is a void tautology. We do of course feel intuitively
that the WMMF-algorithm ‘tries’ and, in some sense, succeeds to be ‘fair’; yet this is a simple every-day
language statement, and certainly not a mathematical characterization.

Notice that we face here a sort of reverse engineering issue: a solution is suggested (a switching fabric
or, at least, a relevant algorithm, namely WMMF)—yet what we are seemingly lacking is the problem it
solves: a situation quite suggestive of a fiercely advancing technological era. (This state of affairs is met
again in other cases: see [10] about the TCP/IP protocol.) What we need here is a well posed problem,
defined independently and irrespectively of the WMMF-algorithm, yet one of which this algorithm is the
solution. In the next section we describe a natural strategic ‘switching’ game and we show that the
WMMF-rates correspond to a Nash equilibrium point for it.

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 5 -

3 Network switching as a strategic game
Let us try to figure out what a network switch should achieve in order to ‘satisfy’ the flows passing
through it. We shall view the situation as a strategic game with the N × N flows as its players. The game
will be an ‘auction’ where a limited common resource—the operating time of our device—is to be
granted to the players. Our game can be supposed to be a non-cooperative one simply because the
breathtaking speed at which switching fabrics are able and expected to be operated, renders any
‘cooperation’ a prohibitively time-consuming luxury.

For non-cooperative games Nash equilibrium is a time-honoured concept, so let us recall the basic
notions [3]: let k = 1, ..., m be the m players of our game. Each player k has a set of available strategies Sk
to follow. A vector of strategies (s1, ..., sm) where sk ∈ Sk, k = 1, ..., m is a strategy profile. Every strategy
profile is supposed to determine completely the result of the game. Given any strategy profile
S ∈ S1 × S2 × ... × Sm, the game is played, a final outcome is reached, and each player k enjoys a gain
(or payoff) defined by a function gaink(S): S1 × S2 × ... × Sm → R. The following notation will be useful:
For any strategy profile S, any player k = 1, ..., m, and any strategy s ∈ Sk, we denote by S ← [k, s] the
strategy profile obtained by replacing in S the strategy sk of k th player by s. A Nash equilibrium point is a
strategy profile S ∗ such that no player can increase its payoff by modifying S ∗ unilaterally (here is where
‘non-cooperativeness’ enters the scene) i.e.:

for all players k = 1, ..., m and all strategies of k, s ∈ Sk: gaink(S ∗ ← [k, s]) ≤ gaink(S ∗)

Thus our question takes the following form: is there a switching game defined independently of any
specific ‘device’ and played by the N × N flows in a network node, such that the WMMF-rates form a Nash
equilibrium point of it? If yes, then achieving this equilibrium offers true service, welcomed by the
players involved, since it is nothing else but the best they can obtain by themselves ‘under-the-
circumstances’. In the next section we answer this question in the affirmative.

3.1 Defining the ‘throughput game’ and characterizing its Nash equilibria
Our switching game is defined as follows:
Definition 2 (throughput-auction game):
(a) We have N × N players, each corresponding to a flow (i, j), i, j = 1, ..., N. Each player (flow) is

characterized by a weight ,i jw , i, j = 1, ..., N (the highest the weight, the highest its ‘priority’).
(b) The strategy of each player (i, j) is a positive real number, Ui, j ∈ R, (to be interpreted as the required

utility, expressing that flow (i, j) ‘requires’ a rate of service equal to Ui, j ⋅ wi, j). Thus a strategy profile
is an N × N matrix of required utilities U.

(c) the game is played as follows: for each input i, the required utilities Ui, j, j = 1, ..., N, are examined in
increasing order and are granted a tentative input rate Pi, j = Ui, j ⋅ wi, j as long as the total rate granted
for input i remains ≤ 1. Flows for which the remaining input rate is not sufficient to cover what they
require receive zero input rate Pi, j = 0. Similarly for each output j, utilities Ui, j, i = 1, ..., N, are
examined in increasing order and are granted a tentative output rate Qi, j = Ui, j ⋅ wi, j as long as the
total rate granted remains ≤ 1. Remaining flows receive zero output rate Qi, j = 0. The gain for each
flow (i, j), i, j = 1, ..., N, is given by: gain(i, j)(U) = gi, j = min(Pi, j , Qi, j). (Clearly, service rates
cannot be greater than corresponding input or output rates.)

