FORTH-ICS/ TR-172 July 1996

The Architecture, Operation and Design of the Queue
Management Block inthe ATLAS| ATM Switch

ChristoforosE. Kozyrakis

Among the various switch buffer architectures, output queueing implemented in a com-
pletely shared buffer isthe one that achieves the highest possible utilization of both output
bandwidth and buffer space. The high link throughput, small cell size and additiona fea-
tures of ATM switching, such as multiple classes of service, multicasting and flow control,
enforce further extensions to the above scheme and demand pure hardware implementa-
tions. In thiswork we present the hardware block maintaining output queues per priority
class in the ATLAS | single chip ATM switch. It also provides support for multicasting
and multi-lane credit-based flow control. Techniques such as pipelined and superscalar
processing, usually employed in processors' design, are used in order to accommodate for
the amount and high speed of operation required. This aso modifies the approach to the
timing of operations, the control design and the calculation of the hardware complexity.
The block was extensively simulated to ensure the correctness of its operation. Although
the hardware implementation is currently in progress, the circuits already laid out are pre-
sented, whilethe VLS design of the remaining blocksisanalyzed. In addition, the Priority
Enforcer circuit and its full-custom layout is thoroughly described.

The Architecture, Operation and Design of the Queue
Management Block inthe ATLASI ATM Switch

Christoforos E. Kozyrakisf

Institute of Computer Science (ICS)
Foundation for Research and Technology Hellas (FORTH)
Science and Technology Park, Heraklion, Crete
PO. Box 1385, GR-711-10 Greece
email: koziraki @ics.forth.gr

Technical Report FORTH-ICS/TR-172 July 1996

(© Copyright 1996 by FORTH
Work Performed under ACTS Project 060 "ASICCOM" and as B.Sc. Thesis at the Univ. of Crete

ABSTRACT: Among the various switch buffer architectures, output queueing implementedin a
completely shared buffer is the one that achieves the highest possible utilization of both output
bandwidth and buffer space. The high link throughput, small cell size and additional features of
ATM switching, such as multipleclasses of service, multicasting and flow control, enforce further
extensions to the above scheme and demand pure hardware implementations. In this work we
present the hardware block maintai ning output queues per priority classinthe ATLASI singlechip
ATM switch. It aso provides support for multicasting and multi-lane credit-based flow control.
Techniques such as pipelined and superscalar processing, usually employed in processors' design,
are used in order to accommodate for the amount and high speed of operation required. This
also modifies the approach to the timing of operations, the control design and the calculation of
the hardware complexity. The block was extensively simulated to ensure the correctness of its
operation. Although the hardware implementation is currently in progress, the circuits aready
laid out are presented, while the VLSI design of the remaining blocks is analyzed. In addition,
the Priority Enforcer circuit and its full-custom layout is thoroughly described.

KEYWORDS: VLS switches, ATM switches, ATLAS switch, shared buffer, credit-based
flow-control, multiple output queues, queue management, pipelining, priority enforcer.

Thistext is available in Postscript form, by anonymousftp, from server "ftp.ics.forth.gr".

Dirctory: "tech-reports/1996"
Files: "1996.TR172.QueueMangement. README", "1996.TR172.QueueMangement.ps.gz"

1 The author is also with the Computer Science Department, University of Crete, Greece.

Contents

1 Introduction
11 TheATLASIswitch
12 TheQueueManagementBlock
13 Thisthesis e e

2 Block Organization

3 Block Operation
31 CdlArrival Operation e
32 CdlDeparture Operation e
33 CreditArrival Operation e
34 Additional Operations e e
35 Further detailsonblock operation L oo

4 Accesses Timing and Port Requirements
4.1 PortsCaculationand Verification L oo o
4.2 HTRFaternativeorganizations« o e

5 Queue Management Control
51 CreditsPipeineControl
52 CdlsPipdineControl e

6 Bypass Control and Datapaths
6.1 Cdl/CreditArrivalBypass e
6.2 Head-Tail PointersBypass e
6.3 Bypassrulesand datapath verificationo oL

7 Management Commands Support
7.1 Management Commandsandtheir Format

7.2 Implementation of ManagementCommands
8 Block Functional Simulation and Testing

9 Block Hardware (VLSI) Implementation

13
13
15

16
16
17

20
20
22
24

27
28
29

31

33

9.1 Content-AddressableMemory Cellso o

9.2 Random-AccessMemory Cells L

10 ThePriority Enforcer Circuit
10.1 TheOperation of the Priority Enforcer

10.2 Design Alternativesfor the Priority Enforcer L.
10.3 VLSl Techniquesfor Speeding-Up the Priority Enforcer

10.4 ThePriority Enforcer inthe Queue ManagementBlock

10.5 Cyclic Priority Enforcers
11 Conclusions
Acknowledgments

References

38
38
39
41

47

49

50

51

Architecture, Operation and Design of the Queue Management Block 1
1. Introduction

