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Abstract— Multistage buffered switching fabrics are the
most efficient method for scaling packet switches to very
large numbers of ports. The Benes network is the lowest-
cost switching fabric known to yield operation free of in-
ternal blocking. Backpressure inside a switching fabric can
limit the use of expensive off-chip buffer memory to just
virtual-output queues (VOQ) in front of the input stage.
This paper extends the known backpressure architectures
to the Benes network. To achieve this, we had to successfully
combine per-flow backpressure, multipath routing (inverse
multiplexing), and cell resequencing. We present a flow
merging scheme that is needed to bring the cost of back-
pressure down to O(N) per switching element. We prove
freedom from deadlock for a wide class of multipath cell dis-
tribution algorithms. Using a cell-time-accurate simulator,
we verified operation free of internal blocking, we evalu-
ated various cell distribution and resequencing methods, we
found that delay under bursty traffic is only 25 to 50 per-
cent higher than ideal output queueing, and we showed that
the delay of well-behaved flows remains unaffected by the
presence of congested traffic to oversubscribed output ports.

Topics Keywords: Switches and switching.
Methods Keywords: System design, Simulations.

1 . INTRODUCTION

Switches, and the routers that use them, are the basic
building blocks for constructing high-speed networks that
employ point-to-point links. As the demand for network
throughput keeps climbing, switches are needed with both
faster ports and more ports. This paper concerns switch
scalability when the number of ports increases. For low
to modest numbers of ports –up to about 64– the crossbar
is the switch topology of choice, owing to its simplicity
and non-blocking operation. However, its cost grows with
N2, where N is the number of ports, which makes it very
expensive for large N . Additionally, crossbar scheduling
is a hard problem, and gets much harder with increasing
N .

1.1. Multistage Fabrics and Related Work

For switches with hundreds or thousands of ports, mul-
tistage switching fabric architectures are needed, whose

cost growth rate is less than quadratic. Researchers have
been looking at such scalable fabric topologies since the
days of electromechanical telephony [1]. The banyan net-
work [2] features a low cost, N · logN and a rich set of
paths. Although it can support full egress link utilization
under uniformly destined traffic, as well as a number of
other specific traffic patterns, it does suffer from internal
blocking: not all feasible rates λi,j (see section 2.1) can
be routed through it. The lowest-cost N × N network
that is free of internal blocking is the Benes network [3],
whose cost is N ·2logN . The Benes network is rearrange-
ably non-blocking, that is, when each connection is routed
through a single path, setting up new connections may
require the re-routing of existing connections; however,
using multi-path routing, this disadvantage can be elim-
inated: see section 2.1. This paper concerns the Benes
network.

If a multistage switching fabric contains no buffer stor-
age, there must exist a mechanism to handle the cell routing
conflicts that arise (a) in internal paths due to the routing
algorithm, and (b) due to output conflicts. The former con-
flicts can be handled in a distributed manner (“self-routing
fabrics”) using Batcher sorting networks [4]. The latter
conflicts –cells destined to the same output at the same
time– must be avoided at the inputs or tolerated in the
fabric. Avoidance at the inputs is equivalent to crossbar
scheduling and requires global coordination, hence it is
unrealistic for large fabrics. To tolerate output conflicts in
the fabric, designers have used recirculation of cells [5] or
multiple paths to each output buffer [6]. All of these mech-
anisms cost a lot in number of stages and paths per stage
in the switching fabric: the fabric cost is O(N · log2N),
and the constant in front of the actual cost is significant.
In essence, these techniques spend (expensive) communi-
cation resources in order to economize on (inexpensive)
storage resources, which is the wrong tradeoff in modern
VLSI technology.

It is preferable for the switching fabric to contain in-
ternal buffer storage, in order to buffer conflicting cells
until the conflict goes away. Such internal storage may be
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“small” enough to fit inside the switching-element chips,
or it may be “large” enough to replace the buffer space typ-
ically found on the ingress line cards, –usually hundreds
of MBytes– hence requiring off-chip DRAM. In the for-
mer case, backpressure is used to prevent the small buffers
from overflowing; effectively, the majority of the buffered
cells are pushed back onto the ingress line cards, as in
the usual case of virtual-output queues (VOQ) on the in-
put side. Given that the ingress lines are much fewer than
the intra-fabric links, this architecture results in significant
cost savings when compared to the off-chip DRAM case
for intra-fabric buffers, as shown by the ATLAS I switch
evaluation [7]. Lucent’s ATLANTA chip set uses a 3-stage
buffered switching fabric with internal backpressure1 [8].
Several other commercial chip sets also use backpressure
in the ingress-switch-egress connection chain [9] [10].
This paper concerns the application of this advantageous
internal backpressure architecture to the Benes network
–the lowest cost scalable switching fabric.

