
Benes Switching Fabrics with
O(N)-Complexity Internal Backpressure

Georgios Sapountzis and Manolis Katevenis
Institute of Computer Science - FORTH, and University of Crete, Greece

ICS-FORTH, P.O. Box 1385, Heraklion, Crete, GR-711-10 Greece

http://archvlsi.ics.forth.gr/bpbenes/ -{sapunjis,katevenis}@ics.forth.gr

Abstract— Multistage buffered switching fabrics are the
most efficient method for scaling packet switches to very
large numbers of ports. The Benes network is the lowest-
cost switching fabric known to yield operation free of
internal blocking. Backpressure inside a switching fabric
can limit the use of expensive off-chip buffer memory to
just virtual-output queues (VOQ) in front of the input
stage. This paper extends the known backpressure archi-
tectures to the Benes network. To achieve this, we had
to successfully combine per-flow backpressure, multipath
routing (inverse multiplexing), and cell resequencing. We
present a flow merging scheme that is needed to bring
the cost of backpressure down toO(N) per switching
element. We prove freedom from deadlock for a wide
class of multipath cell distribution algorithms. Using a
cell-time-accurate simulator, we verify operation free of
internal blocking, we evaluate various cell distribution and
resequencing methods, we compare performance to that of
ideal output queueing, the iSLIP crossbar scheduling algo-
rithm, and adaptive and randomized routing and we show
that the delay of well-behaved flows remains unaffected by
the presence of congested traffic to oversubscribed output
ports.

Topics Keywords: Switches and switching.
Methods Keywords: System design, Simulations.

1 . INTRODUCTION

Switches, and the routers that use them, are the basic
building blocks for constructing high-speed networks
that employ point-to-point links. As the demand for
network throughput keeps climbing, switches are needed
with both faster ports and more ports. This paper con-
cernsswitch scalability when thenumber of ports in-
creases. For low to modest numbers of ports –up to about
64– the crossbar is the switch topology of choice, owing
to its simplicity and non-blocking operation. However,
its cost grows withN 2, whereN is the number of ports,
which makes it very expensive for largeN . Additionally,
crossbar scheduling is a hard problem, and gets much
harder with increasingN .

1.1. Multistage Fabrics and Related Work

For switches with hundreds or thousands of ports,mul-
tistage switching fabric architectures are needed, whose
cost growth rate is less than quadratic. Researchers have
been looking at such scalable fabric topologies since the
days of electromechanical telephony [1]. The banyan
network [2] features a low cost,N · logN and a rich
set of paths. Although it can support full egress link
utilization under uniformly destined traffic, as well as a
number of other specific traffic patterns, it does suffer
from internal blocking: not all feasible ratesλi,j (see
section 2.1) can be routed through it. The lowest-cost
N × N network that is free of internal blocking is
the Benes network [3], whose cost isN · 2logN . The
Benes network isrearrangeably non-blocking, that is,
when each connection is routed through a single path,
setting up new connections may require the re-routing of
existing connections; however, using multi-path routing,
this disadvantage can be eliminated: see section 2.1. This
paper concerns the Benes network.

If a multistage switching fabric contains no buffer
storage, there must exist a mechanism to handle the cell
routing conflicts that arise(a) in internal paths due to
the routing algorithm, and(b) due to output conflicts.
The former conflicts can be handled in a distributed
manner (“self-routing fabrics”) using Batcher sorting
networks [4]. The latter conflicts –cells destined to the
same output at the same time– must be avoided at the
inputs or tolerated in the fabric. Avoidance at the inputs
is equivalent to crossbar scheduling and requires global
coordination, hence it is unrealistic for large fabrics. To
tolerate output conflicts in the fabric, designers have used
recirculation of cells [5] or multiple paths to each output
buffer [6]. All of these mechanisms cost a lot in number
of stages and paths per stage in the switching fabric: the
fabric cost isO(N · log2N), and the constant in front of
the actual cost is significant. In essence, these techniques
spend (expensive) communication resources in order to

c©2003 FORTH - July 2003 1

economize on (inexpensive) storage resources, which is
the wrong tradeoff in modern VLSI technology.

It is preferable for the switching fabric to contain
internal buffer storage, in order to buffer conflicting cells
until the conflict goes away. Such internal storage may be
small enough to fit inside the switching-element chips,
or it may be large enough to replace the buffer space
typically found on the ingress line cards –usually hun-
dreds of MBytes– hence requiring off-chip DRAM. In
the former case,backpressure is used to prevent the small
buffers from overflowing; effectively, the majority of the
buffered cells are pushed back onto the ingress line cards,
as in the usual case of virtual-output queues (VOQ) on
the input side. Given that the ingress lines are much
fewer than the intra-fabric links, this architecture results
in significant cost savings when compared to the off-
chip DRAM case for intra-fabric buffers, as shown by the
ATLAS I switch evaluation [7]. Lucent’s ATLANTA chip
set uses a 3-stage buffered switching fabric with internal
backpressure [8]. Several other commercial chip sets also
use backpressure in the ingress-switch-egress connection
chain [9] [10]. This paper concerns the application of
this advantageousinternal backpressure architecture to
the Benes network –the lowest cost scalable switching
fabric.

1.2. Contributions of this Paper

In this paper, we extend the backpressure architecture
from single-path fabrics (like banyans) to multi-path
topologies, and specifically to the Benes network. This
extension is non-trivial. In order for the Benes fabric to
operate free of internal blocking, the cells of each flow
must be routed over multiple paths, and must afterwards
be properly resequenced, as reviewed in section 2.1. In
order for backpressure to operate free of head-of-line-
blocking effects, it must operate on a per-flow granular-
ity, as reviewed in section 2.2. If these two requirements
were combined in a naive way,O(N 2) complexity
would result for the switching elements in the middle
stages of the Benes fabric. We show how to reduce
this complexity down toO(N), using appropriate flow
merging techniques which minimally affect performance:
see section 3.1. The resulting complexity ofO(N) is
realistic for modern VLSI technology, because fabrics
of size N in the order of a few thousand ports require
on-chip buffer storage on the order of several thousand
cells (several Mbits), which is feasible.