Asynchronous Transfer Mode (ATM) [LeB092] puts additional requirements both on the speed and the
complexity of switches (routers), used as building blocksin networks. The main reasonsfor that are: a)
the high cdll arrival and departure rates (up to millions of cells per second), dueto the high bandwidth of
thelinks and the small cell size; b) the small delay that cells are expected to undergo through the switch;
¢) the high utilization of the output throughput demanded; ¢) the fact that, since ATM classifies network
traffic according to the quality of service requirements that has to guarantee, switches must route cells
in a priority-based manner; and €) other features desirable in high-speed networks such as multicasting
and flow control. In order to meet these demands, switches must use flexible buffer architectures and
implement high performance data structures for cells stored in them, which were not essential before
[CoST88]. Sincethese structures must be updated in rates similar to those of cell arrivalsand departures,
they must be implemented in hardware [Toba9(].

Output queues, implemented as linked lists in a completely shared buffer, have been identified as
the combination of data structure and buffer architecture that resultsin high utilization of both available
throughput and buffer space [HIKa38][TaFr88]. This organization can be used in ATM switches after
properly extending it to support multiple classes of service, multicasting and flow-control. Inthisthess,
we present the Queue Management block of the ATLAS | ATM switch, that maintains queues per output
and per service class, along with queues for multicast cells and cells blocked in the switch by the flow
control protocol.

1.1 TheATLASI switch

ATLASI [KaSV96][KSVYMC96] isasingle-chip ATM switch currently developed at ICS-FORTH within
the ASICCOM 1 project. Its intended use is as building block in high-throughput and low-latency
networks, varying from local area (LAN) to wide area (WAN) and desktop area (DAN) networks.

ATLAS has 16 input and 16 output point-to-point links, each running at 622 Mbits/s. Its aggregate
throughput reaches 20 Gigabits/second. It provides shared buffer for 256 ATM cells, using the pipeline
memory architecture [KaVE95]. ATLAS a so supports configurable VP and VP-V C switching (by using
atranslation table), both rate and optional credit-based multi-lane back-pressure flow control [KaSS96],
load monitoring, link bundling and merging of flow groups. Multicasting is aso supported, aslong as
all the copies of the cell transmitted to different links use the same VP/V C identifier.

Internaly, the switch has an additional input and output. Thus, it functionsasa 17x17 switch. The
17thinput isused for inserting cellsin the switch from the Switch Control and Monitoring block, while

The ASSICOM project is part of the European Union ACTS (Advanced Communication Technologies and Services)
Programme.

1.1 TheATLASI switch

2 Architecture, Operation and Design of the Queue Management Block

the 17th output delivers outgoing cellsto thisblock. These two ports enable the switch management and
control through cell transmissionswithout interfering with the normal operation.

In order to provide the mechanisms for support of various quality of service requirements, the
ATLAS | switch recognizes three classes of cells, differentiated by their priority level. While the high
priority classisnon back-pressured, sinceit isintended for real-time traffic, the medium and low priority
data are flow-controlled and intended for VBR-ABR and UBR data respectively. Switch resources, e.g.
buffer space, can be partialy reserved for each class by using various cell counters in order to define
buffer partitions and other limits. The priority of each incoming cell is specified in the corresponding
entry for itsflow group (VP or VP/VC) in the translation table.

Theoperation of theswitchis pipelined and can accommodatefor back-to-back and parallel arrivals
and departures of cells, as well as for the execution of the credit-based flow control protocol, through
reception and transmission of credits. The switch will be fabricated in a 0.5¢m CMOS technology and
its clock frequency will be 50 MHz.

1.2 The Queue Management Block

The Queue Management 2 block is the part of the ATLAS | switch responsible for implementing the
appropriate data structuresfor cellswithin its shared data buffer [KSVMC96]. These structures are used
in order to keep record of both cells blocked by theflow control protocol and cellsready to betransmitted
to their destination, and to be able to serve them in the way defined by the flow control scheme and the
priority rules.