A different approach to buffer placement in multistage
switching fabrics is the Parallel Packet Switch (PPS) [11]
[12], which is a derivative of central (shared) buffering
and uses memory interleaving to provide scalable memory
throughput. PPS is defined as a 3-stage fabric, where the
bulk of the buffer space resides in the central stage. If one
were to scale PPS to arbitrarily large aggregate throughput,
one would end up with something along the lines of [13] :
an input switching fabric (e.g. crossbar or banyan), which
connects the input ports to the memory banks in the central
stage and performs inverse multiplexing; the interleaved
memory shared buffer in the central stage; and an output
switching fabric (e.g. crossbar or banyan), which connects
the memory banks to the output ports. This construction
is similar to the construction of the Benes network from
two banyans, which we review in section 2.1, but differs
in buffer placement. The hard part of PPS is how to co-
ordinate the traffic through its two fabrics so that the bulk
of the queues end-up in the central stage, without using
impractical centralized scheduling; several different pro-
posals [14] and improvements [12] [13] exist. Their
drawbacks are that either they need O(N 2) logical queues
in each of the O(N) memory modules (banks), or they
use a static schedule of length O(N) in their switching
fabric(s), or both. A quadratic number of queues poses se-
rious cost scalability problems, while inverse multiplexing
with a static schedule introduces long delays. By compar-
ison, the architecture of this paper (a) features the same
O(N · logN) number of switching elements and the same

1The middle stage of the ATLANTA chip set consists of multiple
N
P
×

N
P

bufferless crossbars, where P is the number of port interfaces
connected to each input module.

O(N) number of memory modules; while (b) it never uses
more than O(N) queues per memory module or switching
element; and (c) it uses dynamic scheduling in the switch-
ing fabric, so as to achieve short delays. Backpressure is
the mechanism to coordinate the distributed operation of
dynamic scheduling.

1.2. Contributions of this Paper

In this paper, we extend the backpressure architec-
ture from single-path fabrics (like banyans) to multi-path
topologies, and specifically to the Benes network. This
extension is non-trivial. In order for the Benes fabric
to operate free of internal blocking, the cells of each flow
must be routed over multiple paths, and must afterwards be
properly resequenced, as reviewed in section 2.1. In order
for backpressure to operate free of head-of-line-blocking
effects, it must operate on a per-flow granularity, as re-
viewed in section 2.2. If these two requirements were
combined in a naive way, O(N 2) complexity would re-
sult for the switching elements in the middle stages of
the Benes fabric. We show how to reduce this complexity
down to O(N), using appropriate flow merging techniques
which minimally affect performance: see section 3.1. The
resulting complexity of O(N) is realistic for modern VLSI
technology, because fabrics of size N in the order of a few
thousand ports require on-chip buffer storage on the or-
der of several thousand cells (several Mbits), which is
feasible.

Multi-path cell distribution interacts with flow merging,
and they both interact with the organization and placement
of buffers; we show which organization is preferable, and
we prove that it is deadlock-free (section 4). Finally,
section 5 presents our simulation results, showing that
(a) non-blocking operation with full output utilization is
indeed achieved; (b) the delay-versus-load characteristics
of this switching fabric under bursty traffic are comparable
within a factor of 1.5 to those of ideal output queueing;
(c) delay to uncongested outputs is minimally affected
by the presence of congestion (over-subscribed outputs)
elsewhere in the network; and (d) delay is not very sensitive
to the specific multi-path cell distribution method within
the class of methods we consider.

To the best of our knowledge, this is the first time that the
application of per-flow backpressure to the Benes switch-
ing fabric is studied. Also, we are not aware of other stud-
ies of backpressure with multi-path cell routing in general.
Multi-path cell routing has been studied before, e.g. [15]
[16] [11], but not with backpressure.
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Fig. 1. Recursive construction of an N × N Benes network.

2 . THE BENES FABRIC

This section reviews the two foundations of our design:
the Benes fabric, and internal backpressure in switches.

2.1. Non-blocking Operation

The Benes network [3] can be constructed recursively,
using inverse multiplexing [17] [15], as shown in fig. 1.
The N ×N Benes network consists of two N

2
× N

2
Benes

subnetworks, N
2

switches of size 2 × 2 connected to the
inputs of the two subnetworks, called the input switches
in this paper, and N

2
switches of size 2 × 2 connected

to the outputs of the two subnetworks, called the output
switches, here.

Let λi,j denote the traffic entering the network from in-
put i and destined to output j. In order for the N × N
network to be non-blocking, the 2×2 switch connected to
input i must equally distribute λi,j among its two outputs.
The output switch that feeds output j receives 1

2
λi,j on each

of its inputs, reconstructs λi,j and routes it to the appropri-
ate output. Freedom from internal blocking results as fol-
lows. For any set of feasible rates λi,j entering the N ×N

network (i.e.
∑N−1

j=0
λi,j ≤ 1, ∀i) and leaving the N ×N

network (i.e.
∑N−1

i=0
λi,j ≤ 1, ∀j), the rates entering

and leaving each N
2
× N

2
subnetwork will also be feasible.

Specifically, input k of either subnetwork will be receiving∑N−1

j=0
1

2
λ2k,j +

∑N−1

j=0
1

2
λ2k+1,j which is ≤ 1

2
+ 1

2
= 1

because of the above feasibility of the overall traffic. Sym-
metrically, the load of output m of either subnetwork will
be

∑N−1

i=0
1

2
λi,2m +

∑N−1

i=0
1

2
λi,2m+1 ≤ 1

2
+ 1

2
= 1. As-

suming that each subnetwork is internally non-blocking,
i.e. can route any such feasible traffic, it follows by recur-
sion that the overall N ×N network will also be internally
non-blocking.

Unrolling the recursion in fig. 1, for N = 8, results in the
topology shown in fig. 2. Traffic λi,j goes through log N
stages of distribution and log N corresponding stages of
reconstruction. The figure also shows that an N × N
Benes network can be constructed by placing two banyan
networks back-to-back. The two banyans are called the
distribution and the routing network, respectively [18],
since the first distributes incoming traffic over the N links
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Fig. 2. 8 × 8 Benes network highlighting distribution and reconstruction of
traffic λ2,5.

in the middle of the network – a virtual “wide” link of
throughput N – and the second routes cells to the proper
output link.

