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Abstract— The crossbar is the most popular packet
switch topology. By adding small buffers to each cross-
point, important advantages can be obtained: scheduling is
dramatically simplified and weighted round robin (WRR)
or weighted fair queueing (WFQ) becomes feasible; vari-
able size packets can be switched; no internal speedup is
needed; and, in many cases, no output buffer memories are
needed. This paper studies the fairness properties of dis-
tributed WRR/WFQ scheduling in such a buffered cross-
bar. We provide arguments for why the system converges
to weighted max-min (WMM) fairness, and we study the
factors that affect stabilization delay after changes in of-
fered load or weight factors. We simulate the system and
observe how close real rates come to the theoretical WMM
fair allocations: with buffer sizes of 2 to 5 cells per cross-
point, the average rate discrepancy is below 1%; the worst-
case discrepancy falls below 4% with buffer sizes of 4 to 8
cells. Transient behavior simulations verified that stabiliza-
tion delay is proportional to buffer size, and inversely pro-
portional to the magnitude of the change in bandwidth allo-
cation. In conclusion, buffered crossbars, which are techni-
cally feasible today, offer important advantages, which in-
clude excellent quality of service guarantees.

Topics Keywords. Switches and switching, (Scheduling,
QoS).
Methods Keywords. System design, Simulations.

1. INTRODUCTION

Switches, and the routers that use them, are the basic
building blocks for constructing high-speed networks that
employ point-to-point links. As the demand for network
throughput keeps climbing, switches with an increasing
number of faster ports are needed. At the same time,
mechanisms are sought for higher sophistication in qual-
ity of service (QoS) guarantees.

The crossbar is the simplest topology for high-speed
switches. It is the architecture of choice for up to at least
32 or 64 ports, although for higher port counts, NV, the or-
der of the crosshar cost, O(N?), makes other alternatives
more attractive. The hardest part of a high-speed crossbar
is the scheduler needed to keep it busy.

1.1. Crosshar Scheduling, QoS, and Internal Speedup

With virtual-output queues (VOQ) at the input ports,
the crossbar scheduler has to coordinate the use of 2N in-
terdependent resources: each input has to choose among
N candidate VOQ’s, thus potentially affecting all IV out-
puts; at the same time, each output has to choose among
potentially all NV inputs, thus making all 2N port sched-
ulers depend on each other. Known architectures for high-
speed crossbar scheduling include [1] [2] [3]; their com-
plexity and cost increases significantly when the number
of ports rises, thus negatively affecting the achievable port
speed.

Quality of service (QoS) is an increasingly important
concern in networks and switches. A simple form of QoS
is based on static priorities: serve all high-priority pack-
ets before serving any lower-priority packet. This works
well between some types of traffic with widely differing
characteristics, but it is clearly inappropriate among flows
of a similar type, and may even lead to starvation for the
lower priority traffic. Another form of QoS is based on
round-robin scheduling, and is appropriate for flows that
are “equal” to each other.

An advanced form of QoS uses weighted round-robin
(WRR) scheduling —often in the form of weighted fair
queueing (WFQ) [4]- which takes weight factors into
consideration when determining “equality”. This type of
scheduling is needed when some customers pay more than
others, or when each flow is an aggregate of a different
number of subflows and we wish to treat subflows equally.
The weight factors may be static (during the lifetime of
connections), or they may change dynamically, e.g. in the
case of varying aggregate membership, or when we want
inactive subflows not to count towards the weight of their
aggregate.

Existing crossbar schedulers either ignore QoS issues,
or provide only priorities and/or round-robin-like schedul-
ing [2] [3]. Weighted round-robin behavior is very hard to
achieve in crossbar schedulers while still maintaining high
crosshar utilization (near-maximal matches) [5] [6]: many
iterations are needed to yield high-occupancy matches,



thus severely limiting the port speed at which these sched-
ulers can be used; in addition, [6] that computes stable
marriage matchings, needs a sorting operation per port
and per time-slot.

The solution commonly used, today, is to provide sig-
nificant internal speedup: the crossbar port rate is higher
than line rate by a factor of f, considerably greater than 1.
In this way, (a) imperfect crosshar scheduling is accept-
able, since an average utilization of 1/f for the crossbar
outputs suffices for the egress lines to get fully utilized; (b)
we can accommodate the rate increase that occurs when
variable-size packets are segmented into fixed-size cells;
and (c) the emphasis for QoS enforcement is shifted to the
egress-line sub-system, since queues now tend to build up
on the output side of the crossbar (combined input-output
queueing (ClOQ)). Using the latter property, one can im-
plement e.g. WFQ on the output queues, although, for
traffic overloads higher than f, queues also build up on
the input side, where crossbar schedulers cannot typically
implement WFQ.

While internal speedup is a good solution, it does incur
significant cost: the crossbar is more expensive (f times
higher throughput), the buffer memories are more expen-
sive ((1+ f)/2 times higher throughput), and the number
of buffer memories is doubled —besides input queues, out-
put queues are needed as well. (Note that output queues
are also needed for cell-to-packet reassembly, and for sub-
port demultiplexing, when provided.) An alternative solu-
tion, with the potential to yield both faster and less expen-
sive switches, is to use buffered crossbars.

1.2. Buffered Crossbars and their Advantages

The above discussion concerned crossbar switches with
purely combinatorial crosspoint logic, i.e. without any
storage at the crosspoints. By adding, however, even small
amounts of buffer storage at the crosspoints, the schedul-
ing problem changes radically and is dramatically simpli-
fied: the 2N schedulers, N at the inputs and IV at the out-
puts, become independent of each other, and each of them
deals with only a single resource. The 2N schedulers are
still coordinated with each other, but only indirectly and
over longer time-scales, through backpressure feedback
from the crosspoint buffers. Hence, such buffered cross-
bars allow efficient distributed scheduling schemes. In
turn, efficient scheduling eliminates one of the reasons for
internal speedup.