Multi-path cell distribution interacts with flow merg-
ing, and they both interact with the organization and
placement of buffers; we show which organization is
preferable, and we prove that it is deadlock-free (sec-
tion 4). Finally, section 5 presents our simulation results,

.

.

.

.

.

.

2
N

2
N

2

N

N
2
N

2

0 0
 0
 1

N−2
N−1

−1 N
2 −1

N−1
N−2

 1
 0

Output
Switches
Input

λ/2

λ/2

Switches

λ
Even

Odd

Fig. 1. Recursive construction of anN × N Benes network.

showing that(a) non-blocking operation with full output
utilization is indeed achieved;(b) the delay-versus-load
characteristics of this switching fabric under bursty traf-
fic are comparable within a factor of 1.6 to those of ideal
output queueing;(c) delay to uncongested outputs is
minimally affected by the presence of congestion (over-
subscribed outputs) elsewhere in the network; and(d)
delay is not very sensitive to the specific multi-path
cell distribution method within the class of methods we
consider.

To the best of our knowledge, this is the first time that
the application of per-flow backpressure to the Benes
switching fabric is studied. Also, we are not aware of
other studies of backpressure with multi-path cell routing
in general. Multi-path cell routing has been studied
before, e.g. [15] [16] [11], but not with backpressure.

2 . THE BENES FABRIC

This section reviews the two foundations of our de-
sign: the Benes fabric, and internal backpressure in
switches.

2.1. Non-blocking Operation

The Benes network [3] can be constructed recursively,
usinginverse multiplexing [17] [15], as shown in fig. 1.
TheN×N Benes network consists of twoN2 × N

2 Benes
subnetworks,N2 switches of size2× 2 connected to the
inputs of the two subnetworks, andN2 switches of size
2 × 2 connected to the outputs of the two subnetworks.

Let λi,j denote the traffic entering the network from
input i and destined to outputj. In order for theN ×N
network to be non-blocking, the2× 2 switch connected
to input i must equally distributeλi,j among its two out-
puts. The output switch that feeds outputj receives1

2λi,j

on each of its inputs, reconstructsλi,j and routes it to the
appropriate output. Freedom from internal blocking re-
sults as follows. For any set offeasible ratesλi,j entering
theN×N network (i.e.

∑N−1
j=0 λi,j ≤ 1, ∀i) and leaving

the N × N network (i.e.
∑N−1

i=0 λi,j ≤ 1, ∀j), the rates
entering and leaving eachN2 ×N

2 subnetwork will also be
feasible. Specifically, inputk of either subnetwork will

c©2003 FORTH - July 2003 2

6
5
4
3
2
1
00

1
2
3
4
5
6
7

Distribution Routing

8−wide
4−wide2−wide

7

Fig. 2. 8 × 8 Benes network highlighting distribution and reconstruction
of traffic λ2,5.

be receiving
∑N−1

j=0
1
2λ2k,j +

∑N−1
j=0

1
2λ2k+1,j which is≤

1
2 + 1

2 = 1 because of the above feasibility of the overall
traffic. Symmetrically, the load of outputm of either
subnetwork will be

∑N−1
i=0

1
2λi,2m +

∑N−1
i=0

1
2λi,2m+1 ≤

1
2 + 1

2 = 1. Assuming that each subnetwork is internally
non-blocking, i.e. can route any such feasible traffic, it
follows by recursion that the overallN×N network will
also be internally non-blocking.

Unrolling the recursion in fig. 1, for N = 8, results in
the topology shown in fig. 2. Trafficλi,j goes through
log N stages of distribution andlog N corresponding
stages of reconstruction. The figure also shows that an
N × N Benes network can be constructed by placing
two banyan networks back-to-back. The two banyans
are called thedistribution and the routing network,
respectively [18], since the first distributes incoming
traffic over theN links in the middle of the network –
a virtual “wide” link of throughputN – and the second
routes cells to the proper output link.

Non-blocking operation as above is based on (re-
peated)inverse multiplexing or load distribution in a
balanced manner. A “poor man’s” method for load dis-
tribution is to send all packets of “half” the microflows
through one path, and all packets of the other half
through the other path, e.g. using a pseudo-random hash
function of the source-destination IP address pair to
decide the path . This ensures that all packets of a
given microflow follow the same route, and hence arrive
in-order. The disadvantage of this method is that load
distribution may not be balanced in the long run, and
even worse on a short term basis, especially where
the number of microflows is limited. Imbalanced load
distribution will result in internal blocking in the Benes
fabric, and thus we do not use this method. At the
other end of the spectrum is a method for exact load
distribution that resembles thebit-sliced processors of
the 70’s. Each cell is split in two units, of half the
original cell (payload) size each, and each unit is sent in
one of the two directions. This method is used in several
commercial chip sets, but only with splitting degrees
up to 8 and with carefully equalized delays through the
paths [9]. This method is far from scalable, due to the

fixed header and per-unit-processing overheads, and thus
we do not use it.

To achieve balanced load distribution in the long run
–even if not so on a very short term basis– while still
operating at the cell level, a number of methods have
been proposed: randomized [19], adaptive [15], per-
flow round-robin cell distribution [14]. In all of these
methods, cells of a given microflow are routed through
either path, hence they may arrive out-of-order. For the
switching fabric to preserve cell order within individual
microflows, resequencers must exist at the points of path
reconvergence [17] [16]. Resequencing is an important
issue in our system, dealt with in sections 3.1 and 4.

2.2. Internal Backpressure Protocols

Switches with multistage buffering typically useback-
pressure feedback control between these stages, to avoid
overflow of downstream buffers and to control individ-
ual flow rates when multiple flows merge into over-
subscribed resources, thus enforcing quality-of-service
(QoS) guarantees.

We assumecredit-based backpressure: the upstream
stage maintains a credit counter (in total or per-flow),
specifying how many cells is is allowed to transmit in the
downstream direction before new credit is received via
backpressure feedback signals. The buffer space needed
is λ × RTT (in total or per-flow), whereλ is the peak
rate andRTT is the round-trip time.