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 6 -

The following theorem characterizes the Nash equilibria for the game of Def. 2:
Theorem 3: Referring to the game of Def. 2, let gi, j be the granted rates, i.e., the payoff for each player
(i, j) due to a strategy profile U = [Ui, j], i, j = 1, ..., N. Profile U is a Nash equilibrium for this game if and
only if the following three conditions hold:
(a) The rates gi, j form a doubly stochastic matrix.
(b) The finally granted utilities matrix ui, j = gi, j / wi, j is in max-min form.
(c) The rate-matrix g majorizes the matrix f = [min{pi,j , qi,j}], where pi,j = wi,j /Ri(w) and qi,j = wi,j /Cj(w),

i, j = 1, ..., N.
Proof: Necessity is proved as follows:
 (a) The proof has two steps:

1. If in matrix g for some i, j we have Ri(g) < 1 and Cj(g) < 1 then we examine two cases:
1.1. if gi, j = 0 then flow (i, j) can set (possibly reducing) its strategy Ui, j to a sufficiently small

value δ > 0 so as to be served before other flows and thus be granted an amount δ of both
input and output rate. So (i, j) can unilaterally increase its payoff from 0 to δ, therefore
strategy profile U is not a Nash equilibrium point.

1.2. if gi, j > 0 then flow (i, j) has received the utility (thus rate also) it has required, and since by
our hypothesis the rate for input i and the rate for output j have not been exhausted, flow (i, j)
can alter its strategy Ui, j increasing it by a sufficiently small value δ > 0 so as to be still served
(perhaps as the last one, either in row i or column j). Both input and output tentative rates
(Pi, j , Qi, j) will be increased thus securing greater payoff. So again U is not Nash.

2. So if for some row i we have Ri(g) < 1 then by (1.) above we must have Cj(g) = 1 for all
j = 1, ..., N, which gives:

1 1
() ()N N

i ji j
R C N

= =
= =∑ ∑w w . But since for all i = 1, ..., N, Ri(g) ≤ 1,

all Ri(g)’s must be also equal to 1—a contradiction. A symmetric argument holds if for some j we
have Cj(g) < 1.

Thus, finally, g is a doubly stochastic matrix.
 (b) Let ui, j = gi, j / wi, j be the granted utilities and suppose that for some i, j and k, l the following two
hold: ui, j < ui,l and ui, j < uk, j , i.e., ui, j is not the maximum either in the i-row or in the j-column. But in this
case a sufficiently small increase in (i, j)’s strategy Ui, j can be granted (both for the input and output
rates) because (i, j) cannot be the last served flow either in row i (since flow (i, l) has been granted a
strictly greater rate) or in column j (since flow (k, j) has been granted a strictly greater rate). So (i, j) can
unilaterally increase its payoff, therefore strategy profile U is not Nash.
 (c) Let gi, j < min{wi,j /Ri(w), wi,j /Cj(w)} for some i, j. Since by (a) above for all i = 1, ..., N we have
Ri(g) = 1 and for all j = 1, ..., N, we have Cj(g) = 1, there must exist k, l so that gi, l > wi,l /Ri(w) and
gk, j > wk,j /Cj(w). So granted rates gi, l and gk, j are both greater than gi, j ; yet by (b) this cannot happen.

Sufficiency also holds: Let gi, j satisfy all three conditions of Theorem 3. Then the strategy profile

U = [gi, j / wi, j], i, j = 1, ..., N, is a Nash equilibrium point: By (c) all flows are granted a non-zero rate; by
(b) they are the last served either in their row or column; finally, by (a) they exhaust either all the
remaining input or all the remaining output rate. Thus no flow can unilaterally increase its payoff since:
(1) decreasing its requirement (‘strategy’) does not help because it has already been granted what it
requires, and asking for less makes no sense; (2) increasing its requirement also does not help because it
will not be served earlier, while it already exhausts either all input, or all output, rate available to it.

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 7 -

Combining in the obvious way Fact 1 and Theorem 3, we get that our switching game has a unique
Nash equilibrium point, the granted rates of which are those computed by the WMMF-algorithm.