Another important advantage of buffered crossbars is
their capability to directly switch variable-size packets,
without prior segmentation into fixed-size cells, given that
schedulers are now independent, and do not have to oper-
ate in synchrony anymore. This eliminates the other rea-

son for internal speedup. In turn, when the crossbar op-
erates without internal speedup and without the need to
reassemble packets from cells, the two main reasons for
output queues have gone away, thus allowing significant
cost savingst. In this (first) paper, though, we deal exclu-
sively with fixed-size-cell traffic.

The amount of buffering needed per crosspoint is small
—on the order of the line rate times the backpressure
round-trip delay, which often amounts to one or a few
cells. For a 32 x 32 crossbar with 4 priority levels and
two 64-byte cells of storage per crosspoint and priority
level, the total buffer space in the crosshar is 8 K cells or
4 Mbits, which is clearly feasible in current ASIC technol-
ogy. Concerning power consumption, although the num-
ber of memories is N2, at most 2N of them are active
at any given time, for unicast traffic. Also, power con-
sumption in the buffer memories that are introduced will
normally be lower than in the crossbar buses that already
existed, because internal memory buses are much shorter
than crossbhar buses, while the throughput of both types
of buses is the same (considering separate write and read
buses in the memories).

1.3. Fairness in Distributed WFQ and Related Work

Given the above advantages of buffered crossbars, we
expect that they should gradually displace unbuffered
crosshars, now that IC technology makes such inter-
nal buffering feasible. Hence, it becomes important to
study the distributed scheduling that becomes possible in
buffered crossbars, especially given its capability to pro-
vide WRR/WFQ service, thus allowing the elimination of
output queues.

In the eighties, Gallager [7] and Katevenis [8] inde-
pendently proposed the use of per-flow buffering, per-
flow backpressure, and round-robin scheduling for fairly
allocating link capacity in arbitrary networks, and ex-
plained why this leads to max-min fairness. The fair rates
of the flows are not explicitly computed —the distributed
scheduling algorithm just finds them “by itself”. Hahne
[9] subsequently proved that this scheme indeed yields
max-min fairness, although, in some pathological cases,
very large buffers may be needed for that. This paper
differs from the above in that (a) we consider weighted
rather than plain round-robin and weighted rather than
plain max-min fairness; (b) we simulate small-buffer ef-
fects; and (c) we study and simulate the transient behavior,
specifically in crossbars, when flows or weights change.

'Sub-port demultiplexing, if needed, would still require output
queues, unless the crossbar is modified to provide this capability, e.g.
by partitioning each crosspoint buffer into per-subport queues, and
making the output schedulers operate at subport granularity



In the late nineties, Stephens and Zhang [10] [11] stud-
ied and simulated buffered crosshars with WFQ/WRR
schedulers, and proved their ability to provide delay
bounds to properly policed flows. Chiussi and Francini
[12] studied a similar distributed WFQ architecture in
multistage networks with backpressure, and obtained
analogous QoS guarantees. These delay bounds are based
on the minimum rate guaranteed for each flow, which is
the minimum of the following quantity over all links tra-
versed by the flow: the ratio of the flow’s weight over the
sum of the weights of all flows traversing the link. Thus,
these papers do not consider the allocation of the excess
bandwidth that results when some flows are not able to use
as much bandwidth as their weight indicates. The present
paper differs from the above in precisely this point: we
study the allocation of excess bandwidth, both during
transient periods and in the long term. Recently, Javidi e.a.
[13] examined buffered crossbars with longest-queue-first
input schedulers and round-robin output schedulers, and
showed full output utilization under some assumptions.
Weighted max-min fairness (examined in this paper) also
reaches full output utilization in the cases where the flows
are not constrained at the inputs. By studying how close
our system comes to weighted max-min fairness, we also
study how close it comes to full utilization of oversub-
scribed outputs; however, we use a more general schedul-
ing policy than [13], and we study fairness issues in addi-
tion to what that paper considers.

1.4. Contributions of this Paper

This paper studies the fairness properties of distributed
scheduling in buffered crossbars. First, we examine band-
width allocation assuming WFQ/WRR schedulers and
persistent flows. Using a simple fluid model, section
3 shows that the system serves the flows according to
weighted max-min (WMM) fairness; this is an extension
of the arguments provided in [8] for the case of RR sched-
ulers. We simulated the real system (fixed-size cells —
not a fluid model) for various sizes of crosspoint buffers,
various weight factor combinations, and various crossbar
sizes (section 4.2). In each case, we measured the discrep-
ancy between the actual flow rates and the rates predicted
by WMM fairness; we find that these discrepancies are re-
duced to a few percents of the WMM fair rate with buffer
sizes as small as a few cells per crosspoint. We also dis-
cuss which weight factor combinations yield nearly per-
fect results, and which combinations lead to larger dis-
crepancies.

Second, we study the transient phenomena that occur
when the weight factor of a flow changes, or when the ac-
tive/inactive state of the flow changes. In section 3.3, we

reason about the process that causes the system to resta-
bilize at the new WMM fairness equilibrium, the factors
that affect the delays in this process, and the chains of
dependencies along which stabilization progresses. Sec-
tion 4.3 presents our simulations of this transient behavior,
which verifies our previous reasoning. The stabilization
delay depends on the buffer size and the rate difference
(new rate minus old rate); smaller buffers and larger rate
changes incur faster stabilization. We did not notice any
oscillations during the stabilization process along these
chains.