Backpressure signals may refer to individual (mi-
cro) flows, or to flow aggregates, or indiscriminately
to all traffic passing through a link. Indiscriminate
backpressure leads to very poor QoS, because a single
oversubscribed flow may stop the service to all other
flows with which it shares a link or a buffer (this
is analogous to head-of-line (HOL) blocking). Thus,
per-flow or virtual-channel or multilane backpressure
is needed. The number and definition of “flows” is a
crucial parameter and affects cost –amount of state and
granularity of feedback information– and QoS –degree of
isolation among competing flows. When individual flow
granularity is excessive, one can use a “compromise”
solution or appropriate flow aggregation. Compromise
backpressure protocols yield good performance in the
usual cases, but perform badly in some worst cases;
they include: wormhole virtual channels [20], a DEC
proposal [21], Quantum Flow Control [22], and the
ATLAS I multilane backpressure [23].

This paper is concerned with full-fledged per-flow
backpressure, which ensures that even if all output ports
but one are oversubscribed, traffic going to that one non-
congested output will still enjoy delays comparable to

c©2003 FORTH - July 2003 3

those of an ideal output-queued switch. We obtain such
strong QoS guarantees at a cost not worse thanO(N) per
switching element, which is realistic for modern VLSI
technology.

This is the model assumed in this paper: we deal
exclusively with the flow controlinside the Benes fabric.
We assume that this is of the credit-based backpressure
type, independent of the type of flow control employed
outside the fabric, in the overall network. Thus, in the
rest of this paper, for anN × N fabric with pl priority
levels, we only consider theN 2 × (pl) flows defined,
each, by one specific fabric input port, i, one specific
fabric output port, j, and one specific priority level.

3 . SWITCHING ELEMENT ORGANIZATION

In this section, we present flow merging schemes
that reduce theO(N 2) backpressure cost (per switching
element) down toO(N). Next, we describe the queues
and the functionality inside the distribution and routing
switching elements.

The main tool used in this endeavor is themerging of
flows with common destination. When multiple flows of
a same priority level follow a common path to a common
destination, they can be treated as a single, merged flow
over the common path for purposes of buffer allocation
and backpressure granularity. The reason is that cells of
one flow will never need to overtake cells of another
after the merge point. One (mild) disadvantage of such
merging is its transient behavior when one of the flows
goes from inactive to active: the “pipeline” ahead of the
merge point has already been filled with cells of the other
flows. Under weighted round robin (WRR) scheduling
schemes, we run the danger that this pipeline empties at
the rate corresponding to the weights of the old flows,
while the recently activated flow may have much higher
weight.

3.1. Flow Groups

As noted in section 2.2, for anN × N Benes fabric,
backpressure must operate at the granularity of theN 2

flows (per priority level) defined by all input-output
pairs. In banyan fabrics, although the total number of
flows is N 2, only N flows pass through any individual
link in the fabric. In the Benes fabric, however, the
traffic of every flow is distributed and sent over both
“even” and “odd” subnetworks in fig. 1; consequently,
all subnetworks, no matter how small, down to the
individual switching elements in the core of the fabric,
are traversed byN 2 flows (per priority level).

In order to reduce the number of flows, we usedper-
output merging of the flows destined to the same output

1 0
01 0

01 0 01 0
00

1 0

00

01 0
SplitMerge

Fig. 3. Cell distribution, and flow merging for the two flows originating
from inputs 0 and 1 and destined to the same output 0.

port of the fabric. Fig. 3 shows the case for two flows
originating from inputs 0 and 1 and destined to the same
output 0; “01 → 0” denotes the merging of flows0 → 0
and1 → 0. This example uses2×2 switching elements.
Each switching element of the distribution network (left
half of the Benes fabric) merges, one-by-one, theN flow
groups entering through one of its inputs with theN
flow groups entering through the other, and producesN
merged flow groups; the merging factor is two-to-one.
These switching elements also distribute the cells to both
of their outputs, so theN merged flow groups appear on
each of these outputs; fig. 3 shows one of these copies in
full detail, and uses an empty box for the other. Hence,
all links carry preciselyN flow groups.

In the routing network (right half of the Benes fabric),
cells that had been distributed to the even and odd
subnetworks must be resequenced. Resequencing, in
output switches, must be performed separately for each
flow in a merged flow group. The reason is that merged
flow groups carry cells that were distributed at different
input switches, independently of each other, before the
merge points. Hence, merged flow groups from different
inputs to a same output, must be split again in order for
resequencing to work correctly.

Splitting of flow groups and cell resequencing can be
performed progressively, per-stage, or cumulatively, in
the very last stage of the fabric. In the latter case, we
need not split flows within the routing banyan, thus, there
would beN

2 , . . . ,2, 1 flows passing though the switching
elements in thelog2 N stages of the routing banyan,
respectively. However, each resequencer at the output
ports of the fabric would then requireN resequence
buffers, one for each of theN (per-input) flows leading
to that output, each of sizeO(N). There is no reason
to accumulate so much complexity in the last stage of
the fabric, so we prefer the former solution –progressive
flow group splitting and cell resequencing.

In conclusion, per-output flow merging with per-stage
resequencing is much simpler to implement and has a
uniform implementation cost ofO(N) per switching
element, across all stages of the switching fabric, so we
use this architecture in the rest of the paper. Lucent’s
ATLANTA chip set [8] also uses per-output flow merging
and cell distribution, but avoids resequencing because

c©2003 FORTH - July 2003 4

RD

1

Merge
0

1

2

3

0

0

0

0

0

1

2

3

1

1

1

1

23

Reseq
Cell

0
Flow

1

1

0

23

23

01

01 0

23

101

0

Split
Flow

01 0

01 3

01 2

01 1

01 0

01Distr
Cell

01 1

01 2

01 3

01

11

21

31

30

00

10

20

Flow Merging − Splitting
Cell Distribution − Resequencing

SchDistr SchRout

. . .

. . .