Non-blocking operation as above is based on (repeated)
inverse multiplexing or load distribution in a balanced
manner. A “poor man’s” method for load distribution
is to send all packets of “half” the microflows through
one path, and all packets of the other half through the
other path, e.g. using a pseudo-random hash function of
the source-destination IP address pair to decide the path .
This ensures that all packets of a given microflow follow
the same route, and hence arrive in-order. The disadvan-
tage of this method is that load distribution may not be
balanced in the long run, and even worse on a short term
basis, especially where the number of microflows is lim-
ited. Imbalanced load distribution will result in internal
blocking in the Benes fabric, and thus we do not use this
method. At the other end of the spectrum is a method for
exact load distribution that resembles the bit-sliced pro-
cessors of the 70’s. Each cell is split in two units, of half
the original cell (payload) size each, and each unit is sent
in one of the two directions. This method is used in sev-
eral commercial chip sets, but only with splitting degrees
up to 8 and with carefully equalized delays through the
paths [9]. This method is far from scalable, due to the
fixed header and per-unit-processing overheads, and thus
we do not use it.

To achieve balanced load distribution in the long run
–even if not so on a very short term basis– while still op-
erating at the cell level, a number of methods have been
proposed: randomized [19], adaptive [15], per-flow round-
robin cell distribution [14]. In all of these methods, cells
of a given microflow are routed through either path, hence
they may arrive out-of-order. For the switching fabric
to preserve cell order within individual microflows, rese-
quencers must exist at the points of path reconvergence
[17] [16]. Resequencing is an important issue in our sys-
tem, dealt with in sections 3.1 and 4.

2.2. Internal Backpressure Protocols

Switches with multistage buffering typically use back-
pressure feedback control between these stages, to avoid
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overflow of downstream buffers and to control individual
flow rates when multiple flows merge into oversubscribed
resources, thus enforcing quality-of-service (QoS) guar-
antees.

The simplest backpressure protocol is stop-and-go: the
upstream stage maintains a single bit of state (in total or
per-flow), specifying whether downstream transmission
is currently enabled or disabled. A more sophisticated
protocol, which economizes on buffer memory space, is
the one using credits: the upstream stage maintains a credit
counter (in total or per-flow), specifying how many cells is
is allowed to transmit in the downstream direction before
new credit is received via backpressure feedback signals.
The buffer space needed is λ×RTT (in total or per-flow),
where λ is the peak rate and RTT is the round-trip time.
This paper uses credit-based backpressure.

Backpressure signals may refer to individual (micro)
flows, or to flow aggregates, or indiscriminately to all traf-
fic passing through a link. Indiscriminate backpressure
leads to very poor QoS, because a single oversubscribed
flow may stop the service to all other flows with which it
shares a link or a buffer (this is analogous to head-of-line
(HOL) blocking). Thus, per-flow or virtual-channel or
multilane backpressure is needed. The number and def-
inition of “flows” is a crucial parameter and affects cost
–amount of state and granularity of feedback information–
and QoS –degree of isolation among competing flows.
When individual flow granularity is excessive, one can
use a “compromise” solution or appropriate flow aggre-
gation. Compromise backpressure protocols yield good
performance in the usual cases, but perform badly in some
worst cases; they include: wormhole virtual channels [20],
a DEC proposal [21], Quantum Flow Control [22], and the
ATLAS I multilane backpressure [23].

This paper is concerned with full-fledged per-flow back-
pressure, which ensures that even if all output ports but one
are oversubscribed, traffic going to that one non-congested
output will still enjoy delays comparable to those of an
ideal output-queued switch. We obtain such strong QoS
guarantees at a cost not worse than O(N) per switching
element, which is realistic for modern VLSI technology
as explained in section 1.2.

The main tools used in this endeavor are the merging
of flows with common destination and hierarchical back-
pressure. When multiple flows of a same priority level
follow a common path to a common destination, they can
be treated as a single, merged flow over the common path
for purposes of buffer allocation and backpressure gran-
ularity. The reason is that cells of one flow will never
need to overtake cells of another after the merge point.
One (mild) disadvantage of such merging is its transient

flow A
Sch

flow B AB AB AB

S a S
b

blal

flow A

flow B

L 1L 1

2l

S 2S 1

L 2 flow control (A)

L 2 flow control (B)

backpr. (AB)

Fig. 3. Hierarchical flow control.

behavior when one of the flows goes from inactive to ac-
tive: the “pipeline” ahead of the merge point has already
been filled with cells of the other flows. Under weighted
round robin (WRR) scheduling schemes, we run the dan-
ger that this pipeline empties at the rate corresponding to
the weights of the old flows, while the recently activated
flow may have much higher weight.

2.3. Hierarchical Backpressure

Hierarchical backpressure [24, section III-D], illustrated
in fig. 3, can be used when multiple flows (preferably of
the same priority level) share a common portion of their
paths. This case differs from the previous case: here
the flows are allowed to diverge after their common path.
The flows can be treated as a single, merged flow over
their common path, provided that a higher, second level of
flow control feedback exists from the point of divergence
(end of common path) to the point of flow merging. The
common path behaves as a single, “virtual” link, and the
second level flow control is over this virtual link.