Unused throughput is a waste of time, and ‘time is money’—if not for all, at least for communication
companies, either private or public. In this latter context our result is to be interpreted as a sound
implication: if throughput is to be exhausted and you have to offer your best, then by Nash you cannot do
otherwise but strive for the WMMF-rates. Except if someone can change the (rules of the) game...

3.2 An informal discussion about the game-theoretical approach
We have shown that a natural strategic game leads to the WMMF-rates of service in switching devices. The
auction-principle underlying the suggested game is a (weighted) ‘least-demanding first-served’ principle,
and indeed it seems quite difficult to the author to imagine a straighter rule for allocating a limited
common and/or public resource. We devote below few paragraphs to discussing two issues that may be of
interest to the reader:

The first issue is a reasonable question: Do we have here an actually played game? In real life each
flow (i, j) represents two persons (or systems, made by and for persons) communicating by transferring
information from i to j. If persons are in fact the players, shouldn’t everyone involved be already aware of
the game? We consider this issue as a delicate one: On the one hand the answer is, by now, ‘no’: As
evolutionary game theory has revealed [11, 12] game theory can explain phenomena involving very
simple organisms in which no rationality or even awareness is observed. On the other hand awareness is
usually not something we ‘begin-with’, but something we ‘become-of’. After all, history has reserved a
very distinctive role for scientific research in this latter process...

The second issue is the clarification of the difference—of foundational value—between the fairness
and the game-equilibrium approach: In the former the designer invents a notion of fairness (in our case
‘equal utilities’) and designs a system or device that deviates from it the least possible (in our case: the
‘WMMF-rates’). Notice that in our case the WMMF-rates do not correspond to equal utilities: utilities are
finally granted unequally; yet this is excused by an appeal to the principle of ‘exhausting throughput’. But
in what way is this latter principle connected to ‘fairness’? To dramatize this state of affairs let us imagine
the designer appearing in front of the users and claiming: «This is what I have designed. You have to
accept it because it is fair and because you must not act selfishly». But in this scenario nobody never asks
the users nothing. For example, what could be the answer to an objecting user: «So you offer to my
market-opponent higher utility in the name of throughput—but why must I consider this as ‘fair’ to me?».

In the latter case (of obtaining a game-equilibrium) the designer observes the strategic game users
are indeed—knowingly of unknowingly—playing and computes its equilibrium points. (In our case, this
game is an auction for throughput, in which the least demanding user is served first.) Subsequently she
designs a system or device that offers such an equilibrium, she reappears in front of the users and says:
«This is the game you are involved in, and this is provably the best each one of you can obtain from it,
however selfishly each of you may act. The device I have invented obtains the same instead of you». No
discussions about what is fair, or, moreover, what could be a reasonable approximation to it. What is
offered instead is an exact optimum—something that no one can improve for itself. The complaining user
can still stand up and say: «Well, I don’t like this game after all... », but now there is an answer:
«We respect your objections, but the game is your choice, not ours. If you change the game we shall
(try to) provide you with the new corresponding solution».

These two described approaches, miraculously (?) coincide in the case of the WMMF-rates for network

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 8 -

switches. However relieving this may be, we see no guarantee that this will be always the case.

4 A randomized switch converging to the Nash equilibrium
We now know, by the discussion in Sections 2 and 3, what rates of service our switching device D ‘must’
offer (the Nash-rates), and we know how to compute these rates (the WMMF-algorithm). But our device
must be operational, i.e., achieve actually this rates. An attractive architecture for such a device is the
‘crossbar switch’: N inputs are connected to N outputs through an N × N grid of buffers of size B
(implementable easily and cheaply on-chip [1]). Data directed from input i to output j can be stored
temporalily, if needed, to buffer (i, j).

More specifically D is defined by what is mentioned in Section 2.1, plus the following:
- An N × N matrix of buffers of size B, i.e., variables bi,j which take values in [0, B]. If bi,j = 0 then

the (i, j) buffer is called empty, else if bi,j = B it is called full.
- N schedulers: one in

iS for each row i, and one out
jS for each column j. Schedulers run a

scheduling algorithm (normally the same for all i and j, yet applied on different data). Each
scheduler returns a number in [0, N].