Fig. 4. Logical buffer organization of a distribution and the corresponding
routing switching element.

the middle stage consists ofN
P × N

P bufferless crossbars
(whereP is the number of port interfaces connected to
each input module), thus, it does not reorder cells.

3.2. Logical Buffer Organization

Figure 4 shows the preferred logical buffer organiza-
tion of the distribution and routing switching elements,
along with the active components needed. We follow
the flow merging and cell resequencing architecture that
was chosen above. The flows from inputs 0 and 1
to four different fabric outputs are shown in the left
(distribution) switching element, along with the flows to
outputs 0 and 1 from four different fabric inputs in the
right (routing) switching element. The FIFO’s shown are
logical queues, containingreferences to cells; the actual
cells do not move inside the switching element.

Distribution switching elements must perform flow
merging and cell distribution; they can perform these
tasks in either order. Routing switching elements must
perform cell resequencing and flow splitting in the
proper, corresponding order. Cell distribution can be per-
formed in a number of ways; as discussed in section 4,
it relies on per-flow state and aims to optimize per-flow
criteria. Flow merging before cell distribution reduces the
number of flows seen by cell distribution. The smaller
the number of flows, the easier it becomes to coordinate
the per-flow (local) decisions so as to optimize global
criteria; also, buffer space gets reduced, as explained
later in this section. Thus, we choose this arrangement,
as shown in fig. 4.

At the inputs of the switching elements, buffers are
needed per input port and per flow group, because credits
for that buffer space and at that granularity must be sent
to each upstream neighbor. Besides these input buffers, it
is advantageous or necessary to also have output buffers,
as shown in fig. 4. The chosen arrangement requires
2 × P × N FIFO queues per distribution switching
element. If the distribution switching elements performed

cell distribution before flow merging, then, each of them
would needP 2 × N FIFO queues.

In the distribution switching elements (left half of the
network), it is advantageous to have output buffers(a)
in order for output schedulers to operate independently,
and(b) for efficiency in some distribution circumstances,
as explained below. Suppose that output buffers did not
exist. First, assume that input buffer0 → 0 contains a
cell while input buffer1 → 0 is empty (as in fig. 4),
and that the cell distribution algorithm allows the cell
to depart in either direction. Then, up to one but not
both output schedulers of this switching element would
be allowed to choose flow group01 → 0 for service;
hence, the two schedulers would not be able to operate
in parallel. Next, assume that both input buffers0 →
0 and 1 → 0 contain cells, and assume that the cell
distribution algorithm dictates that the next-in-order cell
of flow group01 → 0 must depart through the top output
of the switching element. Until the top-output scheduler
is able to serve this next-in-order cell, it would be very
hard for the bottom-output scheduler to serve flow group
01 → 0, although two cells exist in this flow group,
because we don’t quite know which cell is the second-
next in order.

In the routing switching elements (right half of the
network), input buffers are needed for the same reason as
for the distribution switching elements, unless we know
where to expect the next cell from in which case we only
need one buffer slot and the credit for that buffer is sent
to the upstream node from which the next cell will arrive.
Each output buffer, together with its input counterpart in
the downstream neighbor switch, forms a double-depth
buffer pipe, which is needed for deadlock-free operation
of cell resequencing under the preferred distribution
methods, as will be seen in section 4. However, output
buffers are not necessary, they could be dropped by
making, at the same time, the input buffers of greater
depth.

4 . FREEDOM FROMDEADLOCK

The Benes fabric with finite buffers, internal back-
pressure, flow merging, and resequencing is a distributed
system with finite resources and resource sharing. In
such a system, we have to make sure that deadlock
situations either do not occur, or if they do occur,
the system detects and resolves them. In this section,
we show that for a wide and interesting class of cells
distribution methods, a deadlock situation cannot arise.

We consider cell distribution methods with a max-
imum per-flow imbalance of 1: at any time, the total
number of cells belonging to some flow that have been

c©2003 FORTH - July 2003 5

k−1

x−1

k

x

r

AB
l

AB
flow B B

B B

A
B

D M R

l

l

A

B

A

B

flow A A

A B

A

A

A

B

A

B

S

AB

y

AB

r

Fig. 5. Deadlock situation when flow merging precedes cell distribution.
The participating switching elements are shown with dashed lines and the
participating flows are indicated with A, B and AB. The numbers by the FIFO
buffers denote the sequence number of the cell at the head of the buffer.

x−1

k−1

k

x

r

AB

AB

AB

flow B
B

A

D M

flow A
B

A

l B

R

l

A

B

A

A

B
l

y

S

rAB

Fig. 6. Simplified but equivalent view of the deadlock situation shown in
fig. 5.

forwarded through any two paths available to that flow
differs by at most1. At the other end of the two
paths, resequencing “consumes” cells in order; it follows
that, for such distribution methods, the number of cells
buffered along the two paths can differ by at most2. We
see that these distribution methods equalize the loads on
the two paths. Per-flow round-robin cell distribution is
such a method.

Figure 5 shows how a deadlock could arise in our
switching elements. Figure 6 shows a simplified but
equivalent view of the deadlock situation: consecutive
FIFO buffer dedicated to the same flow have been
merged into a single FIFO buffer with depth equal to the
sum of the depths of the individual FIFO buffers. Letcs

f
denote the cell of flow “f” with sequence number “s”,B s

f
denote the buffer slot occupied by cellcs

f , andRf denote
the resequencer of flow “f”. The deadlock situation is the
following (see fig. 7 for the resource allocation graph):
(a) the resequencer of flow A is waiting for cellck−1

A ,
(b) cell ck−1

A is somewhere in the fabric behind cellcy
B

and it needs a buffer (By
B) or resequencer (RABl

) held
by cell cy

B in order to move forward – note that cellck−1
A

could not be on the same path with cellck
A since they

belong to the same flow, thus, the Benes fabric would not
reorder the two cells,(c) cell cy

B needs a buffer held by
cell cx

B in order to move forward,(d) cell cx
B is waiting

to be resequenced byRB , and so on, so forth until the
cycle closes toRA.