In fig. 3, flows A and B have a common path, extend-
ing from switch (or stage) S1 to S2, through switches (or
stages) Sa and Sb. Over the common path (links la, lb,
and l2) the flows are treated as a merged flow “AB”. At
the merge point, a scheduler “Sch” decides which flow to
get each next AB-cell from; it bases its decisions on level
2 (L2) flow control feedback information that it receives
from the divergence point, S2. Level 1 (L1) backpressure
is at the granularity of the merged flow, AB. L1 backpres-
sure goes from Sb to Sa over lb, and from Sa to S1 over la.
It is important to notice that no L1 flow control is needed
over link l2: the flow into buffers A and B of switch S2 is
regulated via L2 –not L1– flow control.

An important application of hierarchical flow control, as
drawn in fig. 3, is in large switches made using multistage
fabrics and “line cards” that contain input buffers with
virtual-output queues (VOQ). In figure 3, consider that S1

is the ingress line card of (large) switch S1, and S2 is the
ingress line card of the next downstream (large) switch
S2; Sa and Sb are the stages of the switching fabric of
S1. Links la and lb are internal to the switching fabric,
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while link l2 is a network (e.g. WAN) link. Under such a
scenario, observe that L1 backpressure is purely internal
to the switching fabric, while L2 is the network level flow
control (hop-by-hop or end-to-end, credit- or rate-based).
There is no L1 backpressure on the network link l2.

This is the model assumed in this paper: we deal exclu-
sively with the flow control “L1” inside the Benes fabric.
We assume that this is of the credit-based backpressure
type, independent of the type of flow control employed
outside the fabric, in the overall network. Note from
fig. 3 that L1 backpressure operates on flow aggregates
that consist of all network-wide (micro-)flows that share
a common path (and priority level) within the switching
fabric. Thus, in the rest of this paper, for an N ×N fabric
with pl priority levels, we only consider the N 2 × (pl)
flows defined, each, by one specific fabric input port, i,
one specific fabric output port, j, and one specific priority
level. The merging of multiple external flows into one of
our above internal flows, performed in the scheduler “Sch”
in fig. 3, is performed in the ingress line card of the large
switch, just before entry into the Benes fabric, and that is
not a topic of the present paper.

3 . SWITCHING ELEMENT ORGANIZATION

In this section, we present flow merging schemes that
reduce the O(N 2) backpressure cost (per switching el-
ement) down to O(N). Next, we describe the queues
and the functionality inside the distribution and routing
switching elements.

3.1. Flow Groups

As noted in sections 2.2 and 2.3, for an N × N Benes
fabric, backpressure must operate at the granularity of the
N2 flows (per priority level) defined by all input-output
pairs. In banyan fabrics, although the total number of flows
is N2, only N flows pass through any individual link in the
fabric. In the Benes fabric, however, the traffic of every
flow is distributed and sent over both “even” and “odd”
subnetworks in fig. 1; consequently, all subnetworks, no
matter how small, down to the individual switching ele-
ments in the core of the fabric, are traversed by N 2 flows
(per priority level). We need to reduce this number, using
the flow merging techniques of sections 2.2 and 2.3.

We first consider per-output merging of the flows des-
tined to the same output port of the fabric. Fig. 4 shows
the flow groups that internal backpressure must operate
on; “01 → 0” denotes the merging of flows 0 → 0 and
1 → 0, and “0123 → 0” is the merging of flow groups
01 → 0 and 23 → 0. This example uses 2 × 2 switching
elements. Each switching element of the distribution net-
work (left half of the Benes fabric) merges, one-by-one,
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Fig. 4. A 4 × 4 fabric and the flow groups at the inputs and outputs of the
switching elements for the per-output flow merging case.

the N flow groups entering through one of its inputs with
the N flow groups entering through the other, and produces
N merged flow groups; the merging factor is two-to-one.
These switching elements also distribute the cells to both
of their outputs, so the N merged flow groups appear on
each of these outputs; fig. 4 shows one of these copies in
full detail, and uses an empty box for the other. Hence,
all links carry precisely N flow groups. (The two cen-
tral stages of the fabric are shown separate for conceptual
reasons, only; in reality, they are implemented as a single
stage.)

In the routing network (right half of the Benes fabric),
cells that had been distributed to the even and odd sub-
networks must be resequenced. Resequencing, in output
switches, must be performed separately for each flow in
a merged flow group. The reason is that merged flow
groups carry cells that were distributed at different input
switches, independently of each other, before the merge
points. Hence, merged flow groups from different inputs
to a same output, must be split again in order for rese-
quencing to work correctly.

Splitting of flow groups and cell resequencing can be
performed progressively, per-stage, or cumulatively, in the
very last stage of the fabric. In the latter case, we need not
split flows within the routing banyan, thus, there would be
N
2

, . . . , 2, 1 flows passing though the switching elements
in the log2 N stages of the routing banyan, respectively.
However, each resequencer at the output ports of the fabric
would then require N resequence buffers, one for each of
the N (per-input) flows leading to that output, each of
size O(N). There is no reason to accumulate so much
complexity in the last stage of the fabric, so we prefer the
former solution –progressive flow group splitting and cell
resequencing.
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An alternative method to reduce the number of flows
in the center of the fabric is hierarchical flow merging,
which follows the recursive construction of the Benes net-
work. Specifically, the switching elements at the edges
of a K × K Benes subnetwork (refer to fig. 1) maintain
state for the K flows destined to each output or originating
from each input of that subnetwork. This method reduces
the number of flows even more than per-output merging,
down to N/2k in stage k. However, flows destined to
different final destinations are merged together, so hierar-
chical backpressure (section 2.3) is needed, which is more
complicated than plain backpressure to implement. This
scheme needs a total of log N levels of backpressure. Al-
though hop-by-hop backpressure is no longer needed in
the routing network, the flow control feedback delay is up
to 2 log N for the upper flow control level, hence buffers
of size up to 2 log N are needed for full link utilization,
which is undesirable.