The intended meaning of the above is the following:
- Device D operates at discrete time-steps, t = 1, 2, 3, At each time-step for each i = 1, ..., N

input-scheduler in
iS selects a column l∈[0, N]. If l ≠ 0 and (i, l) is not full then a packet is

transferred from input i to buffer (i, l) which is set to value bi,l +1. Similarly for each j = 1, ..., N
output-scheduler out

jS selects a row k∈[0, N]. If k ≠ 0 and (k, j) is not empty then a packet is
transferred from buffer (k, j) to output j and bk, j is set to value bk, j −1.

Thus we have to design practically implementable schedulers in

iS and out
jS capable of obtaining the

Nash equilibrium point of Section 3.1. Notice that, with a device cycle of just a few nano-seconds, even
computing the WMMF-rates by running the algorithm of Section 2.2 is prohibitively time and hardware
consuming. Instead we shall show (inspired by [1]) that a suitably randomized set of schedulers can make
our device converge to the WMMF-rates without pre-computing them.

Another view of the WMMF-algorithm of Section 2.2 is the following: Given a weight-matrix w, a pair
of matrices can be defined by pi,j = wi,j /Ri(w) and qi,j = wi,j /Cj(w), i, j = 1, ..., N. In such a matrix-pair
(p, q) a majorized column j is one such that pi,j ≥ qi,j for all rows i. Similarly a majorized row i is one such
that qi,j ≥ pi,j for all columns. In any such pair of matrices, at least one majorized row or column will
always exist: Setting V = {Rk(w): k = 1, ..., N } ∪ {Cl(w): l = 1, ..., N } then either the row i for which
Ri(w) = max V, or the column j for which Cj(w) = max V, is easily seen to be majorized.

If column j is majorized then we fix for each row i = 1, ..., N the rate ri,j of flow (i, j) by setting
ri,j = qi,j ≤ pi,j , and distribute the excess-rate (pi,j − qi,j) to the other flows (i, l) l = 1, ..., N, l ≠ j, in the
same row, proportionally to their weights wi,l. Column j is further ignored. We act analogously if we have
a majorized row. If we repeat the above procedure until all rows and all columns have been examined, we
shall have obtained the WMMF-rates.

The scheduling algorithm of our device D is the following oblivious repetitive sampling:
in
iS : pick j ∈ [1, N] with probability pi,j = wi,j / Ri(w) until a non-full buffer (i, j) is encountered.
out
jS : pick i ∈ [1, N] with probability qi,j = wi,j / Cj(w) until a non-empty buffer (i, j) is encountered.

We shall prove the following:

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 9 -

Theorem 4: Let D be a crossbar switching device with buffers of size B, weight parameters w, and
schedulers performing oblivious repetitive sampling. Then lim lim Rate(,)

T B
T B

→∞ →∞
= WMMF(w), where

Rate(T, B) is the matrix of service rates si, j achieved in T time-steps.
Proof: In order to prove Theorem 4 we have to do some preliminary work. Let C be the following finite
Markov chain: We consider one buffer of size B, which can be in one of B +1 states b ∈ [0, B] (at state b
the buffer holds b packets). At discrete time-steps our buffer is probed for input with probability p and if
it is not full it receives a packet (otherwise the ‘chance is lost’). At the same step our buffer is also probed
for output with probability q and if it is not empty it delivers a packet. Input an output probing is
performed independently of each other and independently of the state of our buffer. We give below the
transition matrix for this Markov chain for B = 4, (expression in row i = 0, ..., 4 and column j = 0, ..., 4
denotes the probability for the buffer to pass from state i to that state j):

0 1 2 3 4

0 (1) 0 0 0
1 (1) (1)(1) (1) 0 0
2 0 (1) (1)(1) (1) 0
3 0 0 (1) (1)(1) (1)
4 0 0 0 (1)

p p

p q pq p q p q

p q pq p q p q

p q pq p q p q

q q

−

− + − − −

− + − − −

− + − − −

−

 
 
 
 
 
 
 
 

Consider the steady state of this Markov chain. We define the service-rate function s(⋅,⋅) as follows:

 s(p, q) = the rate of service achieved by our buffer if it is probed for input with probability p,

 and it is probed for output with probability q.
(1)

 Let e(p, q) be the probability that the buffer will be empty, and let f (p, q) be the probability that it
will be full. Since receiving and delivering are made independently of each other and independently of the
state of our buffer, a packet will be received from input with probability p (1−f (p, q)) and will be
delivered to output with probability (1− e(p, q)) q. These expressions must be equal to the service rate
s(p, q) achieved by this buffer (since what comes-in eventually gets-out of a finite buffer). So the
following holds for e(p, q) and f-(p, q):