Cdlsblocked by the credit-based flow control protocal, i.e. cellswithout al the credits correspond-
ing to their flow group and their destination links, are kept in the CreditLess Cell List (CLL). Thislistis
implemented as a pool of cells, without any specia connectivity. A cell in the data buffer (DB) belongs
to the CLL, when its routing information has been written in the corresponding memories of the block,
and it is not included in any other structure. Cells remain in the CLL until they receive credits for all
their destination links.

Cdlsready to be leave the switch are inserted in ready queues. Ready queues are FIFO structures
implemented as linked lists by using head, tail and next cell pointers. There are 54 such queues
maintained by the QM block : one per output and per priority level for unicast cells(16x3), threefor cells
destined to the Switch Control and Monitoring block (17th output), plus three queues for the multicast
cells (one for each priority class). Maintaining queues per output enables the switch to fully utilize
output throughput, while queues per priority level make priority-based routing possible. Multicast cells
are placed in separate queues so that links are properly reserved for their transmission when possible,
without unnecessarily delaying any unicast cells. Naturally, the best solution would be to enqueue each

2The Queue Management block will be frequently referred asthe QM block in this document.

1.2 The Queue Management Block

Architecture, Operation and Design of the Queue Management Block 3

multicast cell in every unicast ready queue corresponding to alink it must be transmitted to. Yet, this
would require extra memory space for next cell pointers, since each cell in the data buffer could bein
up to 16 ready queues at the same time. In order to avoid sacrificing that much memory to pointers,
separate multicast queues were preferred.

The Queue Management block operates on cells and creditsin a pipelined and paralel manner, as
explained later. Operations on incoming cells are performed by using their header and the information
attached to it after passing through the VP/V C Routing and Trandlation Table. Inasimilar way, departing
cells are served by producing their new header and their address in the data buffer, and forwarding them
to the proper outlink circuits. The whole credit, as read from the Credit Extraction and Seriaization
block, is used for credit operations.

1.3 Thisthess

In thiswork, we examine in detail s the Queue Management block, the parts it consists of, its operation
and its complexity.

Section 2 presents the organization of the block and the memories it contains. In section 3 we
thoroughly present its operation, while section 5 investigates the number of ports per memory needed
for these actions. Section 6 describes the block control logic, and section 7 explains data hazards due to
the pipelined operation of the block and the way they are handled. In section 8, the simulation methods
used are presented. Section 9 describes the full-custom layout of the two-ported memory blocks and the
the VLSl implementation of the remaining circuits. Section 10, presents the operation of the Prioriry
Enforcer circuit, the design aternatives, theimplementation and its full-custom layout for the QM block.
Finally, section 11 describes conclusions and future work.

1.3 Thisthesis

4 Architecture, Operation and Design of the Queue Management Block
2. Block Organization

The Queue Management block mainly consists of five memories. One of them, the Head-Tail register
file, holds the necessary head and tail pointers for maintaining the ready queues, while the remaining
four hold routing information and characteristics of the cells stored in the switch. The latter correspond
each of their entries to a slot in the data buffer and keep there al information about the cell occupying
that slot. The five memory blocks and their purpose are :

VPout Memory : it holdsthe new routing information for each cell in the data buffer. Thisisa 12-hit
field (VP/V Cout) used to replace an equal-sized field in the VP/V C sectionin the cell header. This
field is read from the Routing and Translation Table of the switch on cell arrival. Size: 256 x 12
bits.

OutMask Memory : it contains a mask, indicating the link(s) that the corresponding cell in the data
buffer should be transmitted to (16 bits, one bit per outlink). This mask, called outmask, is also
read from the Routing Table on cell arrival. Although the Routing Table provides a 17th bit as
well, identifying cells destined to the 17th outport (Switch Control and Monitoring block), this bit
is not stored in the OutMask memory. Size: 256 x 16 bits.

CreditMask Memory : itisused only with cellsof flow-controlled groupsand storesamask identifying
currently available creditsto each cell in the switch (called creditmask). Thismask is 16 bitslong,
since there can be up to one credit available per outlink per flow-group. Itsorigina contents are
read from the Credit Table memory on cell arrival, and are properly updated, each time a credit
for that flow-group arrives. An additional (17th) bit is used to discriminate between medium and
low priority flow- controlled cells. Size: 256 x 17 bits.

LinkList Memory : it holds a pointer to the next cell in the ready queue to which the corresponding
cell inthe DB belongs (if it does). Thisis an 8-bit address to the data buffer. It also contains the
primary outlink that the next cell must be transmitted to, encoded in 4 bits. Thisis necessary for
properly reserving links for the transmission of multicast cells (explained in details later). Size:
256 x 12 bits.