To the best of our knowledge, both of the above con-
tributions appear for the first time in the area of packet
switching, as discussed in section 1.3 above, on re-
lated work. Our assumptions are summarized as follows.
We assume buffered crossbars, motivated by modern 1C
technology and the resulting evolution of real crossbar
switches that we foresee and support. Second, we as-
sume WFQ/WRR schedulers, which are technologically
feasible (see section 2.2) and yield advanced QoS archi-
tectures. Finally, the assumption about persistent flows is
what models the short-term behavior of a network under
transient overload. In the long run, wide-area or end-to-
end flow control will hopefully adjust the rates of indi-
vidual flows so that the egress links of the switch are not
oversubscribed. If these output links were never oversub-
scribed, the scheduling policies inside the switch would
not matter and buffer memories would not be needed.
However, short-term overloads do appear, due to the vari-
ability and unpredictability of traffic. Modern commercial
switches have hundreds of megabytes of buffer storage,
because they anticipate transient overload periods up to a
fraction of a second. During such overload periods, it is
the schedulers in the switch that allocate output bandwidth
to the contending flows, thus determining the QoS that
these flows receive. We model the behavior of the switch
during the overload periods using persistent flows for the
non-empty queues and inactive flows (or equivalently zero
weight factors) for the empty queues. The transient phe-
nomena that we study in this paper occur when the state
of a queue changes between empty and non-empty.

2 . BACKGROUND & DEFINITIONS

This section reviews WMM fairness, and defines our
crosshar and distributed WFQ/WRR scheduling models.

2.1. The Weighted Max-Min (WMM) Fairness Objective

Max-min fairness allocates as much bandwidth as pos-
sible to each flow, provided that this bandwidth is not
“taken away” from a “poorer” flow. In other words, given



a max-min fair allocation, it is impossible to increase the
bandwidth of any flow A without reducing the bandwidth
of a flow B where B’s allocation was inferior or equal
to A’s allocation®. Weighted max-min (WMM) fairness
allocates utility in a max-min fair way, where utility of a
flow is its bandwidth allocation divided by its weight fac-
tor [14]. Equivalently, if each flow with weight w is an
aggregation of w microflows, then WMM fairness among
flows is the same as plain max-min fairness among mi-
croflows.

A constructive algorithm for finding the WMM alloca-
tion can be deduced from the above definition. Let us call
weight of a link the sum of the weights of the flows that
traverse it, and fair share of a flow on a link the weight of
the flow divided by the weight of the link. First, find the
most congested link, i.e. the link with the largest weight.
The allocation for the flows traversing the most congested
link is precisely their fair share on that specific link. On
the rest of the links, these flows cannot use all of their (lo-
cal) fair share, because they are constrained to the (lower)
allocation dictated by the most congested link; the por-
tion of bandwidth that they leave unused is distributed to
the rest of the flows. Consider the network that results
from the original one when we remove the above most
congested link and all the flows that traverse it. For this
new network, compute link weights again, find the most
congested link, allocate its (remaining) bandwidth to the
(remaining) flows that traverse it, and so on.

2.2. System Model: Distributed WFQ Crossbar

Figure 1 shows the model of the N x N switch sys-
tem that this paper deals with. There are virtual output
queues (VOQ) at the IV inputs, containing fixed-size cells.
The core of the systems is an N x N crossbar; there is
no internal speedup and there are no output queues. The
crosshar contains N2 small queues, one per crosspoint.
A full system could contain separate queues per priority
level; we analyze the behavior within one of the priority
levels in this paper, while extension to multiple levels is
rather straightforward. Backpressure flow-control ensures
that the crosspoint buffers will never overflow.

There is a scheduler s per crossbar input, and a sched-
uler s per crossbar output. Each input scheduler chooses
among its eligible VOQ’s; a VOQ is eligible iff it is non-
empty and its corresponding crosspoint buffer is non-full
(backpressure is in the “go” state). Each output scheduler

2Note that max-min fairness is different from maximum utilization;
e.g., ina 2 x 2 crosshar with three active flows, Xg,0, Ao,1, and A1,1,
max-min fairness is Ao,o = Xo,1 = A1,1 = 0.5, yielding aggregate
throughput of 1.5, while maximum utilization is Ag,o = A1,1 = 1.0
and Xo,1 = 0, yielding aggregate throughput of 2.0.

Fig. 1. System model assumed in this paper.

chooses among its eligible crosspoint buffers (a column in
fig. 1); a crosspoint buffer is eligible iff it is non-empty.
Output schedulers feed egress links directly, since there is
no speedup and no output queues.

All schedulers use a common scheduling discipline,
which is a WFQ/WRR variant. Flows are determined by
input-output pairs, and correspond one-to-one to cross-
point buffers. Each flow f has a unique weight fac-
tor; schedulers use the inverses of the weight factors,
called service_interval, STy, measured in arbitrary units
(the same for all flows, though). Each scheduler main-
tains a next_service_time state variable, N.ST', for each
of its flows; the NST of a flow at its input scheduler
is independent from and unrelated to the NST of the
same flow at the output scheduler (there is no attempt
to enforce any single “system potential”). At each time-
slot, ¢, a scheduler selects and serves an eligible flow g
that has the minimum NSTg, and updates this NSTgt to
NSTt! = NST; + SI,. Also, all ineligible flows
for which NST} < N ST;]5 are dragged to the current
scheduler “time” (potential): NST;*' = NSTY; in this
way, ineligible flows will not receive a burst of service
when they become eligible again. This scheduling disci-
pline can be implemented at high speed, e.g. using a tree
of comparators exploiting bit-level parallelism [15]: the
minimum of 256 twenty-four-bit numbers can be found in
4.5 ns in 0.18-micron CMQOS technology.

3. CONVERGENCE TO WMM FAIRNESS AND
TRANSIENT BEHAVIOR

This section shows why distributed WRR crossbar
scheduling converges to WMM fairness, discusses how
the convergence process works, and indicates which fac-
tors affect its delay. Distributed crossbar scheduling op-
erates roughly as follows. Initially, when all crosspoint
buffers are empty, each input scheduler serves each flow



according to its fair share. The schedulers at different in-
puts operate independently; even if they happen to trans-
mit cells to a same output in the same time-slot, the cross-
point buffers will hold these cells until the output sched-
uler reads them out one by one. Output schedulers are
initially forced to serve the few non-empty crosspoint
buffers. As more and more buffers fill up, output sched-
ulers start enforcing their fair shares.