In conclusion, per-output flow merging with per-stage
resequencing is much simpler to implement and has a uni-
form implementation cost of O(N) per switching element,
across all stages of the switching fabric, so we use this ar-
chitecture in the rest of the paper. Lucent’s ATLANTA
chip set [8] also uses per-output flow merging and cell
distribution, but avoids resequencing because the middle
stage consists of N

P
× N

P
bufferless crossbars, thus, it does

not reorder cells. However, it is not clear how to scale to
larger port numbers and larger port rates and still use only
three stages.

3.2. Logical Buffer Organization

Figure 5 shows the preferred logical buffer organization
of the distribution and routing switching elements, along
with the active components needed. We follow the flow
merging and cell resequencing architecture that was cho-
sen above. The flows from inputs 0 and 1 to four different
fabric outputs are shown in the left (distribution) switching
element, along with the flows to outputs 0 and 1 from four
different fabric inputs in the right (routing) switching el-
ement. The FIFO’s shown are logical queues, containing
references to cells; the actual cells do not move inside the
switching element.

Distribution switching elements must perform flow
merging and cell distribution; they can perform these tasks
in either order. Routing switching elements must perform
cell resequencing and flow splitting in the proper, corre-
sponding order. Cell distribution can be performed in a
number of ways; as discussed in section 4, it relies on
per-flow state and aims to optimize per-flow criteria. Flow
merging before cell distribution reduces the number of
flows seen by cell distribution. The smaller the number of
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Fig. 5. Logical buffer organization of a distribution and the corresponding
routing switching element.

flows, the easier it becomes to coordinate the per-flow (lo-
cal) decisions so as to optimize global criteria; also, buffer
space gets reduced, as explained later in this section. Thus,
we choose this arrangement, as shown in fig. 5.

At the inputs of the switching elements, buffers are
needed per input port and per flow group, because credits
for that buffer space and at that granularity must be sent to
each upstream neighbor. Besides these input buffers, it is
advantageous or necessary to also have output buffers, as
shown in fig. 5. The chosen arrangement requires 2×P ×
N FIFO queues per distribution switching element. If the
distribution switching elements performed cell distribution
before flow merging, then, each of them would need P 2 ×
N FIFO queues.

In the distribution switching elements (left half of the
network), it is advantageous to have output buffers (a)
in order for output schedulers to operate independently,
and (b) for efficiency in some distribution circumstances,
as explained below. Suppose that output buffers did not
exist. First, assume that input buffer 0 → 0 contains a cell
while input buffer 1 → 0 is empty (as in fig. 5), and that the
cell distribution algorithm allows the cell to depart in either
direction. Then, up to one but not both output schedulers
of this switching element would be allowed to choose flow
group 01 → 0 for service; hence, the two schedulers would
not be able to operate in parallel. Next, assume that both
input buffers 0 → 0 and 1 → 0 contain cells, and assume
that the cell distribution algorithm dictates that the next-in-
order cell of flow group 01 → 0 must depart through the
top output of the switching element. Until the top-output
scheduler is able to serve this next-in-order cell, it would
be very hard for the bottom-output scheduler to serve flow
group 01 → 0, although two cells exist in this flow group,
because we don’t quite know which cell is the second-next
in order.

In the routing switching elements (right half of the net-
work), input buffers are needed for the same reason as for
the distribution switching elements, unless we know where
to expect the next cell from in which case we only need
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Fig. 6. Deadlock situation when flow merging precedes cell distribution. The
participating switching elements are shown with dashed lines and the partici-
pating flows are indicated with A, B and AB. The numbers by the FIFO buffers
denote the sequence number of the cell at the head of the buffer.

one buffer slot and the credit for that buffer is sent to the
upstream node from which the next cell will arrive. Each
output buffer, together with its input counterpart in the
downstream neighbor switch, forms a double-depth buffer
pipe, which is needed for deadlock-free operation of cell
resequencing under the preferred distribution methods, as
will be seen in section 4. However, output buffers are not
necessary, they could be dropped by making, at the same
time, the input buffers of greater depth.

4 . FREEDOM FROM DEADLOCK

The Benes fabric with finite buffers, internal backpres-
sure, flow merging, and resequencing is a distributed sys-
tem with finite resources and resource sharing. In such
a system, we have to make sure that deadlock situations
either do not occur, or if they do occur, the system detects
and resolves them. In this section, we show that for a
wide and interesting class of cells distribution methods, a
deadlock situation cannot arise.

We consider cell distribution methods with a maximum
per-flow imbalance of 1: at any time, the total number
of cells belonging to some flow that have been forwarded
through any two paths available to that flow differs by at
most 1. At the other end of the two paths, resequenc-
ing “consumes” cells in order; it follows that, for such
distribution methods, the number of cells buffered along
the two paths can differ by at most 2. We see that these
distribution methods equalize the loads on the two paths.
Per-flow round-robin cell distribution is such a method.