Head-Tail register file (HTRF) : thisblock has 54 entries where it holds the head and tail pointers of
each ready queue. All pointers are 8 bits long and index to a cell in the data buffer. Thereisa
redundant bit per entry, indicating whether the queue is empty or not (Valid bit), which is used to
accelerate the operation of the block. Size: 54 x 17 bits.

The VPout, OutMask and CreditMask memories comprise the CreditLess Cell List sublock, while
the LinkList memory with its periphera circuits form the Ready Queues sublock [KSVMC96].

2. Block Organization

Architecture, Operation and Design of the Queue Management Block

noT
J0p Jpe b o
vodud ixu nd Ixu oud pio ysew ph %op Jpe b ¥eewo pio
W77 |FIP[O 01RO 1 T oW JIpes WO I0Rd nodA
¢ uipno 2 B wm
[BIpIO Ut
- i’H ssedAq pi
8 1T i T
erpy - erpy é Nmﬁvw_ Terpy erpy
_ 7 _ _
1pebo1po 0 1 S I Tl oo s ol 1 Tldeod) | TolaeoRo| |
g b =3 - 9z
© 3) m e Ui
SC |2 e UL 3
WsLu m_._v_c_u_ e & Y g s [aul yopw L
0 U0 B | wewmppen : LB 35NN LB Jnod A
MO ZeEpM TeEpM ¢ 2 110 elepM TeepM L o] SmES erpsS MO BEpM EBEpS
T T 11 11 1 T
: 3 : i } #
amy) ——T ssedfgpo SN0
aMpoLUY) AINO amdA
sl [T 0%—%u] oud o 1, a1jpowNO Sl
L T am uio
™Ml j\ﬁ\o m WO I UL SdA — dAul
Al sl eEp bW ,|4 XT 10 00
WD RWNOMEA
{uodud uipa U6 PREURIOUIRD c_%o
gl]
7] owosen) %ﬂezog . PHUINOMA dAuIRD
Vodud uuo oI um D WBW | yseuiouipo epp bW
¢ SsedAq po _
YSew Huipno
_ M, [
ey uo Ll 8 @

2. Block Organization

Jpe ubw
Jpe Inopa
U9 105301}

JRWNOMEA
“uipno

Figure 1: The Queue Management block main datapth.

Architecture, Operation and Design of the Queue Management Block

freeslot_enc
Tasted | crin_tail
nxe_ptr 1 1 8 YA mgnt_data
crin_tail HTVmac 1
1 4 HTVrel/Hwel
W — Twel/Vwel
1
out/in_2 out/in_2 o 1 > ‘?VT/ZZr/e\?/v:/_'eVZV <
Hilwbp Hiwbp
Wdatal Wdata2 Ctrl HTVmac

celin_queue

decoaer

celout_queue 8

celout_adr

Head-Tail Memory

mgnt_adr

54 write_adrl write_adr2 54 crin_queue
JAN
54 read_adrl read_adr2 54
Rdatal Rdata2
17 17
17 HTVout
(0]
1
freeslot_enc 1 crin_tail
crin_tail 1 1
8 8 8 \ EJ(8 L
1x 01 OOT 00 01 1 1 . o 1
Tirbp_cl Virbp_¢ 8 ‘
P T2rby
Tirb_cr V2rby_de
celio_oldtail celio_valid crin_head crin_oldtail crin_valid

Figure 2: The Head-Tail Pointer register file and its periphera circuits.

Another important part of the block isthe control logic. Since comprehension of block operationis
required in order to understand the organization of control logic, its description is presented later.

The block also contains a number of cells such as registers, multiplexors, decoders and other

combinational circuits and gates, necessary for correct operation.

Figure 1 presents the complete

diagram of the main datapath of the block, while figure 2 isthe block diagram of the Head-Tail register
file and its peripheral circuits. The purpose and the operation of certain parts of these diagrams will
become clear in the rest of this document.

2. Block Organization

Architecture, Operation and Design of the Queue Management Block 7
3. Block Operation

The purpose of the Queue Management block isto properly maintain the ready queues and the creditless
list on each event. There are three types of eventsin the ATLAS | switch that effect these queues and
have to be properly handled. These events are cell arrivals, cell departures and credit arrivals.