B

B

R

C

B

C B R
B

A

C

B

CBC

C
B

k−1

A

k

A

k
A

l

A A

l

B

B

y y

x

x

x−1

Fig. 7. The resource allocation graph for the deadlock situation. Circles
represent cells, while rectangles represent resources which can be either buffer
slots or resequencers.

4.1. Basic Case

Let bD denote the size of the distribution FIFO buffers,
andbR denote the size of the routing FIFO buffers shown
in fig. 6.

Theorem 1 If no cells are lost, bD = 1, bR = 2 and cell
forwarding is subject to hop-by-hop credit-based flow
control, then any cell distribution method with maximum
per-flow imbalance of 1 is deadlock-free.

Proof. Let Ls
f denote the time slot at which cellcs

f
crosses line “L” in fig. 6, where “L” is one of D,M,S,R.
The cell distribution method and the fabric operation
impose limitations on the set of cells that can be active
on the paths available for flows A and B, and the
ordering between various values ofLs

f for lines D,M,S,R,
respectively. With regard to the set of active cells, there
are four cases for flow A shown in fig. 8, the cases for
flow B are analogous. The ordering relations are of four
types and are listed below:

• Direction: (Di
f < M i

f < Si
f)

• Distribution: (Di
f < Di+1

f)
• Backpressure: (M i

f < Dj
f) for every cells ci

f and

cj
f with i < j which were both forwarded through

the same path
• Flow-Order: (M i

f < M j
f ⇐⇒ Si

f < Sj
f) for every

cells ci
f and cj

f which were both forwarded through
the same path

Using the above relations, we can partially construct
the time-order graph shown in fig. 9, specifically rela-
tions (Mk−1

A < M l
A) and (Mx−1

B < My
B). Cell ck+d

A

refers to thefirst cell of flow A after cell ck−1
A on

the same path with cellck−1
A . Sequence numberk + d

corresponds to eitherk+1, cases(1a) and(1b), or k+2,
cases(2a) and (2b). Cell cl

A refers to thesecond cell
of flow A after cell ck

A on the same path with cellck
A.

Sequence numberl also differs in each of the four cases
of fig. 8. The important property is thatl is greater than

c©2003 FORTH - July 2003 6

k+3

k+2

k−1

k+1

k−1k+3

k+1

k+2

(1a)

(1b)

(2a)

(2b)

...

 k

 k

 k

 k...

k+3

k+4

 l

 l

k−1

k−1

k+2

k+2

k+1

k+1

...

...

Fig. 8. Active cells allowed by cell distribution methods with maximum
per-flow imbalance of 1.

Backpressure

Direction

Distribution

M

M

D

D

k−1

l

l

A

A

A

A B

B

B

B
D

D

M

M

k+d

x−1

x+e

y

y

D
ea

dl
oc

k
F

lo
w

−
O

rd
er

Fig. 9. The time-order graph. The nodes of the graph represent events of
the formLs

f and the arcs represent ordering relations between the events. The
direction of an arc is from the older to the newer event.

k + d, and this property can only be guaranteed in all
of the four cases only if the size of the routing FIFO
buffers is 2 slots. Similarly for flow B.

If we assume that a deadlock arises, then the following
ordering relations also hold:(M y

B < Mk−1
A) and(M l

A <
Mx−1

B). The deadlock ordering relations cause a cycle
in the time-order graph, which is a contradiction. Thus,
a deadlock situation cannot arise.

�

Note that the proof does not assume any special prop-
erties for the scheduling discipline at the flow merging
point. However, it assumes that no cells are lost due
to electrical noise within the fabric. This is definitely
an unrealistic assumption and a real system would have
to employ robust resequencing protocols as the ones
described in [16]. The proof of the basic case extends
easily for the case of more than two participating flows.
With regard to per-flow round-robin cell distribution,
note that it remains deadlock free even with routing
buffers of size1, since it only allows case (1a) of fig. 8
to arise.

...

...

...

... k+d

 l

available
distribution buffer size

 k

required
routing buffer size

k-c

Fig. 10. Required size of routing FIFO buffers in order to ensure deadlock
free operation.

4.2. Extensions

The proof continues to hold in the general cases of
(a) distribution FIFO buffers of sizebD slots each, where
bD > 1 and(b) switching elements of sizeP ×P , where
P > 2. The important observation is that the ordering
relationsMk−1

A < M l
A, and Mx−1

B < My
B, shown in

fig. 9, can be guaranteedindependently for each flow,
and depend only the properties of the cell distribution
method and the available distribution buffer sizebD.

Consider fig. 10 and assume that cellck−c
A is the next

cell to be resequenced, cellck+d
A is thefirst cell of flow

A after cell ck−c
A on the same path with cellck−c

A , and
cell cl

A is the cell of flow A with thesmallest sequence
numbergreater thank+d on the same path with cellck

A.
The relationMk−c

A < M l
A holds in this case provided

that we choosebR large enough so that sequence number
l is greater than sequence numberk + d in all cases
allowed by the cell distribution method for the given
buffer sizebD.

To sum up, for a given cell distribution method and
distribution buffer sizebD, we can choosebR so that
the Benes fabric is deadlock free. In the special case
of maximum per-flow imbalance of 1 andbD = 2, the
requiredbR is 3. With regard to per-flow round-robin
cell distribution, the requiredbR is equal tobD for any
value ofbD.

5 . SIMULATION RESULTS

A simulation model operating at the granularity of cell
times was developed in order to verify the design and
evaluate its performance under various traffic patterns
and for various switch sizes, and in order to evaluate cell
distribution and resequencing methods. In the simulation
model, the cell-credit round-trip time is 1 cell time,
and the buffer shown in fig. 4 has a size of 1 cell
for the distribution switching elements, and 2 or 3 for
the routing switching elements, depending on the cell
distribution method.