Figure 6 shows how a deadlock could arise in our switch-
ing elements. Figure 7 shows a simplified but equivalent
view of the deadlock situation: consecutive FIFO buffer
dedicated to the same flow have been merged into a single
FIFO buffer with depth equal to the sum of the depths of
the individual FIFO buffers. Let cs

f denote the cell of flow
“f” with sequence number “s”, Bs

f denote the buffer slot
occupied by cell cs

f , and Rf denote the resequencer of flow
“f”. The deadlock situation is the following (see fig. 8 for
the resource allocation graph): (a) the resequencer of flow
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l B
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rAB

Fig. 7. Simplified but equivalent view of the deadlock situation shown in
fig. 6.
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Fig. 8. The resource allocation graph for the deadlock situation. Circles
represent cells, while rectangles represent resources which can be either buffer
slots or resequencers.

A is waiting for cell ck−1

A , (b) cell ck−1

A is somewhere in
the fabric behind cell cy

B and it needs a buffer (By
B) or

resequencer (RABl
) held by cell cy

B in order to move for-
ward – note that cell ck−1

A could not be on the same path
with cell ck

A since they belong to the same flow, thus, the
Benes fabric would not reorder the two cells, (c) cell cy

B

needs a buffer held by cell cx
B in order to move forward,

(d) cell cx
B is waiting to be resequenced by RB , and so on,

so forth until the cycle closes to RA.

4.1. Basic Case

Let bD denote the size of the distribution FIFO buffers,
and bR denote the size of the routing FIFO buffers shown
in fig. 7.

Theorem 1 If no cells are lost, bD = 1, bR = 2 and
cell forwarding is subject to hop-by-hop credit-based flow
control, then any cell distribution method with maximum
per-flow imbalance of 1 is deadlock-free.

Proof. Let Ls
f denote the time slot at which cell cs

f

crosses line “L” in fig. 7. The cell distribution method and
the fabric operation impose limitations on the set of cells
that can be active on the paths available for flows A and
B, and the ordering between various values of Ls

f for lines
D,M,S,R, respectively. With regard to the set of active
cells, there are four cases for flow A shown in fig. 9, the
cases for flow B are analogous. The ordering relations are
of four types and are listed below:
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Fig. 9. Active cells allowed by cell distribution methods with maximum
per-flow imbalance of 1.
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• Direction: (Di
f < M i

f < Si
f )

• Distribution: (Di
f < Di+1

f )

• Backpressure: (M i
f < Dj

f ) for every cells ci
f and cj

f

with i < j which were both forwarded through the
same path

• Flow-Order: (M i
f < M j

f ⇐⇒ Si
f < Sj

f ) for every

cells ci
f and cj

f which were both forwarded through
the same path

Using the above relations, we can partially construct the
time-order graph shown in fig. 10, specifically relations
(Mk−1

A < M l
A) and (Mx−1

B < My
B). Cell ck+d

A refers to
the first cell of flow A after cell ck−1

A on the same path
with cell ck−1

A . Sequence number k + d corresponds to
either k + 1, cases (1a) and (1b), or k + 2, cases (2a) and
(2b). Cell cl

A refers to the second cell of flow A after cell
ck
A on the same path with cell ck

A. Sequence number l also
differs in each of the four cases of fig. 9. The important
property is that l is greater than k + d, and this property
can only be guaranteed in all of the four cases only if the
size of the routing FIFO buffers is 2 slots. Similarly for
flow B.

...

...

...

... k+d

  l

available
distribution buffer size

  k

required
routing buffer size

k-c

Fig. 11. Required size of routing FIFO buffers in order to ensure deadlock
free operation.

If we assume that a deadlock arises, then the following
ordering relations also hold: (M y

B < Mk−1

A ) and (M l
A <

Mx−1

B ). The deadlock ordering relations cause a cycle in
the time-order graph, which is a contradiction. Thus, a
deadlock situation cannot arise.

/

Note that the proof does not assume any properties for
the scheduling discipline at the flow merging point. How-
ever, it assumes that no cells are lost due to electrical
noise within the fabric. This is definitely an unrealistic
assumption and a real system would have to employ ro-
bust resequencing protocols as the ones described in [16].
The proof of the basic case extends easily for the case of
more than two participating flows. With regard to per-flow
round-robin cell distribution, note that it remains deadlock
free even with routing buffers of size 1, since it only allows
case (1a) of fig. 9 to arise.

4.2. Extensions

The proof continues to hold in the general cases of (a)
distribution FIFO buffers of size bD slots each, where
bD > 1 and (b) switching elements of size P × P , where
P > 2. The important observation is that the ordering
relations Mk−1

A < M l
A, and Mx−1

B < My
B , shown in

fig. 10, can be guaranteed independently for each flow, and
depend only the properties of the cell distribution method
and the available distribution buffer size bD.

Consider fig. 11 and assume that cell ck−c
A is the next

cell to be resequenced, cell ck+d
A is the first cell of flow

A after cell ck−c
A on the same path with cell ck−c

A , and
cell cl

A is the cell of flow A with the smallest sequence
number greater than k + d on the same path with cell ck

A.
The relation Mk−c

A < M l
A holds in this case provided that

we choose bR large enough so that sequence number l is
greater than sequence number k + d in all cases allowed
by the cell distribution method for the given buffer size
bD.

To sum up, for a given cell distribution method and
distribution buffer size bD, we can choose bR so that the

8
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Benes fabric is deadlock free. In the special case of maxi-
mum per-flow imbalance of 1 and bD = 2, the required bR

is 3. With regard to per-flow round-robin cell distribution,
the required bR is equal to bD for any value of bD.

