
Weighted Fairness in Buffered Crossbar
Scheduling

Nikolaos Chrysos and Manolis Katevenis

FORTH & Univ. of Crete, Greece

Crossbar Scheduling

• Multi-Resource Scheduler: Complexity Cost & Scalability issue
– 1 cell per input => per-output decisions depend on each other
– 1 cell per output => per-input decisions depend on each other

• Need multiple iterations and/or internal speedup (CIOQ)
• Fairness is an issue – weighted fairness is very hard
• Works only with fixed-size cells (segments)

Buffered Crossbar

• Independent schedulers, loosely coordinated via backpressure
• No global time frame needed

Variable-size packets acceptable
• Advanced QoS via sophisticated local disciplines

– RR-RR; LQF-RR; WFQ-WFQ
• This paper: WFQ-WFQ Weighted Max-Min Fairness

Challenges, Issues

• Size of the Crossbar Chip Memory
– Modern CMOS: several Mbits per chip

=> few Kbytes per crosspoint feasible
• Backpressure Overhead

– Peak Rate: N per Input per Time-Slot
(when all outputs select the same input at the same time-slot)

– Average Rate: 1 per Input per Time-Slot

minor compared to the advantages

This Work

• Buffered Crossbar with WFQ/SFQ Schedulers & fixed-size cells
– Arbitrary weights: Input Fair Share Output Fair Share

• We find that bandwidth allocation approximates
Weighted Max-Min (WMM) Fairness

• We study the impact of:
– Crosspoint Buffer Size
– Weight Factors

• Results:
– 2-6 cells/crosspoint 1-5% accuracy (32x32 switch)
– 2-4 cells/crosspoint output utilization > 99%

≠

Simulation Environment

• No speedup
• Persistent Sources (X% of them Active)

– Models the short-term Switch Operation
– Output utilization approx. 100% for most outputs, owing to excess

Bandwidth redistributions
• Metric: Relative Error % (RE %)

• RTT = 1 cell time
• Each plot point = average of many (>20) runs with different/random

weights

)(
|)()(|100 feFairServic

ferviceSimulatedSfeFairServic −×

Crosspoint Buffer Size needed to achieve Low WMMF Error

• Worst-Flow RE < 5% with 6 cells/crosspoint
• Need more buffers to reduce RE
• But small buffers => less time to re-converge

– ~ time for xpoint buffers to empty or to fill

(32x32 switch , wIJ= uniform_random(10,1010))

100%

85%
75%

50%
25%

percent
active
flows

Effect of Weight Distribution

• Average RE < 1% (buffer size >= 4)
=> High output utilization

• Uniform distribution worst results
(32x32 switch , 75% active flows,

Uniform-weights: wIJ = uniform_random(10,1010)
Few-favored-output: wIJ = 10J2 + uniform_random(0,10J2))

Uniform

Few favored outputs

Uniform

average

Few favored outputs

Worst-flow

Effect of Switch Size

• Worst Flow RE increases with Switch Size
– More flows more service jitter

• Average error…
– Many flows with good accuracy

• WF^2Q+ smaller jitter better convergence accuracy
(75% active flows, uniform weights distribution)

128x128
worst-flow

64x64
worst-flow

32x32
worst-flow

32x32
average

64x64
average

128x128
average

Not-Persistent Flows

• One flow at each input with arrival-rate:
– MIN(InputFairShare, OutputFairShare)
– Less than WMM Fair rate

• Excess Bandwidth Redistributed Fairly

(75% active flows, uniform weights distribution)

All-Flows
worst-flow

Non-persistent
worst-flow

All-Flows
average

Non-persistent
average

Conclusions

• Buffered Crossbars
– Scheduler Simplicity/ Sophistication
– High throughput & Delay Guarantees
– WMM Fairness

• Our Results:
– High accuracy to Weighted Max-Min Fairness with 3-8 cells/xpoint
– Service jitter and small crosspoint buffers reduces accuracy, but
– Small xpoint buffers improve speed of convergence

• Current Research: directly switching variable Size Packets

– Eliminating Speed-Up, Output Buffers, Fragmentation &
Reassembly

Operation & WMM Fairness

• When crosspoint buffers empty
• Input Service = Input Fair Share

• Some Flows Ineligible at Outputs
• As crosspoint buffers fill-up

• Output Service ~ Output Fair Share
• Some Flows Ineligible at Inputs

• Eventually WMM Fairness -- maximizes MIN (Bandwidth / weight)
• Input Fair Share(f) > Output Fair Share(f)

crosspoint buffer(f) usually FULL
• Output Fair Share(f) > Input Fair Share(f)

crosspoint buffer(f) usually EMPTY