The fair share of a flow at the output will, in general,
differ from its fair share at the input. If the output fair
share is higher, the output scheduler will attempt to read
from the buffer more frequently than the input scheduler
writes into it. As a result, the buffer will often be empty,
and the flow will often be ineligible for the output sched-
uler; thus, the bandwidth of such a flow is dictated by the
input scheduler allocation. On the other hand, if the out-
put fair share of a flow is lower than its input counterpart,
the buffer will gradually fill up, because the output reads
it less frequently than the input writes into it. When the
buffer fills up, backpressure will make this flow ineligi-
ble at the input, thus reducing its service at the input until
it gets equalized to the rate dictated by the output sched-
uler. In this way, over the long run, the service allocated
to each flow becomes the smaller of the two rates that its
input and its output can allocate to it. Because schedulers
are work conserving, they will always serve a flow as long
as there is at least one eligible flow; thus, bandwidth that
remains unused by ineligible flows gets distributed to the
remaining eligible flows, according to these latter flows’
fair share. Eventually, this redistribution will yield WMM
fair allocations, as discussed below in more detail.

3.1. Unbuffered Fluid Model

The behavior of our system and its analysis are simpli-
fied when we replace discrete cells with an infinitely di-
visible fluid, and WRR schedulers with ideal generalized
processor sharing (GPS) servers [16].

Theorem 1: Under the fluid model, GPS servers, no
buffers at the crosspoints, and persistent sources, all flows
will receive exactly their weighted max-min fair rate allo-
cation.

Proof: To prove this theorem, note that the constraints
of the system are such that it has to operate according to
the constructive algorithm of section 2.1 for the WMM
fair allocation. Consider the most congested link (link
with highest sum of flow weights). We argue that all flows
on that link are always eligible. The proof will be by con-
tradiction: assume that flow f on that link occasionally
becomes ineligible. If this is an input link, given that the
source of f is persistent, the only reason for f to occa-
sionally become ineligible would be for f’s output server

to serve f at a rate lower than the input server rate. This
is a contradiction, because the input link of f is the most
congested link in the system, hence the input fair share of
£ is lower than its output fair share, and a GPS server (the
output server in this case) will never serve a flow below
its fair share “on its own initiative” —this could only occur
if the flow were constrained to a lower rate at some other
resource, which is not the case here. Similarly, if the most
congested link is an output link, the only reason for f to
occasionally become ineligible there would be for f’s in-
put server to serve f at a rate lower than the output server
rate, which is a contradiction for the symmetric reason.

We just proved that all flows on the most congested link
are always eligible, hence they receive precisely their fair
share of service. For each of these flows, f, consider the
other link that the flow goes through; now that we know
the rate of f, we can deduce the maximum possible rate of
all remaining flows on that link. Consider all other links in
the system and all remaining flows on them, and consider
the most congested link among them. The arguments go
as above, until all system links have been exhausted.

3.2. Discrepancies in a Non-Fluid System

The real system with discrete cells obviously differs
from the above ideal fluid model. The WFQ/WRR sched-
uler assumed in section 2.2 will allocate rates precisely
according to the fair shares only in the long run, and only
if the set of eligible flows stays fixed. For the set of el-
igible flows to stay fixed, crosspoint buffers have to be
large enough so that a normally-full buffer never empties
and a normally-empty buffer never fills up. Normally-full
buffers are the buffers of flows for which, under a stable
state, the service at the input is higher than the service
at the output, and conversely for normally-empty buffers.
If the buffers are not large enough, it may happen that
a normally-full buffer occasionally empties: although its
input scheduler is supposed to fill it more frequently than
its output scheduler empties it, actual service is not per-
fectly smooth. Such service fluctuation may cause the in-
put scheduler to occasionally be late in refilling the buffer,
and the output scheduler to occasionally be early in emp-
tying the buffer. Section 4.2 presents our simulation re-
sults concerning the magnitude of these discrepancies.

3.3. Buffered Fluid Model and Dependency Chains

We now turn our attention to the transient phenomena
when a flow enters or leaves the system, or equivalently
when the weight factor of a flow changes (inactive flows
are equivalent to zero weight factors). To study these phe-
nomena in analytical terms we have to resort again to the



fluid model simplification. Unlike section 3.1, we obvi-
ously have to assume non-zero crosspoint buffers. In the
model that we analyze here, there is a GPS server at each
input and output of the crossbar, and a buffer is placed at
each crosspoint, dedicated to one of the N2 fluid flows, as
shown in fig. 1.

For each flow f, there is an input GPS server and an
output GPS server. The rates that these two servers allo-
cate to f may differ only during times when f’s buffer is
neither empty nor full; when the buffer fills up or is emp-
tied, the higher of the two rates is forced to become equal
to the lower one. After a change in the system, the restabi-
lization process corresponds to a chronological sequence
of crosspoint buffers changing state. As each buffer in the
sequence reaches its next (empty or full) state, the rate of
the corresponding flow gets reduced either at the input or
at the output. In turn, this increases the rates allocated
by the corresponding GPS server to some of the other
flows sharing the same port. We wish to study the de-
pendency chains that may exist among flows, along which
rate changes propagate until the system finds its new equi-
librium. We will see that these chains are related to the se-
guence in which the constructive algorithm for the WMM
fair allocation (section 2.1) computes the flow rates.

Theorem 2: Assume that a change in flow f causes
the system to move from WMM fair allocation A to WMM
fair allocation B. Then, any flow g whose rate under B
differs from its rate under A is a flow for which either
Ut > Uf, or UZ > UP, or both (where U is the utility
of a flow under an allocation, i.e. the rate of the flow
divided by its weight).