5 . SIMULATION RESULTS

A simulation model operating at the granularity of cell
times was developed in order to verify the design and
evaluate its performance under various traffic patterns and
for various switch sizes, and in order to evaluate cell dis-
tribution and resequencing methods. In the simulation
model, the cell-credit round-trip time is 1 cell time, and
each buffer shown in fig. 5 has a size of 1 cell, except for
the input buffers of the routing switching elements which
have a size of 2 for a specific cell distribution method.

We simulated the switch under smooth, bursty, and
hotspot traffic. Smooth traffic consisted of Bernoulli ar-
rivals with uniformly distributed destinations. For bursty
traffic, each source alternatingly produces a burst of cells
(all with the same destination) followed by an idle pe-
riod of empty cells; the bursts and idle periods contain a
geometrically distributed number of cells. The reported
results use bursty/12 traffic, where the mean burst size is 12
cells; this is close to one of the modes of IP traffic size dis-
tribution (assuming 48-byte cell payload). Under hotspot
traffic, each destination belonging to a designated set of
“hot spots” receives (smooth or bursty) traffic at 100%
collective load, uniformly from all sources; the rest of
the destinations receive smooth or bursty traffic as above.
The reported results use hotspot/4 traffic, where the four
hotspots are ports 0, 1, 2, and 3.

The delay reported is the average over all cells of the
cell’s exit time, minus the cell’s birth time, minus the
fabric length (number of stages); for example, most of the
reported results are for a 64 × 64 fabric made of 4 × 4
switching elements, hence the fabric has 2 · log4 64 =
2 · 3 = 6 stages, and the number subtracted is 6 cell times.
In our simulation model, it takes 1 cell time for a cell to
traverse 1 stage of the fabric, in an otherwise idle system,
with the cell moving at top speed. Thus, by subtracting the
fabric length from the actual delay, we report the sum of all
queueing delays for the cells. In all of the reported results,
the duration of the simulation is 200,000 cell times and
collection of statistics starts after the first 40,000 cell times.
We ran each simulation 10 times and then computed the
sample mean and the corresponding confidence interval
for the measured delay. With regard to average delay, the
95% confidence intervals were well below 5% in all cases
but one case for load equal to 99% where the confidence
interval was 7.1%.
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Fig. 12. Delay versus load for uniform destinations; 64 × 64 fabric made of
4× 4 elements; upper curves: bursty/12 traffic; lower curves: Bernoulli traffic;
ideal output queueing (OQ) also shown for comparison.

As a means to get an indication regarding the lack of
internal blocking, we also simulated the 64 × 64 fabric
under the following artificial load. In each and every cell
time, a randomly-selected full permutation was presented
to the input of the switch; that is, all inputs were contin-
uously loaded at precisely 100%, while the overall load
presented to the fabric was feasible, in the sense of sec-
tion 2.1, during each and every cell time. After one million
simulation cell times, there were virtually no cells queued
at the inputs: most of the VOQ’s were empty, while a few
others contained 1 or 2 cells each.

5.1. Cell Distribution Methods and OQ Comparison

We experimented with two cell distribution methods,
called PerFlowRR and PerFlowIC, on a 64 × 64 Benes
fabric made of 4 × 4 switching elements. PerFlowRR is
per-flow round-robin cell distribution, where the per-flow
distribution pointers are randomly initialized. PerFlowIC
(standing for per-flow imbalance count) chooses the port
for forwarding the next cell as follows: among the set
of ports that have received the least number of cells of
this flow up to now, choose the port that currently has
the least number of ready cells; ready cells are the cells
(of any flow group) that are queued at this port and that
have an available downstream credit. Both methods have
a maximum per-flow imbalance of 1, and, in the long run,
send the same number of cells in each path; PerFlowIC,
though, is more flexible every time the imbalance count
returns to 0. We also performed simulations with larger
buffer sizes, up to 4, which allow more “slack” in the two
paths, and found that performance is insensitive to this
parameter. The results are shown in fig. 12, for uniformly
destined traffic, and in fig. 13, for traffic in the presence of
hot spots.

9



Sapountzis and Katevenis: Benes Switching Fabrics with O(N)-Complexity Internal Backpressure

1

4

16

64

256

0.1 0.3 0.5 0.7 0.9

D
E

LA
Y

 (
C

E
LL

 T
IM

E
S

)

LOAD

bursty/12: PerFlowRR
bursty/12: PerFlowIC
bursty/12: OQ       
Bernoulli: PerFlowRR
Bernoulli: PerFlowIC
Bernoulli: OQ       

Fig. 13. Delay of non-hotspot destinations in the presence of hotspot/4 traffic;
horizontal axis is the load to non-hotspot outputs; other parameters as in fig. 12.

Under smooth (Bernoulli) traffic, the cell distribution
method does make some difference: imbalance count (Per-
FlowIC) yields 30% to 60% lower delay when compared
to round-robin distribution (PerFlowRR). The difference is
more pronounced for medium loads, and less pronounced
for light or heavy loads. The presence or absence of hot-
spot traffic does not affect this aspect of the results. Under
bursty traffic, though, the cell distribution method makes
virtually no difference. This must be due to the large num-
ber of back-to-back cells in the same flow: in this case,
PerFlowIC becomes similar to PerFlowRR not only in the
long but also in the short term.