All cell and credit events are served by the QM block, and the switch in general, in a pipelined
fashion[KSVYMC96]. One canimaginetheblock asatwo way superscalar pipelined CPU, wherethefirst
processing unit is used for credit arrival operations, while the second one is shared by cell arrivals and
departures. Since pipelined and superscalar processing is employed, actions related to different events
can be simultaneously in progress. Following, there is detailed description of the pipeline stages, the
actions and accesses performed on each event, based on the diagramsin figures 1 and 2 and the names
of signalsand blocks declared there. In addition, table 1 summarizes the main actions per event and per
pipeline stage.

3.1 Caédl Arrival Operation

Incoming cells start being processed by the QM block as soon as the Scheduler block decides to serve
them. Thisiswhenever thereis aclock cycle when no cell transmission to alink can be initiated. The
necessary actions are performed within three pipeline stages (3 clock cycles), as shown in table 1.

In the first cycle, an empty slot for the cell to be stored in is requested from the Free List block,
which keepstrack of all empty slotsin theshared databuffer. Itsaddressisgiven throughthefreeslot_enc
pointer. The corresponding slots of the QM memories are used for holding information about this cell.
In parald to that, the block holding the cell countersis accessed to find out if the cell can be accepted
by the switch or not, i.e. whether it will cause an overflow of the corresponding buffer partition or not.
In case dl dotsin the DB are occupied or the cell is dropped, the actions of the following stages are not
performed.

In the same time, the VP/VCout information read from the Routing and Trandation Table, is
used as an address to read available credits on all links for the flow group to which the cell belongs,
from the Credit Table memory. The cell "consumes" al credits available for its destination links (or
outlinks) by clearing the corresponding bitsin the Credit Table entry, whilesetting themin its creditmask
(clinCRmask). Cdlls of non flow-controlled groups are always presented with credits for all their
outlinks. The same holdsfor cells coming from the 17th input (Switch Control and Monitoring block),
which are always unicast cells. Thisinformation is also used to decide whether this cell is ready 3 and
should be enqueued in aready queue, or it should be added to the CLL. Finaly, the class identifier and

3A cell is considered ready when it belongsto anon flow-controlled group, or there are credits availablefor all its destination
links.

3.1 Cell Arrival Operation

8 Architecture, Operation and Design of the Queue Management Block

the 16 least significant bits of the outlink mask of the cell, read from the Routing Table as well, are used
to form a HTRF address (celin_queue) in order to read the tail pointer (celio_oldtail) and the valid bit
(celio_valid) of the ready queue to which the cell corresponds.

During the next clock cycle, the VP/V Cout field (celinV P), the outlink mask (celinOmask) and the
creditmask (celinCRmask) of the cell are stored in the corresponding memories, in the slots indexed by
its DB address (celio_adr). If the cell isready and its corresponding queueisnot empty at thetime (valid
bit set), its address (freeslot_enc) and primary outlink (celin_priport) are written in the LinkList entry
indicated by thetail pointer (celio_gadr). In thisway, the cell isadded at the tail of the ready queue. The
accesses of the next stage are performed only for ready cells.

Inthelast cycle, the DB address of the ready cell (freeslot_enc) iswritten at thetail pointer entry of
the queue dot in the HTRF, indexed by write_adrl vector. If the queue was previously empty (valid bit
reset), the head pointer entry and the valid bit are updated as well.

Event Stage (cycle) Stage (cycle) Stage (cycle) Stage (cycle)
1 2 3 4
Cdl Search Free List Write VP/V Cout Update Tail Ptr
Arrival Read Cell Counters Write OutMask
Read Tail Ptr Write CreditMask

Read Credit Table Write Next Ptr
Cdl Read Head Ptr Read VP/V Cout Update Head Ptr
Departure Update/Read OutMask

Read Next Ptr

Credit Search VP/VCout | Update/Read CreditMask | Read Tail Ptr Write Tail Ptr
Arrival Search OutMask Read OutMask Write Next Ptr

Table 1: Thethree event types and the main actions per pipeline stage of their operations.

3.2 Céll Departure Operation

The departure of a cell from aready queue to a specific outlink is also initiated by the Scheduler block.
Thisis done as soon as the link isidle (or about to become idl€) and the priority rules alow that. The
proper actions are performed within three pipeline stages (3 clock cycles).