Proof:

The proof is by contradiction. Suppose that g had strictly
smaller utility than f under both A and B allocations, and
additionally g was affected by the change in f —that is the
final rate of g (under B) is different from the starting rate
of g (under A). Let V4 and VB be the utility vectors of
allocations A and B respectively, each of them ordered
according to the sequence in which the constructive al-
gorithm of section 2.1 determines the allocations —hence,
each of them ordered by non-decreasing utility. If g re-
acted to f’s change and U;! < Uf', UP < UF then V4
and VB will have the form:
VA ={U UL, ... UL,. Uf, L URY
VB:{Uf,Uf, . ,UgB Uf,.. UB}
Since the algorithm for computing the equilibrium fills
this vectors from left to right (in groups of equal utilities),
it means that when the WMM fairness algorithm com-
puted the rate of flow g, this algorithm did not take into
account f in both cases, so g cannot have been affected «.
GPS is a scheduling discipline that achieves WMM fair

allocations [17, section 9.4.1]. Thus, a change in one flow
f, served by a GPS at some input or output of the fluid
buffered crosshar model, cannot affect a flow g, served by
the same GPS server, that is “more congested” than flow f
both before and after the change. So using theorem 2, we
can tell which flows g are potentially affected by a change
in flow f. We will use the following definitions:

« Active flow: a flow with non-empty input queue, or
equivalently non-zero input rate, or equivalently non-
zero weight factor.

« Neighbor flows: two active flows that share an input
or an output port.

« Interacting flows: two neighbor flows, or two flows
that both interact with a common third flow (i.e. the
transitive closure of the neighborhood relations, con-
sidering only active flows).

» Dependents of a flow f in a WMM fair allocation A:
all other flows whose rate may potentially be affected
by a change in f’s demanded rate or weight.

Theorem 3: In a stable state, A, of the fluid buffered
crossbar model the dependents of a flow f are all included
in the following set of flows: (a) f and all its neighbors;
and (b) all flows that interact with the flows in (a) and
that can be placed on a chain of flows, where the chain
starts from a flow in (a) and contains flows in order of
non-decreasing utility (under state A).

The proof of this theorem can be found in of [18, sec-
tion 4.4]. The theorem tells us that, first of all, all neigh-
bors of f can get affected, regardless of the level of util-
ity that they receive, e.g. when f changes from active to
inactive or vice versa, or when the external input rate of
f changes, or if f’s weight changes. Next, each of these
neighbors, including f, may propagate the change to other
flows g, but only along paths of interactions composed
of less and less congested flows. The increasing utility
property ensures that the change can potentially propagate
through a GPS server to neighbor flows.

3.4. Delay and Unfairness During Transient States

So far we have only described the (re)convergence pro-
cess in terms of utility and interaction chains. We now
turn to the delay of this convergence, and the magnitude
of service unfairness during the process.

When a flow f changes state or demand, multiple de-
pendency paths may be stimulated in parallel. When two
such paths reconverge at some input or some output, their
effects may be additive or subtractive; also, a flow f may
experience increased congestion at its input and decreased
congestion at its output. This sequence of events can pro-
duce a rate increase and afterwards a rate decrease (or
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vice-versa) before f’s rate stabilizes, e.g. first a conges-
tion decrease reaches f’s input and latter a congestion in-
crease reaches f’s output. In other cases, the multiple de-
pendency paths produce changes of the same sign and ac-
celarate convergence. Although dependency paths recon-
verging upon a flow may have subtractive results, the lat-
est one of them will determine the final rate, hence we turn
our attention to how long one, single dependency chain
can be. We believe that depedence chains can never be
circular, because they are always formed along paths of
decreasing utility; also, in our simulations we have never
seen circular dependencies. We are currently in the pro-
cess of verifying that this statement is indeed always true.

A rate increase propagates instantly an increase in de-
mand, from the flow’s input server to the flow’s output
server or vice versa, regardless of the state of the buffer.
On the other hand, a rate reduction may incur a delay in
propagating the change. For example, a reduction in input
rate of a flow whose buffer was full will only propagate to
the output after the buffer gets emptied; if, however, the
buffer was already empty, the change will propagate in-
stantly. Conversely, a reduction in output rate will incur a
delay if the buffer was empty and can now be filled, while
it will propagate instantly if the buffer already full.

The delay parameters are: the crosspoint buffer size,
since these may need to get filled or emptied before a
rate change propagates; the magnitude of the rate change,
which is usually equal to the input-output rate difference
that determines how fast the buffer gets filled or emptied;
and the dependency chain length, which gives an indica-
tion of the number of buffers that must get filled or emp-
tied.

The longest dependency chain in the crossbar has

f1

Input2 flow 1 leaves

(E

Output 1 m

Output2

Output2

w(i) / w(i+1) = constant
@ (b)

Fig. 3. Dependence chain of the first few flows in fig. 2.

length 2N, because it visits all inputs and outputs pre-
cisely once —if some port occurred twice, we would have
to reconvergent dependency chains (see the discussion
above). Thus, there can be at most N buffers that must
change state before all flows restabilize correctly.

Figures 2 and 3 show an example where all buffers
along the chain have to switch states. To create this ex-
ample we used decreasing weights that satisfy the relation
Vi : w—“’;—l = ¢. Consider that ﬁ—l = 2 and that initially
flow 1 is active, as in fig. 3. In the starting equilibrium
state, flow 2 will be bottlenecked at the input, and will re-
ceive a rate of 0.33. Flow 3 will be taking advantage of
f2’s inability, and will use up the remaining rate of 0.67;
this flow can receive that excess bandwidth, since it cor-
responds to its fair rate at the input (332 = 2). Now, when
f1 becomes inactive, fo will benefit from the absence of
f1 and will increase its rate to 0.67. This event will be in-
stantly propagated to fs, which will drop its output rate
to 0.33; this change will be propagated to f4 after the
crosspoint buffer of fs is drained. At that point, f4 will
instantly raise its rate to 0.67, and so on.