We simulated the switch under smooth, bursty, and
hotspot traffic. Smooth traffic consisted of Bernoulli ar-

c©2003 FORTH - July 2003 7

rivals with uniformly distributed destinations. For bursty
traffic, each source alternatingly produces a burst of cells
(all with the same destination) possibly followed by an
idle period of empty cells; the bursts and idle periods
contain ageometrically distributed number of cells. The
reported results use bursty/12 traffic, where the mean
burst size is 12 cells; this is close to one of the modes
of IP traffic size distribution (assuming 48-byte cell pay-
load). Under hotspot traffic, each destination belonging
to a designated set of “hot spots” receives (smooth or
bursty) traffic at100% collective load, uniformly from
all sources; the rest of the destinations receive smooth or
bursty traffic as above. The reported results use hotspot/4
traffic, where the four hotspots are ports 0, 1, 2, and 3.
The delay reported is the average over all cells of the
cell’s exit time, minus the cell’s birth time,minus the
fabric length (number of stages) plus one; by subtracting
the fabric length from the actual delay, we report the sum
of all queueing delays for the cells plus one. In all of the
reported results, the duration of the simulation is 200,000
cell times and collection of statistics starts after the first
40,000 cell times. We use95% confidence intervals of
5% for average delay, except for one case where it was
7.1%.

As a means to get an indication regarding the lack
of internal blocking, we also simulated the64 × 64
fabric under the following artificial load. In each and
every cell time, a randomly-selected full permutation was
presented to the input of the switch; that is, all inputs
were continuously loaded at precisely100%, while the
overall load presented to the fabric wasfeasible, in
the sense of section 2.1, during each and every cell
time. After one million simulation cell times, there were
virtually no cells queued at the inputs: most of the VOQ’s
were empty, while a few others contained 1 or 2 cells
each.

5.1. Cell Distribution Methods

We experimented with two cell distribution methods,
called PerFlowRR and PerFlowIC, on a64 × 64 Benes
fabric made of4× 4 switching elements. PerFlowRR is
per-flow round-robin cell distribution, where the per-flow
distribution pointers are randomly initialized. PerFlowIC
(standing for per-flow imbalance count) chooses the port
for forwarding the next cell as follows: among the set
of ports that have received the least number of cells of
this flow up to now, choose the port that currently has
the least number ofready cells; ready cells are the cells
(of any flow group) that are queued at this port and that
have an available downstream credit. Both methods have
a maximum per-flow imbalance of 1, and, in the long run,

1

4

16

64

256

0.2 0.4 0.6 0.8 1

buf_sz=64

32
16

8

Adaptive
iSLIP
Randomized
PerFlowRR
PerFlowIC
OQ

Fig. 11. Delay versus load for Bernoulli arrivals and uniform destinations;
64×64 fabric made of4×4 elements; adaptive routing, randomized, 2-SLIP
and ideal output queueing (OQ) also shown for comparison.

1

4

16

64

256

1024

0.2 0.4 0.6 0.8 1

buf_sz=8 16 32 64

Adaptive
iSLIP
Randomized
PerFlowRR
PerFlowIC
OQ

Fig. 12. Delay versus load for bursty/12 arrivals and uniform destinations;
64×64 fabric made of4×4 elements; adaptive routing, randomized, 2-SLIP
and ideal output queueing (OQ) also shown for comparison.

send the same number of cells in each path; PerFlowIC,
though, is more flexible every time the imbalance count
returns to 0. We also performed simulations with larger
buffer sizes, up to 4, which allow more “slack” in the
two paths, and found that performance isinsensitive to
this parameter. The results are shown in figs. 11 and 12,
for uniformly destined traffic, and in fig. 13, for traffic
in the presence of hot spots.

Under smooth (Bernoulli) traffic, the cell distribution
method does make some difference: imbalance count
(PerFlowIC) yields 30% to 60% lower delay when
compared to round-robin distribution (PerFlowRR). The
difference is more pronounced for medium loads, and
less pronounced for light or heavy loads. The presence
or absence of hot-spot traffic does not affect this aspect
of the results. Underbursty traffic, though, the cell
distribution method makes virtuallyno difference. This
must be due to the large number of back-to-back cells in
the same flow: in this case, PerFlowIC becomes similar

c©2003 FORTH - July 2003 8

1

4

16

64

256

1024

0.2 0.4 0.6 0.8 1

iSLIP (hotspot)
iSLIP (uniform)
PerFlowRR (hotspot)
PerFlowRR (uniform)
OQ (hotspot)
OQ (uniform)

Fig. 13. Delay of non-hotspot destinations in the presence of hotspot/4
traffic; horizontal axis is the load to non-hotspot outputs; other parameters as
in fig. 11.

to PerFlowRR not only in the long but also in the short
term.

By comparing the delays with and without the pres-
ence of hotspots, both shown in fig. 13 for comparison,
we notice that they are almost identical, which shows
that non-hotspot traffic stays virtuallyunaffected by the
presence of hot spots in the network, thus proving the
excellent QoS properties of this switch. Not shown in
the plots is the throughput (utilization) of the hotspot
destinations (remember that the load offered to them is
100%). Under smooth traffic this output utilization was
consistently over99%; under bursty traffic, it ranged
from 92% to 98%.

5.2. Comparison with OQ, Adaptive, Randomized and
iSLIP

Figures 11, 11 and 12 also show, for comparison,
the delay of the ideal output-queued (OQ) switch under
each traffic load. We see that, under bursty traffic, the
Benes fabric has only20% to 60% worse delay when
compared to ideal output queueing. Under smooth traffic,
the switching fabric’s delay is longer by a factor of 1.6 to
4, the difference being less pronounced for light load and
more pronounced around80% load. We also performed
simulations for the two cell distribution methods under
bursty/32 arrivals and either uniform or hotspot/4 desti-
nations. Compared to ideal output queueing, the average
delay was10% to 60% higher for uniform destinations,
and15% to 85% higher for hotspot/4 destinations.