Inthefirst cycle, the head and tail pointers of the ready queue from which the cell departs, are read
from the HTRF. The address of the queue (celout_queue) is cal culated by the Scheduler block, using the
service class of the cell and the identity of the outlink. The head pointer (celout_adr) identifies the cell

3.2 Cell Departure Operation

Architecture, Operation and Design of the Queue Management Block 9

to be transmitted and is used as an address in al memory accesses during the following cycle, while the
tail pointer (celio_oldtail) isonly needed to detect if the cell isthelast onein the queue. Thisisthe case
where the head and the tail pointers are equal.

During the second cycle, the VP/V Cout field (VPout) of the cell isread and forwarded to the proper
outlink circuits in order to form the new cell header. At the same time, the pointer to the next cell in
the queue (nxt_ptr) and its primary outlink (nxt_priport) are read from the LinkList memory. Finally, the
bit of the cell OutMask entry, corresponding to the selected outlink, isreset. Thisbit isindicated in the
outlink_mask vector. The rest 15 bitsin the entry are read from the OutMask memory (celout_omask
field). If al these bits are 0, the cell has just been transmitted to its last destination and should be
dequeued. Inthiscase, the Free List block and the block keeping the various cell counters are notified in
order to mark the dot free and decrement or increment the proper counters. Thisaccessisauselessread
in the case of a cell destined to the 17th output, since both the outlink_mask and the OutMask memory
entry will be zero masks.

The actions of the last cycle take place only when the cell must be dequeued. If the cdll is not the
last onein the queue, the head pointer entry in the Head-Tail register file is updated with the address of
the next cell (nxt_ptr). Otherwise, the valid bit of the queue is reset to indicate that the queue is now
empty. The address of the slot corresponding to the queue served, isindexed by the write adrl vector.

3.3 Credit Arrival Operation

Serving an incoming credit isinitiated by the Credit Serialization block, whenever an unprocessed credit
exists. The necessary actions take up 4 pipeline stages (4 clock cycles).

During thefirst cycle, the flow-group identifier of the credit (crinVP) and a 16-bit mask indicating
thearrival link (crin_link) are used to search the VVPout and OutM ask memories respectively, for cellsin
the CLL waiting for that credit. Both masks are available from the Credit Serialization block. While we
demand a complete match of an entry with the search pattern in the VPout memory, the search access
in the OutMask memory aims to detect entries with the corresponding outlink enabled (not complete
matching of masks). Thus, logic zeros in the search mask are treated as don’t-care values. Because
of the merging of flow-groups supported by the ATLAS | switch, there can be more than one entries
matching during this search, i.e. more than one cells expecting this credit. Hence, a priority enforcer
must operate on the result of the action (match_line vectar), in order to select the cell to which the credit
will be handed. It also generates the credit_match signa, indicating whether the search operation was
successful or not. The priority enforcer will probably be acyclic one, in order to maintain some random
selection properties.

If no cell wasfound during the search, the credit arrival isnoted in the Credit Table memory during
the second cycle, by setting the bit corresponding to the arrival link in the proper entry. Otherwise,

3.3 Credit Arrival Operation

10 Architecture, Operation and Design of the Queue Management Block

the output of the priority enforcer, indicating the decoded address of the selected cell (crin_adr), is used
to update its creditmask. The bit corresponding to the credit arrival link, identified by the crdCRmask
vector, is set, while all the rest are read (crd_omask), along with the bit indicating the cell priority level
(crd_prio). At the same time, the outmask of the cell (crd_omask) is read from the OutMask memory
and compared to its creditmask in order to decide if the cell isready and, therefore, must be enqueued.
Actionsin the following cycles take place only for ready cells.

In the next cycle, the tail pointer (crin_oldtail) and the valid bit (crin_valid) of the queue to which
the cell corresponds, are read from the HTRF. The address of the queue (crin_queue) is calculated from
the cell’s outmask (crd_outmask) and the 17th bit of its creditmask (crd_prio), that indicates its priority
level (medium or low). Thisinformation was read in the previous cycle.

During the last cycle, the cell is actually enqueued. If the ready queue was previously not empty,
the address of thecell inthe DB (crin_tail) and its primary outlink (crin_priport) are stored in the LinkList
entry indexed by thetail pointer (crin_engadr). In parallel, the same addressis stored in the tail pointer
entry (using the write_adr2 vector as an address). If the queue was empty before, no writing in the
LinkList memory takes places and, apart from the tail pointer, the head pointer and the valid bit of the
gueue are properly set aswell.