The above scenario of serial changes represents the
worst-case with respect to delay and unfairness rate. We
can estimate the delay of stabilization along such a depen-
dency chain, for a node at distance 2D from the originat-
ing flow, as:

B

Delay <D -
e min(oldRate; — newRatey)

1)

The unfairness rate during the transient states is propor-
tional to the min(oldRate — newRate), S0 we can derive
an unfairness bound measured in bits that does not depend
on the old and new rates:

UnFairBits <D-B 2)

Section 4.3 presents our simulation results, which verify
the general form of the above relations.

Worst case scenarios like the above have a very specific
form, and are thus quite improbable to occur in practice.
In practical situations, weight factors may look like ran-
dom numbers. Then, it is quite likely that dependency



chains have a small average length, and that multiple re-
convergent chains exist; these cannot delay the rate stabi-
lization compared to the slower dependency path, whereas
in many other times the reconvergent paths produce addi-
tive effects, which speed-up convergence.

Another effect to take into consideration, in practical
situations, is that several flows may be inactive (their VOQ
at the input is empty). Inactive flows do not help in build-
ing multiple reconvergent chains, but they do not help in
building long dependency chains, either. The net effect is
that accelerated convergence is also expected in the cases
where many inactive flows exist.

4 . SIMULATION RESULTS
4.1. Simulation Environment

We implemented a simulator in C++ to evaluate the
performance of the distributed WFQ buffered crossbar.
The simulator assumes fixed-size cell traffic, and oper-
ates at cell-time granularity. The input and output sched-
ulers operate according to the algorithm described in sec-
tion 2.2. Active flows are fed by persistent (always non-
empty) VOQ sources, while inactive flows receive no in-
coming traffic (empty VOQ sources); as discussed in sec-
tion 1.4, persistent flows model the short-term behavior
of the switch under transient overload, for as long as this
overload lasts, and provide a fixed set of demands to the
switch, under which the system can stabilize to its equilib-
rium state. For the transient behavior measurements, we
made one of the flows change between active and inactive
state at a precisely known instant in time. The simulator
uses unit-delay on/off backpressure: assume that an in-
put server decides in time-slot ¢; to server a flow f; this
decision becomes known to f’s output server in time-slot
t;+1; the cell is actually transmitted in time-slot ;.1 while
in the same time-slot ¢, ; the output server may decide to
serve this same cell in time-slot ¢; 5. If an output decides
to read a cell from a full crosspoint buffer during time-
slot ¢, this buffer becomes eligible for its input server in
time-slot ¢;1. Under these assumptions, two cells worth
of buffer space per crosspoint suffices for a flow experi-
encing no competition at the input and at the output to be
served at full line rate.

4.2. Accuracy of Convergence to WMM Fairness

As discussed in section 3, the ideal fluid model con-
verges to WMM fairness, while for a real, discrete cell
system a number of inaccuracy sources exist. We study
by simulation the magnitude of these inaccuracies. The
metric that we use is the Relative Error, RE, with respect
to the ideal WMM fair rate allocation. Given a simulation
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Fig.4. Average RE versus buffer size, for various percentages
of inactive flows; under uniform weights, 32 x 32 switch.

interval, for each flow f the relative error of f’s rate is
defined as:

RE; — |Actual Servicey — FairServicey|

FairServicey

where ActualService; is the number of cells of f that
exited from the simulated switch during the simulation in-
terval, and FairServicey is the rate allocation of f ac-
cording to WMM fairness multiplied by the length of the
simulation interval, i.e. it is f’s expected service in num-
ber of cells. We report the average and the maximum of
the RE;’s over all active flows f. For the reports below,
the measurement interval started safely after any initial
transients of the system (many tens of thousands of cell
times after the beginning of simulation), and extended as
long as needed to reach a confidence interval of 0.04%
with confidence 95%3.

1) Effect of Weight Factors and Flow Activity: We
used three different types of weight factor distributions
to flows. In the configuration called uniform, all active
flows have a random service interval variable (S1; = wif),

picked uniformly in the interval [1,1001]. In the skewed-
42 distributions, S1; for the flow from input ¢ to output
j is randomly chosen through the following random pro-
cess [1+ 1052 +unif_rand (0,1052)]. Finally in the dis-
tribution named mixed, each flow from input 7 to output
j has SI; = 8 or 6 with equal probability, if i 4 j is
odd and SIy = 4 or 3 with equal probability, if 7 + j is

3The confidence is extracted as follows: every 10,000 cell times, we
compute the average and maximum RE over all active flows. Then we
extract a new average-estimate of the average and maximum RE val-
ues seen so far, and we stop when the true average of the average and
maximum RE lies in an interval of width 0.04% around the current
average-estimate with probability > 0.95.
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even. The skewed distribution was used in an effort to cre-
ate imbalanced weight factors: the small-index outputs of
the switch are in much higher demand (smaller ST hence
larger weight) than the large-index outputs. The mixed
distribution was used in order to create multiple depen-
dencies among flows, since neighbor flows are likely to
have weights similar to the scenario presented in fig. 3 .
In all configurations, we randomly decide with probabil-
ity 7 if a flow will be inactive.

Figure 4 plots the average RE of the active flows, with
uniformly chosen weight factors, under four different in-
activity probabilities, I = 0%, 7%, 15%, 25%, 35%, 50%,
65%. We see that a buffer size of 5 cells per crosspoint
suffices to drive the average error below 1 %.

Besides their obvious importance for QoS accuracy,
these results also show how well a buffered crossbar can
sustain full output utilization for those outputs for which
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Fig. 7. Worst-case RE over all flows, under various weight-

factor distributions; other parameters as in fig. 6 .

enough input demand exists. Given that the fair rates for
such outputs add up to 1.0, and given that the actual rates
are within 1 % of the fair rates, it follows that utilization
is 99 % or better for these outputs.

Figure 5 plots the maximum value of RE over all active
flows, for the same simulations as in fig. 4. We see that
buffer sizes of 6 to 8 cells each —depending on the ratio of
inactive flows— yield worst-case errors of 5 or less percent.