We also compare the Benes fabric with per-flow
backpressure and cell distribution with limited imbalance
against the more traditional architectures of the Benes
fabric with adaptive and randomized routing; shown in
figs. 11 and 12. Randomized routing features delays
comparable to the Benes fabric withPerFlowRRbut, for

1

4

16

64

256

1024

0.5 0.6 0.7 0.8 0.9 1

iSLIP: 64
iSLIP: 16
Avg: 256
Avg: 64
Avg: 16

Fig. 14. Performance for various fabric sizes,16 × 16 to 256 × 256:
average delay versus load, under bursty traffic in the presence of hot spots.
The results are for the PerFlowRR cell distribution method.

high loads, it requires an excessive number of buffers to
achieve this – up to16, 000 slots per switching element
under bursty traffic and up to1, 800 slots per switching
element under smooth traffic, while the Benes fabric
with PerFlowRRuses512 slots per chip in all cases.
Adaptive routing uses a limited number of buffer slots
– the results shown vary from64 to 512 slots per chip,
but due to indiscriminate backpressure it suffers from
problems similar to HOL blocking: saturation throughput
is well below 100% and delay quickly deteriorates with
increasing buffer sizes.

Lastly, we compare the performance of the Benes
fabric with that of a crossbar with VOQ’s and the 2-
SLIP crossbar scheduling algorithm [25]1. We see that,
for loads under70%, the delay for 2-SLIP is small,
compareable to the delay through the Benes fabric. As
the load gets higher, around80%, the delay for 2-SLIP
increases considerably, and for bursty traffic it is 14 to
18 times worse than the delay through the Benes fabric.

5.3. Fabric Size Dependence of Performance

One of the advantages of the proposed architecture is
that it can scale to very large sizes. It is important for the
performance of the fabric not to degrade with increasing
size. We experimented with fabrics of up to 256 ports.
We used the more “interesting” of the previous traffic
patterns, bursty/12 arrivals with hotspot/4 destinations.

The results are plotted in fig. 14, and they show
that average cell delay remains virtuallyunaffected by
fabric size. We also present results for switches using

1For the performance simulations for the 2-SLIP algorithm, we
used the SIM simulator from Stanford University. The model for
bursty traffic we used does not support loads overb

b+1
, whereb is

the average burst size, thus, we present results for average loads up
to 0.923%.

c©2003 FORTH - July 2003 9

1

4

16

64

256

0.2 0.4 0.6 0.8 1

FinalOut Total
PerStage Total
FinalOut Fabric

Fig. 15. Average delay under different resequencing methods; bursty traffic
in the presence of hot spots. The results are for the PerFlowIC cell distribution
method.

the 2-SLIP crossbar scheduling algorithm. We see that
in this case, for loads under70%, average delay remains
unaffected with increasing fabric size, but for higher
loads it gets approximately 4 times worse with increasing
fabric size.

5.4. Alternative Cell Resequencing Methods

As discussed in section 3.1, cell resequencing can be
performed progressively, “PerStage”, or cumulatively, in
the very last stage of the fabric (“FinalOut”). From the
point of view of implementation, per-stage resequencing
is simpler and less expensive than FinalOut, but the
question regarding performance remains: it appears that
FinalOut lets cells go faster through the routing network,
and thus may lead to lower delays. In reality, things are
the other way around!

Figure 15 shows the average delay under the two
resequencing methods; input traffic is bursty/12 and
hotspot/4, as in section 5.3. For the “FinalOut” method,
we show separately the delay for the cells to get through
the fabric, without yet being resequenced (“FinalOut
Fabric”), and separately their total delay, including the
resequencing process in the very last stage of the fab-
ric (“FinalOut Total”). Interestingly, although cells do
indeed get a bit faster through the fabric, as compared
to the case where per-stage resequencing delays them
in the routing network, when the delay of FinalOut
resequencing is added, the overall delay of FinalOut is
worse.

We see that letting some cells get quickly through
the fabric, ahead of their order, without per-stage rese-
quencing, appears to consume such fabric resources that,
overall, it harms other cells more than it benefits the
early-out cells. We conclude thatper-stage resequencing
is strictly better than cumulative resequencing in the very

last stage of the fabric, both from the point of view of
implementation cost and complexity as well as from the
point of view of performance.

6 . CONCLUSIONS

We showed how to efficiently scale packet switches
to very large numbers of ports, while maintaining non-
blocking operation and high quality of service. This
can be done using the Benes network, the lowest-cost
switching fabric that is free of internal blocking. Large
buffer memories are only needed at the inputs of the
system, to implement virtual output queues (VOQ); their
number scales linearly with system size, the number
of queues in each memory also scales linearly, while
their throughput stays fixed. Internal backpressure is
used in the Benes fabric, in order to provide:(a) low
cost switching elements, since they only need on-chip
buffer memory;(b) zero cell loss in the switching fabric,
although buffer memories are small;(c) low system
cost, since the fabric needs no internal speedup;(d) low
system cost, since the fabric does not need redundant
paths to handle cell conflicts using deflection routing;
(e) low system cost, since no global scheduler is needed,
and all scheduling and coordination is distributed; and
(f) high system performance and high quality of service,
even though system cost is kept low as detailed above.

To achieve all these, we had to extend the known
per-flow backpressure architecture so as to make it
applicable to multipath routing (inverse multiplexing)
and cell resequencing. To the best of our knowledge, this
is the first time that this combination of architectures is
studied. In order to keep the cost manageable, we used an
appropriate flow merging scheme that keeps the cost of
backpressure down toO(N) per switching element. We
proved freedom from deadlock for a class of multipath
cell distribution algorithms. Finally, using a cell-time-
accurate simulator,(a) we verified operation free of inter-
nal blocking;(b) we showed that per-stage resequencing
is preferable;(c) we found that cell distribution based
on imbalance counts leads to lower delays than round-
robin distribution, but under bursty traffic this difference
becomes negligible;(d) we noticed that delay under
bursty traffic is only 20 to 60 % higher than ideal output
queueing;(e) we showed that average delay is lower than
for 2-SLIP, the difference being more pronounced for
loads over80%; and (f) we showed that the delay of
well-behaved flows remains unaffected by the presence
of congested traffic to oversubscribed output ports, thus
proving the excellent quality of service properties of the
system.

c©2003 FORTH - July 2003 10

REFERENCES

[1] M. Marcus, “The Theory of Connecting Networks and their
Complexity: a Review,”IEEE Proceedings, vol. 65, no. 9, pp.
1263–1271, Sept. 1977.