3.4 Additional Operations

In addition to the operations mentioned above, the QM block has an extra task to perform. It must
provide the Scheduler block with information about the status of the ready queues. Based on this
information, the Scheduler can decide how to serve ready cells as soon as possible, how to maintain the
proper priority rules among them and how to initiate serving incoming cells, when no cell transmissionis
feasible. Thisisaccomplished by maintaining three 17-bit amd three 16-bit masks. Thefirst three masks
(not_empty _high, not_empty_medium and not_empty |ow) indicate whether the 51 (48 plus 3 for the 17th
output) unicast ready cell queues are empty or not. The other three masks (reserve_high, reserve_medium
and reserve_low) are used for the three multicast ready queues. Each mask indicates the outlinks (1 to
16) to which the cell currently at the head of the corresponding multicast queue must be transmitted to.
Since al cells destined to the 17th outport are unicast, thereisno need for a 17th bit in these masks. The
Scheduler must reserve thelinksfor the transmission of the multicast cell, as soon as priority rules alow
that.

The bits of the not_empty masksare duplicates of thevalid bitsof the ready queues and are properly
updated every they are modified. Reserve masks are updated every timethere is a new cell at the head
of amulticast queue. If the head is updated during a cell or credit arrival (enqueue in an empty queue),
the outmask of the cell (celin_.Omask or crd_omask respectively) is copied to the corresponding reserve
mask, hence all the links are reserved at once. On the other hand, if the head is updated during a cell

3.4 Additional Operations

Architecture, Operation and Design of the Queue Management Block 11

departure, the outmask of the new head is not available. In order to save an additiona access to the
OutMask memory, which would also raise the port requirements for that memory, the primary port field
has been added to each LinkList entry. Thisfield (nxt_priport) is used to set one bit in the proper reserve
mask, when the address of the new head (nxt_priport) is read from the LinkList memory. When the cell
is transmitted to this outlink, its whole outmask is read (celout_omask vector), and the rest of the bitsin
the reserve mask, those corresponding to the rest of the destination links, are set as well. Resetting the
bits of reserve masksis performed by the Scheduler block.

3.5 Further detailson block operation

There are certain actions described above, that do not serve any obvious reason or it is difficult to
understand their necessity. In the following paragraphs, we present these actions and explain their
purpose.

Firstof al, itisclear that thevalid bit added to each entry inthe HTRF isredundant. Theinformation
it provides, whether aready queueis empty or not, can aso be extracted from the not_empty and reserve
masks. Yet, thishit was added because of the complexity of the circuit needed to extract thisinformation
for a specific queue from these masks. Maintaining the valid bit has no other cost than the memory bits
it consumes and demands no extra ports for the HTRF, since it iswritten and read at the same time with
the head and tail pointers. In addition to that, getting the queue's status from the valid bit and not from
the masks simplifies the bypass control datapaths as explained later.

The OutMask memory, that holds information about the outlinksthat each cell must be transmitted
to, does not have a 17th bit which would indicate that a cell must be delivered to the Switch Control and
Management block (17th output). This causes no problem, because all cells destined to the 17th output
are unicast and are always presented with the proper credit. Thus, they are immediately added in the
proper ready queue and no incoming credit has to be handed to one of them. Since the 17th bit in each
OutMask entry would just be set on cell arrival reset on cell departure, we decided to removeiit.

One can aso notice that, updating the tail pointer when engqueueing an incoming cell could be
performed one clock cycle earlier, in the second pipeline stage. All essential information in order to
decide if this action is necessary and what should be written in the register file is available at the end
of thefirst stage. What is more, setting the tail pointer as soon as possible, reduces the number of data
hazards and bypass datapaths. Yet, we prefer to delay this write access for one clock cycle, so that it
takes place in the same stage with the write to the HTRF caused by cell departures, which cannot be
done any earlier. Performing the two write actions in corresponding pipeline stages, combined with the
fact that the two operations are never initiated simultaneously, enables time sharing of a single memory
port by both accesses.

Finally, it is not clear why we search the OutMask memory aong with the VPout memory during