There is a general tendency to better approximate the
fair allocations when there are more inactive flows. This is
well pronounced for the maximum error, and less clear for
average error. This tendency can probably be attributed to
the smaller number of flows that each WFQ/WRR sched-
uler has to consider when there are more inactive flows;
fewer flows in the schedule means less jitter in their ser-
vice time, so less opportunities for a normally-full buffer
to empty or a normally-empty buffer to fill up. Another
reason may be the shorter dependency chains when more
inactive flows exist.

Figures 6 and 7 plot the relative error (average or worst-
flow) for the various weight factor distributions discussed
above. Although we created the skewed distribution with
the intention to drive the system into difficult operation, it
turns out that relative error gets smaller under the skewed
distributions, the difference being more pronounced in er-
ror averages over all flows. Under most runs that we have
tried, the uniform distribution produces the worst conver-
gence conditions for the buffered crossbar.

2) Effect of Switch Size: Figures 8 and 9 plot the rela-
tive error (average or worst-flow) for various switch sizes:
32 x 32, 64 x 64, and 128 x 128; weight factors are drawn
uniformly, and 25 % of the flows are inactive. We ob-
serve that average RE becomes better (smaller) for larger
switches; this may possibly be due to a larger number of
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flows receiving accurate service, which brings the aver-
age down. On the contrary, larger switches yield worse
(larger) RE for the worst flow. We conclude that larger
switches have a few flows with reduced accuracy and
many flows with good accuracy in the process of finding
WMM fairness. The reduced accuracy of some flows may
possibly be attributed to larger jitter in the WFQ/WRR
schedulers (due to more flows in each scheduler) and to
longer dependency chains.

Concluding, the system stabilizes very close to the
WMM fair shares, under all demand distributions that we
have tested, with small amount of buffering per crosspoint
(3 to 10 cells).

4.3. Transient Delays and Unfairness Magnitude

We simulated the system’s transient behavior, when a
flow’s activity or weight changes, in order to verify our
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results of section 3.4. We present the results of the sim-
ulation of a dependency chain like the one shown in fig-
ure 2. We initially configured all flows across the chain
to be active (persistent VOQ’s), we run the system un-
til it stabilizes, and then we changed one flow to inactive
(empty VOQ), examining which other flows are affected,
and their restabilization delay. For the flows of interest, f,
we plot the difference of the cumulative service (number
of cells) that f received during the simulation, as a func-
tion of time, from the cumulative service that ideal WMM
fairness would allocate to f; for computing the latter (a
piecewise linear function) the WMM fair rate is assumed
to change instantly at the moment when the original af-
fecting flow changes to inactive. When the above metric
for flow f becomes parallel to the time axis, it means that
f’s rate has stabilized to its new WMM fair rate.

First we verified that flows with lower utility than the
changing flow remain unaffected by the change, like they
should (Theorem 3). Figure 10 shows what happens when
flow f3_3 turns from active to inactive on cell time 5000.
We see that only flows receiving greater utility than f3 3
are affected: fe_7, fr—7, fa_5, f5_5). Flows fy,_o and
f1_o are not affected, since these received lower utility
than f3_3 in the allocation before the event.

Then we verified the impact of the distance in the de-
pendence chain. In fig. 11 we make fy_ o inactive, as
in fig. 3, at cell time 5000. All input neighbor flows
(fisj» fisj+1) must switch rates from 0.67 to 0.33 and
vice versa. For flows f3 4 and f4_4 to stabilize 3 buffers
must switch state; for flows f¢_7 and f7_7 to reach their
new rate, 6 buffer changes are needed. The rate at which
buffers switch state here is 0.33 (= old_rate- new_rate =
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0.67 — 0.33), so the estimation for the stabilization delay
is 3 buffers x 4 cells/buffer x 0.33 cells/cell-time = 36
cell times for the first couple, and similarly 72 cell times
for the second; we see that fig. 11 verifies that. The un-
fairness that accumulates during the transient phase, mea-
sured in number of cells, is again proportional to the dis-
tance along the dependence chain, and is almost doubled
as seen in fig. 11 for the second pair of flows, which is at
twice the distance relative to the first pair.

Next, we examined the effect of the crosspoint buffer
size. Based on the same reasoning as above, we expect the
delay and the unfairness magnitude to double, for a given
flow, when we go from a crossbar with 4-cell buffers to a
switch with 8-cell buffers per crosspoint. Figure 12 shows
that this is indeed the case.

The final parameter that affects the delay of the stabi-
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lization at the new state is the magnitude of the change.
Here we examined how the magnitude of rate change af-
fects the delay and the cumulative service unfairness. In
the configuration of fig. 2 , we modify the weights ratio
ﬁ—l = ¢, which affects the flow rates, before and after the
change. When this weights ratio is 5, flow rates switch be-
tween 1/6 and 5/6, hence the magnitude of the rate change
is 0.67; with weights ratio of 3 the rate change is 0.5,
and with a ratio of 2 the “speed” of change is 0.33 cells
per cell-time. Figure 13 shows the effect on flows f3_4
and f4 4 when fy ¢ turns inactive at cell time 5000, for
the above three different values of the weights ratio. We
see that indeed, the affected flows stabilize faster to their
new rate when the weights ratio is 5 (rate change of 0.67),
while ratio 2 yields the slowest stabilization (rate change
=0.33, and about twice the delay compared to rate change
of 0.67). On the other hand, the amount of cumulative un-
fairness, measured in number of cells, remains the same
in all three cases, confirming our corresponding conclu-
sion in section 3.4. In fig. 13 the cumulative unfairness
is just below 200 cells, when the theoretically predicted
number is 192: 3 buffers on the dependence chain have to
change state, times 64 cells per buffer, equals 192 cells of
cumulative unfairness.