(,)
(,)

p s p q
f p q

p
−

= , and
(,)

(,)
q s p q

e p q
q

−
= (2)

With the help of the service rate s(⋅,⋅) we can formulate a set of equations describing how the
schedulers of our abstract device D decide which row or column to choose. If at row i we are probing
buffer (i, j) for input with probability pi, j then at each time-step we are ‘visiting (at least once)’ this buffer
with an actual probability ,i jp no less than pi, j , since it may happen to probe (i, j) on our first probe or
after some other buffer. Similarly we are output-probing (i, j) with probability ,i jq ≥ qi, j. Thus the service
rate of (i, j) will actually be , ,(,)i j i js p q . The following two equations hold for every (i, j):

, ,
, ,1 ,1 ,1 , , , ,

,1 ,

(,) (,)
1 1

i j i j
i j i i i i j i N i N i N

i i N

p p
p p f p q p p f p q

p p
= + + + +

− −
 (3)

, ,
, 1, 1, 1, , , , ,

1, ,

(,) (,)
1 1

i j i j
i j j j j i j N j N j N j

j N j

q q
q q e p q q q e p q

q q
= + + + +

− −
 (4)

Eq. (3) arises from the following considerations:

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 10 -

- We may probe buffer (i, j) on our first probe (with probability pi,j) or:
- We may probe buffer (i, j) after some other buffer (i, k) (k = 1, ..., N, k ≠ j) as follows:

- Probe buffer (i, k) at least once (with probability ,i kp by the definition of ,i kp),
- Find that buffer (i, k) is full (with probability , ,(,)i k i kf p q),
- ‘Switch’ to buffer (i, j) (with the relative probability pi, j /(1− pi, k): notice that probing

subsequently the same buffer (i, k) obliviously and repetitively m ≥ 0 times, and switching
afterwards to (i, j), has total probability , , ,0, /(1)m

i k i j i kmi j p p pp ∞

=
= −∑) .

To get each term in Eq. (3) we multiply the relevant probabilities because the sampling steps are made
independently of each other and independently of the state of our buffer, and we add all terms since they
refer to disjoint sets of probing sequences. Notice that from Eq. (3) we get (), , ,1

1 (,) 1N
i j i j i jj

p f p q
=

− =∑
(as expected). Eq. (4) arises similarly.

Let P (resp. Q) be the space of all N × N matrices with elements in the range [0,1]. Probabilities

(,)p q appear on both sides of Eq. (3) and (4), so we have to view the above 2N 2 equations as an operator
F(⋅,⋅): P × Q → P × Q of which we seek a fixed point (,)p q . Our next lemma gives a fixed point of F
under the ideal circumstances:
Lemma 5: Let the pair (p, q) ∈ P × Q arise from w by pi,j = wi,j /Ri(w) and qi,j = wi,j /Cj(w), and suppose
that for all buffers the service-rate function s(x, y) = min{x, y}. Let (,)p q be the fixed point of the
operator F. Then min (,)p q = WMMF(w), i.e., the service rates achieved are the WMMF-rates.
Proof: Using Eq. (2) we rewrite Eq. (3) and (4) as follows:

() (), ,
, ,1 ,1 ,1 , , , ,

,1 ,

(,) (,)
1 1

i j i j
i j i i i i j i N i N i N

i i N

p p
p p s p q p p s p q

p p
= − + + + + −

− −
 (5)

() (), ,
, 1, 1, 1, , , , ,

1, ,

(,) (,)
1 1

i j i j
i j j j j i j N j N j N j

j N j

q q
q q s p q q q s p q

q q
= − + + + + −

− −
 (6)

Suppose that s(⋅,⋅) = min{⋅,⋅} and let the WMMF-algorithm fix at his first step the j th column. Then the
j th column is majorized: for i = 1, ..., N we have min{ pi,j , qi,j} = qi,j = the WMMF-rate for (i, j).