By comparing the delays in fig. 13 to those in fig. 12, we
notice that they are almost identical, which shows that non-
hotspot traffic stays virtually unaffected by the presence
of hot spots in the network, thus proving the excellent
QoS properties of this switch. Not shown in the plots
is the throughput (utilization) of the hotspot destinations
(remember that the load offered to them is 100%). Under
smooth traffic this output utilization was consistently over
99%; under bursty traffic, it ranged from 92% to 98%.

Figures 13 and 12 also show, for comparison, the delay
of the ideal output-queued (OQ) switch under each traffic
load; in every triplet of curves, output queueing is the
lower of the three curves. We see that, under bursty traffic,
the Benes fabric has only 25% to 50% worse delay when
compared to ideal output queueing. Under smooth traffic,
the switching fabric’s delay is longer by a factor of 1.6 to
4, the difference being less pronounced for light load and
more pronounced around 80% load.

5.2. Fabric Size Dependence of Performance

One of the advantages of the proposed architecture is
than it can scale to very large sizes. It is important for the
performance of the fabric not to degrade with increasing
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Fig. 14. Performance for various fabric sizes, 16×16 to 256×256: average
delay and maximum delay versus load, under bursty traffic in the presence of
hot spots. The results are for the PerFlowRR cell distribution method.

size. We experimented with fabrics of up to 256 ports. We
used the more “interesting” of the previous traffic patterns,
bursty/12 arrivals with hotspot/4 destinations.

The results are plotted in fig. 14, and they show that
maximum cell delay generally increases with increasing
fabric size, roughly by about 25% to 75% when the fabric
size quadruples. However, average cell delay remains
virtually unaffected by fabric size.

5.3. Alternative Cell Resequencing Methods

As discussed in section 3.1, cell resequencing can be
performed progressively, “PerStage”, or cumulatively, in
the very last stage of the fabric (“FinalOut”). From the
point of view of implementation, per-stage resequencing is
simpler and less expensive than FinalOut, but the question
remained regarding performance: it appears that FinalOut
lets cells go faster through the routing network, and thus
may lead to lower delays. In reality, things are the other
way around!

Figure 15 shows the average delay under the two rese-
quencing methods; input traffic is bursty/12 and hotspot/4,
as in section 5.2. For the “FinalOut” method, we show
separately the delay for the cells to get through the fab-
ric, without yet being resequenced (“FinalOut Fabric”),
and separately their total delay, including the resequenc-
ing process in the very last stage of the fabric (“FinalOut
Total”). Interestingly, although cells do indeed get a bit
faster through the fabric, as compared to the case where
per-stage resequencing delays them in the routing net-
work, when the delay of FinalOut resequencing is added,
the overall delay of FinalOut is worse.

We see that letting some cells get quickly through the
fabric, ahead of their order, without per-stage resequenc-
ing, appears to consume such fabric resources that, overall,
it harms other cells more than it benefits the early-out cells.

10



Sapountzis and Katevenis: Benes Switching Fabrics with O(N)-Complexity Internal Backpressure

1

4

16

64

256

0.1 0.3 0.5 0.7 0.9

D
E

LA
Y

 (
C

E
LL

 T
IM

E
S

)

LOAD

FinalOut Total 
PerStage Total 
FinalOut Fabric

Fig. 15. Average delay under different resequencing methods; bursty traffic
in the presence of hot spots. The results are for the PerFlowIC cell distribution
method.

We conclude that per-stage resequencing is strictly better
than cumulative resequencing in the very last stage of the
fabric, both from the point of view of implementation cost
and complexity as well as from the point of view of per-
formance.

6 . CONCLUSIONS

We showed how to efficiently scale packet switches
to very large numbers of ports, while maintaining non-
blocking operation and high quality of service. This can
be done using the Benes network, the lowest-cost switch-
ing fabric that is free of internal blocking. Large buffer
memories are only needed at the inputs of the system,
to implement virtual output queues (VOQ); their number
scales linearly with system size, the number of queues in
each memory also scales linearly, while their throughput
stays fixed. Internal backpressure is used in the Benes fab-
ric, in order to provide: (a) low cost switching elements,
since they only need on-chip buffer memory; (b) zero cell
loss in the switching fabric, although buffer memories are
small; (c) low system cost, since the fabric needs no in-
ternal speedup; (d) low system cost, since the fabric does
not need redundant paths to handle cell conflicts using
deflection routing; (e) low system cost, since no global
scheduler is needed, and all scheduling and coordination
is distributed; and (f) high system performance and high
quality of service, even though system cost is kept low as
detailed above.

To achieve all these, we had to extend the known per-
flow backpressure architecture so as to make it applicable
to multipath routing (inverse multiplexing) and cell rese-
quencing, while keeping its cost manageable. We achieved
this using an appropriate flow merging scheme that keeps
the cost of backpressure down to O(N) per switching ele-
ment. We proved freedom from deadlock for a wide class

of multipath cell distribution algorithms. Finally, using
a cell-time-accurate simulator, (a) we verified operation
free of internal blocking; (b) we showed that per-stage
resequencing is preferable; (c) we found that cell distri-
bution based on imbalance counts leads to lower delays
than round-robin distribution, but under bursty traffic this
difference becomes negligible; (d) we noticed that delay
under bursty traffic is only 25 to 50 % higher than ideal
output queueing; and (e) we showed that the delay of
well-behaved flows remains unaffected by the presence
of congested traffic to oversubscribed output ports, thus
proving the excellent quality of service properties of the
system.
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