[2] C.-L. Wu and T.-Y. Feng, “On a Class of Multistage Intercon-
nection Networks,”IEEE Trans. on Computers, vol. 29, no. 8,
pp. 694–702, Aug. 1980.

[3] V. Benes, “Optimal Rearrangeable Multistage Connecting
Networks,” Bell Systems Technical Journal, vol. 43, no. 7, pp.
1641–1656, July 1964.

[4] K. Batcher, “Sorting Networks and their Applications,” in
AFIPS Proc. 1968 Spring Joint Computer Conf., 1968, vol. 32,
pp. 307–314.

[5] A. Huang and S. Knauer, “Starlite: A Wideband Digital
Switch,” in Proc. IEEE GLOBECOM ’84 Conf., Atlanta GA
USA, Dec. 1984, pp. 121–125.

[6] J. Giacopelli, J. Hickey, W. Marcus, W. Sincoskie, and M. Little-
wood, “Sunshine: a High Performance Self-Routing Broadband
Packet Switch Architecture,”IEEE-JSAC, vol. 9, no. 8, pp.
1289–1298, Oct. 1991.

[7] G. Kornaros, D. Pnevmatikatos, P. Vatsolaki, G. Kalokerinos,
C. Xanthaki, D. Mavroidis, D. Serpanos, and M. Katevenis,
“ATLAS I: Implementing a Single-Chip ATM Switch with
Backpressure,” IEEE Micro, vol. 19, no. 1, pp. 30–41, Jan.
1999, http://archvlsi.ics.forth.gr/atlasI/hoti98/.

[8] F. Chiussi, J. Kneuer, and V. Kumar, “Low-Cost Scal-
able Switching Solutions for Broadband Networking: The AT-
LANTA Architecture and Chip Set,” IEEE Communications
Magazine, vol. 35, no. 12, pp. 44–53, Dec. 1997.

[9] “IBM PowerPRS Q-64G Packet Routing Switch Datasheet,”
Dec. 2001, http://www.ibm.com/chips/techlib/techlib.nsf/-
products/PowerPRSQ-64G PacketRoutingSwitch.

[10] “ETT1 Chip Set Datasheet,” Mar. 2002, http://www.pmc-
sierra.com/products/details/pm9312/index.html.

[11] Sundar Iyer, Amr A. Awadallah, and Nick McKeown, “Anal-
ysis of a Packet Switch with Memories Running Slower
than the Line-Rate,” in IEEE INFOCOM, Mar. 2000,
http://klamath.stanford.edu/˜sundaes/Papers/infocom2000.pdf.

[12] D. A. Khotimsky and S. Krishnan, “Stability Analysis of a
Parallel Packet Switch with Bufferless Input Demultiplexors,”
in ICC 2001, June 2001.

[13] C.-S. Chang, D.-S. Lee, and Y.-S. Jou, “Load Balanced
Birkhoff-von Neumann Switches, Part I: One-stage Buffering,”
IEEE HPSR Conf., May 2001, http://www.ee.nthu.edu.tw/-
cschang/PartI.ps.

[14] Sundar Iyer and Nick McKeown, “Making Parallel Packet
Switches Practical,” in IEEE INFOCOM, Mar. 2001,
http://klamath.stanford.edu/˜sundaes/Papers/infocom2001.pdf.

[15] F. Chiussi, D. Khotimsky, and S. Krishnan, “Generalized
Inverse Multiplexing for Switched ATM Connections,” in
Proc. IEEE GLOBECOM Conf., Australia, Nov. 1998, pp.
3134–3140, http://www.bell-labs.com/org/113480/Papers/fabio-
globecom98B.ps.

[16] D. Khotimsky, “A Packet Resequencing Protocol for Fault-
tolerant Multipath Transmission with Non-Uniform Traffic
Splitting,” in Proc. IEEE GLOBECOM Conf., Brasil, Dec.
1999, pp. 1283–1289, http://www.bell-labs.com/org/113480/-
Papers/dkh-globecom99.ps.

[17] J. Duncanson, “Inverse Multiplexing,”IEEE Communications
Magazine, vol. 32, no. 4, pp. 34–41, Apr. 1994.

[18] J. Turner, “Design of a Broadcast Packet Switching Network,”
IEEE Transactions on Communications, vol. 36, no. 6, pp. 734–
743, June 1988.

[19] L. G. Valiant and G. J. Brebner, “Universal Schemes for Parallel
Communication,” inACM STOC, 1981, pp. 263–277.

[20] William J. Dally, “Virtual Channel Flow Control,” IEEE
Transactions on Parallel and Distributed Systems, vol. 3, no.
2, pp. 194–205, Mar. 1992.

[21] C. Ozveren, R. Simcoe, and G. Varghese, “Reliable and
Efficient Hop-by-Hop Flow Control,”IEEE Journal on Selected
Areas in Communication, vol. 13, no. 4, pp. 642–650, May
1995.

[22] Quantum Flow Control Alliance, “Quantum Flow Control: A
cell-relay protocol supporting an Available Bit Rate Service,”
July 1995, version 2.0.

[23] M. Katevenis, D. Serpanos, and E. Spyridakis, “Credit-
Flow-Controlled ATM for MP Interconnection: the ATLAS I
Single-Chip ATM Switch,” inHPCA, Feb. 1998, pp. 47–56,
http://archvlsi.ics.forth.gr/atlasI/atlasIhpca98.ps.gz.

[24] M. Katevenis, “Fast Switching and Fair Control of Congested
Flow in Broad-Band Networks,” IEEE Journal on Selected
Areas in Communication, vol. 5, no. 8, pp. 1315–1326, Oct.
1987.

[25] Nick McKeown, “iSLIP: A Scheduling Algorithm for Input-
Queued Switches,” IEEE/ACM Transactions on Networking,
vol. 7, no. 2, Apr. 1999, http://tiny-tera.stanford.edu/˜nickm/-
papers/ToNApril 99.pdf.

c©2003 FORTH - July 2003 11