For the fixed point (,)p q (to be defined stepwise) we have , , ,()i j i j i jp p other terms p= + ≥ , and we
can ‘fix’ ,i jq to be equal to qi, j . Since finally we shall have , , , , ,min(,) { , }i j i j i j i j i js p q p q q= = , we shall
achieve along the j th column the same rates as those given to the flows by the WMMF-algorithm. We act
symmetrically if WMMF-algorithm fixes at its first step the i th row.

A straightforward induction—passing these fixed values to the rest of equations of F and ignoring in
further rounds all fixed rows or columns—suffices to prove our lemma.

The lemma below states that the service-rate function s(⋅,⋅) of a single buffer (recall the finite Markov

chain C that we have already defined) behaves ‘in-the-limit’ as desired:
Lemma 6: For the afore-mentioned finite Markov chain C, lim (,) min(,)

B
s p q p q

→∞
= for all p, q ∈ [0, 1].

Proof: Define parameters λ and the vector VB by:

(1)
(1)

q p
p q

λ
−

=
−

, ()
1 2 1

1 , ,..., , ,1
1 1 1 1

B B

q
p p p p

λ λ λ λ
σ

−

= −
− − − −

 
 
 

BV (7)

Vector VB is an eigenvector of C with eigenvalue 1, where σ is just a scale factor selected to make the

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 11 -

sum of the components equal to 1: this can be easily verified since the transition matrix of C has only 5
types of columns. For example for the 1st component of VB we have to verify that:

() () ()
1

?1 , ,, 1 (1) (1) ... 0 1
1 1 1

B B B

q p p q q
p p p

λ λ λ−
Τ

− ⋅ − − = −
− − −

 
 
 

, (8)

which is indeed the case, etc. Thus VB gives indeed the steady-state probabilities for our Markov chain C.
For q < p we get that the probability e(p, q) of the buffer to be empty (i.e., the 1st component of VB)

tends to zero as B → ∞, so by Eq. (2) we get (,) min{ , }s p q q p q→ = . If p < q we get similarly that the
probability f (p, q) of the buffer to be full (i.e., the last component VB) tends to zero as B → ∞, so again
by Eq. (2) we get (,) min{ , }s p q p p q→ = .

Proof of Theorem 4 (continued): By Lemma (6) s(⋅,⋅) tends to min{⋅,⋅} as T, B → ∞. Thus by
Lemma (5) the actual probing probabilies for the buffers—given by the fixed point (,)p q of F—will
satisfy in-the-limit min (,)p q = WMMF(w). Since s(⋅,⋅) tends to min{⋅,⋅} the achieved rates will be
asymptotically equal to the WMMF-rates. This establishes Theorem 4, by appealing to the continuity of the
fixed point of F w.r.t. to s(⋅,⋅) (a technical fact, the proof of which is omitted).

Yet our probes, for the sake of being independent, are too oblivious (we may again and again probe

for input an already probed full buffer) and too repetitive (sampling repetitively, until we find an eligible
buffer, may take an unbounded amount of time). Thus our schedulers are not suitable for an actual fast
implementation unless we modify them so that they sample directly only eligible buffers. The following
simple fact allows us to do so:

Lemma 6: Let p be a probability distribution over elements [1, n] and let a subset G ⊆ [1, n] of them be
the only ‘eligible’ ones. We select repetitively an element in [1, n] according to p until we select one in G.
Let *

kp be the probability that element k is selected. Then this probability equals that of selecting directly
an eligible element w.r.t. the relative probability distribution, i.e., * /k k ii Gp p p

∈
= ∑ for k ∈ G and

* 0kp = for k ∉ G.
Proof: (Straightforward.)

So, finally, the randomized schedulers for our crossbar switch are:

in
iS : Let the non-full buffers in row i be {(i, l): l ∈ G}, where G ⊆ [1, N].

If G = ∅ return 0 else return column j ∈ G with probability *
, , ,/i j i j i ll Gp w w

∈
= ∑ .

out
jS : Let the non-empty buffers in column j be {(k, j): k ∈ G}, where G ⊆ [1, N].

If G = ∅ return 0 else return row i ∈ G with probability *
, , ,/i j i j k jk Gq w w

∈
= ∑ .

5 Epilogue and further work
In this work we followed a game-theoretical approach for investigating what should be the proper
function of a network switch ‘from N inputs to N outputs’, and we concluded that if throughput is granted
by an ‘auction-game’ then the WMMF-rates form its unique Nash equilibrium. Thus if throughput is our
main concern anything else than the WMMF-rates would be sub-optimal for the users. Subsequently we
proved that this equilibrium can be achieved by a crossbar switching device with randomized schedulers.