Finally, we examined two other scenarios that are re-
lated to dependency chains. The first is the equivalence of
an active to inactive change (or vice versa), with a change
in weight. This equivalence is better understood when the
weight is simply the number of active sub-flows that con-
stitute an aggregation; a weight increase is equivalent to a
number of sub-flows becoming active, whereas a weight
decrease is equivalent to a number of sub-flows becoming
inactive. In fig. 14, flow f4 ¢ increases its weight from
1 to 256 and as a result all flow rates change, despite the



INPUTS

12

g 40 T T T
. 8 1
Service Intervals Array Rates Array = 30 |
r
% 20
2 4 0 .67/.33 | .33/.67 )
—f— 10
-]
67/.33 | .33/.67 3
5 |1 1 il oy < O s
o) flow.4-4
c -10 +
32 64 | 2 167/.33 | .33/.67 € "flow.2-2" *
-— ++ ~ 220 "flow.1-2" O
++ %
67/.33 |
1/256 128 | 3 .33/.67 > 2 -30 [ ofow 1-1" o
% "flow.0-4" A |
0 1 2 3 V 0 -40 L L L I i i
OUTPUTS 4800 4850 4900 4950 5000 5050 5100 5150 5200 5250
(@ (b) TIME (cell-times)

Fig. 14. (a) The service intervals (=1/weight) table of the flows
before and after the change (old/new). (b) The stabilized rates
before and after the change (old/new).

Service Intervals Array

1 - |2 256 | ©
{4 | 8 Pt
%) ++ '
= .
2 16 |, 32 L2
z L !
64_|108-1 3
+t 1
256 -1 4
0 1 2 3 4 E
OUTPUTS v

Fig. 15. Presentation of the two reconvergent dependency
chains on the service intervals (SI; = w%) table of a 55 cross-
bar.

fact that f,_ was receiving the highest utility before the
change. Since flow f4_¢ can affect its neighbor flow fy_o,
it turns out that this flow can affect all other flows in the
dependency chain that starts from fy_q. This is what the-
orem 3 captures by including neighbor flows independent
of previous utility, in the characterization of the depen-
dency paths®.

The second scenario is the reconvergence of multi-
ple dependency chains, that normally occur with com-
mon/random weights configurations. The slowest of these

“We decided not to show the actual plot of the flows, but only the
final states produced, due to space limitations.

Fig. 16.  Service difference versus time for the configuration
presented in fig. 15 ; 16 cells worth of buffer space/crosspoint.

paths will determine the stabilization time.

In fig. 15, there are two dependency paths that start
from flow fy_o and reach flows f3_4 and f4_4; one path
goes through flow f,_4 and the other path goes along the
main diagonal of the crossbar table. When flow fy_¢ be-
comes inactive at time-slot 5000, flow fy_; takes almost
all remaining capacity from input 0 (~ 0.99 cells/time-
slot), whereas its output service rate is confined to 0.67
cells/time-slot. When its crosspoint buffers fill (at time ~
5050), this flow’s input rate adapts to its output fair share
(0.67 cells/time-slot) and flow’s fo_4 input service rate
increases —increasing demand and service rate at output
4—, thus potentially affecting (decreasing) flows f3_4 and
fa_4. Flow f3_4 is not affected since at this time this is
constrained in the input and the potential service decrease
at output 4 does not exceed its demand stemming from in-
put 3, whereas flow’s f4_4 service rate decreases. This is
the time (time-slot ~ 5050) that the first dependency path
affects flows f5_4 and flow f4_4, but since the second de-
pendency chain has still not reached them, the knee-like
effect is produced for flows fy_4 and f4_4 at time ~ 5050
(fig. 16 ). Later, when the second and slower dependency
chain reaches output 4 at time ~ 5130 (flow f3_4 stops
being constained at the input, since f3_3 reduced its de-
mand at input 3 to 0.33 cells/time-slot), all flows, includ-
ing fo—4, stabilize correctly at their fair shares. Note that
the stabilization of flow fy 4 at this time cannot affect
flow fo—1 (neighbors at input 0), since this flow receives
less utility at input 0°.

5. CONCLUSIONS

Current IC technology allows the integration of small
crosspoint buffers into crossbar chips. The resulting

51f it did, the system could oscillate along circular dependencies.



buffered crossbar architecture offers significant advan-
tages: (@) variable size packets can be switched; (b) no
internal speedup is needed; (c) output buffer memories
can often be eliminated; (d) scheduling gets simplified be-
cause it becomes distributed, and can easily yield full out-
put utilization; and (¢) WRR/WFQ scheduling becomes
feasible, thus enabling sophisticated QoS architectures.

In view of the expected rising commercial importance
of buffered crossbars, we studied the fairness properties
of distributed WFQ/WRR scheduling in such switches.
These properties become important for QoS every time a
crosshar output gets oversubscribed. Even if higher-level
flow control ensures the absence of output congestion in
the long run, short-term output overloading will often oc-
cur due to traffic variability. During such periods, which
can last for fractions of a second in modern networks, it
is important to offer strong QoS guarantees. Weighted
round robin serves that purpose; weight factors are desir-
able both in order to provide service differentiation, and in
order to support flow aggregation where different aggre-
gates consist of different and variable numbers of flows.

We showed how distributed WFQ/WRR scheduling in
buffered crossbars yields weighted max-min (WMM) fair
rate allocations under a simplifying fluid model. We sim-
ulated the system under discrete cell traffic and measured
the relative discrepancy of the actual rate allocations from
the WMM fair allocations; we showed that small cross-
point buffer sizes (single-digit number of cells) suffice
for excellent approximation of ideal WMM fairness (to
within less than a few percent). This also shows that full
utilization of oversubscribed outputs is approximated to
the same excellent degree. We studied extensively the
transient behavior of the system, when flows come and
go or when weight factors change, and concluded and
verified by simulation that restabilization at the new fair
rates occurs within a delay time that is faster when buffers
are smaller and when rate changes are larger; the amount
of service unfairness during transients, when expressed in
bytes, depends mostly on buffer size, and not on the mag-
nitude of rate changes. In conclusion, buffered crossbars,
which are technically feasible today, offer important ad-
vantages, including excellent quality of service guaran-
tees.
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