Submitted 24-06-2003. Current copy is an ‘on-going’ version.

- 12 -

Concerning the first part of this work all directions are open: a maximal target would be to apply it to
all sorts of similar problems in network design.

Concerning the second part of this work one important issue is left open: Random bits are not so
cheap and several G/sec of them may be needed in modern large network switching fabrics. Can we apply
instead some form of fast deterministic sampling [13, 14, 15, 16] for the same purpose? We do have some
positive results along this direction but we cannot yet be fully conclusive.

Acknowledgements
The author wishes to thank prof. Manolis Katevenis and Nikolaos Chrysos (Computer Science
Department, University of Crete, and Institute of Computer Science, FORTH, Greece) for introducing him
to the problem, as well as for various helpful discussions.

References
[1] N. Chrysos and M. Katevenis (2002), “Transient Behavior of a Buffered Crossbar

Converging to Weighted Max-Min Fairness”, Institute of Computer Science, FORTH, Greece,
(http://archvlsi.ics.forth.gr/bufxbar/).

[2] T. Javidi, R. Magill and T. Hrabik (2001), “A High-Throughput Scheduling Algorithm for a
Buffered Crossbar Switch Fabric”, Proceedings of IEEE Int. Conf. on Communications 5,
1586–1591.

[3] C. Lund, S. Phillips and N. Reingold (1996), “Fair Prioritized Scheduling in an Input-Buffered
Switch” , Proc. IFIP-IEEE Conf. on Broadband Communications, Montreal, 358–369.

[4] R. O. LaMaire and D. N. Serpanos (1994), “Two-dimensional Round-Robin Schedulers for Packet
Switches with Multiple Input Queues”, IEEE/ACM Transactions on Networking 2(5), 471–482.

[5] N. McKeown (1999), “The iSLIP Scheduling Algorithm for Input-Queued Switches”, IEEE/ACM
Transactions on Networking 7(2), 188–201.

[6] A. Charny, P. Krishna, N. Patel and R. Simcoe (1998), “Algorithms for Providing Bandwidth and
Delay Guarantees in Input-Buffered Crossbars with Speedup” , Proc. of IEEE 6th Int. Workshop
on Qulity of Service, Napa, California, 235–244.

[7] H. Ahmadi and W. Denzel (1989), “A Survey of Modern High-Performance Switching
Techniques”, IEEE J. on Selected Areas in Communication 7(7), 1091–1103.

[8] E. L. Hahne (1991), “Round-Robin Scheduling for Max-Min Fairness in Data Networks”, IEEE
J. on Selected Areas in Communication 9(7), 1024–1039.

[9] L. Zhang (1990), “Virtual Clock: A New Traffic Control Algorithm for Packet Switching
Networks”, ACM Trans. on Computer Systems 9(2), 101–124.

[10] C. H. Papadimitriou (2001), “Algorithms, Games and the Internet”, 33rd ACM Symposium on
Theory of Computing, Hersonissos, Crete, Greece, 749–753.

[11] R. Myerson (1997), “Game Theory: Analysis of Conflict”, Harvard University Press, Cambridge,
Massachusetts.

[12] H. Gintis (2000), “Game Theory Evolving”, Princeton University Press, New Jersey.
[13] K. G. I. Harteros (2002), “Fast Parallel Comparison Circuits for Scheduling”, M.Sc. Thesis,

Univ. of Crete, Greece, TR FORTH-ICS/TR-304, (http://archvlsi.ics.forth.gr/muqpro/cmpTree).
[14] D. C. Stephens and H. Zhang (1998), “Implementing Distributed Packet Fair Queueing in a

Scalable Switch Architecture”, Proc. of INFOCOM’98, San Francisco, CA, 282–290.
[15] H. Zhang (1995), “Service Disciplines For Guaranteed Performance Service in Packet-Switching

Networks”, Proc. of IEEE 83(10), 1374–1396.
[16] A. Demers, S. Keshav and S. Shenker (1990), “Analysis and Simulation of a Fair Queueing

Algorithm”, J. of Internetworking: Research and Experience 1(1), 3–26.