3.5 Further details on block operation

12 Architecture, Operation and Design of the Queue Management Block

credit arrival, in order to detect cellswaiting for the credit. Reasoning this action isimportant, because
it forces the OutMask memory to support content-addressabl e accesses. One may argue that VP/V Cout
matching is enough, but in this way, there may be a match between the credit’s VP/V Cout and a V Pout
entry containing "garbage" (the corresponding cell has departed and the slot is marked freg). Still thisis
not the reason for OutMask searching, since this problem can be solved by concurrently searching the
Free List block 4. Not searching the OutMask memory may cause an error in the following scenario :
suppose that amulticast cell of the flow-controlled group X is stored in the switch, it isat the head of its
ready queue and needs to be transmitted to outlinks 3 and 4. The cdll is transmitted to outlink 4 which
isidle at the time, but not to outlink 3 because it is busy with higher priority traffic. If the credit for
group X and outlink 4 returns to the switch before outlink 3 becomes available, and no OutMask search
isperformed, the credit will be given to the cell once more. Sincethe cell has already been transmitted to
outlink 4, handing the credit to thecell isequal tolosingit. It should be handed to the Credit Table where
the next cell for that group can get it from. If the OutMask memory was searched as described above,
there would be no matching, because the fourth bit in the cell’s OutMask entry is cleared when it is
transmitted to outlink 4. In addition, this also prevents matching with slots containing "garbage”, since,
when a cell istransmitted to its last destination and its slot is marked free, al bitsin the corresponding
OutMask entry have already been cleared. Hence, searching the OutMask memory is necessary for the
correct operation of the credit-based flow control protocol.

“The Free-List block containsasmall 256 x 1 memory, thusit does not cost much to turn it to a content-addressablememory
(CAM)

3.5 Further details on block operation

Architecture, Operation and Design of the Queue Management Block 13
4. Accesses Timing and Port Requirements

In the previous section, we described the accesses performed on each memory block, supposing that
they have enough throughput to serve them al. Here, we investigate the number of ports per memory
needed to achieve the required throughput for these accesses. In order to do this, we use the information
on block operations and timing of events.

A cell-time is defined to be the minimum time period between two back-to-back cell arrivals or
departures. A cell-timelasts 33 clock cycles, which is 660ns for the ATLAS| switch (20ns clock cycle).
Within one cell-time, there can be up to one cell arrival, one cell departure and 2 credit arrivals per pair
of links (input link X - output link X, X=0,1,...,15). Since, ATLASisa 16 x 16 switch, the maximum
number of events per cell-timeis 16 cell arrivals, 16 cell departures and 32 credit arrivals [KSVMC96].
There is also the case of an additional event per cell-time, e.g. an extra cell arrival caused by a small
difference in the clock periods of two neighboring switches, the injection/delivery of a cell through/to
the Switch Control and Monitoring block or the execution of a management command. These events
usually utilize the 33rd cycle or clock cycles during which the resources necessary are not occupied by
normal events. Thus, serving such an additional event may be delayed for a few cell-times before they
are properly served.

The Queue Management block (just as the whol e switch) must have enough resources to be ableto
serve all normal eventswithin one cell-time from their appearance. Thisisso in order to ensure that the
correct dataiswritten/read to/from the shared data buffer [KaV E95] and the size of FIFO memoriesinthe
credit/cell serialization blocksiskept small . Hence, each memory block must have enough throughput
to accommodate for all the accesses that may be performed during the corresponding operations. Based
on the frequency per cell-time of events and the operation of the block as described in the previous
section, we can construct table 2, that analyzes the type °, the frequency and timing of each access per
event and per memory in the QM block.

4.1 PortsCalculation and Verification

Using table 2, we can calculate the number and type of ports per memory block. First of all, no port can
accommodate for more than 33 accesses per cell-time (33 clock cycles). Thus, the minimum number of
ports needed per memory can be calculated by dividing the number of accesses by 33 (or 32). Yet, we
must also keep in mind the relative timing of the accesses, as defined by the pipeline of their operation
and their timing rel ations to accesses performed to the same memory during different operations, in order
to verify that this number of portsis sufficient.

Credit arrival operations may be initiated up to 32 times per cell-time, i.e. thecredit arrival pipeline

5Type of accesses: rd read access; wr write access; st search access;, mod/rd modify/read access.

4.1 Ports Calculation and Verification

14 Architecture, Operation and Design of the Queue Management Block

Event Freq | Stage | VPout | OutMask | CreditMask | LinkList | Head-Tall
mem mem mem mem reg. file

Cdl 16 1 rd
Arriva 2 wr wr wr wr

3 wr
Cdl 16 1 rd
Departure 2 rd mod/rd rd

3 wr
Credit 32 1 s s
Arriva 2 rd mod/rd

3 rd

4 wr wr
Totad
number 64 96 48 64 128
of accesses

Table 2: Memory accesses per event in the QM block.

can be started on every 32 out of 33 clock cycles. Hence, each access performed by this pipeline needs a
dedicated memory port, used on every 32 out of 33 cyclesinworst case. On the other hand, cell arrival
and departure operations may be initiated up to 16 times per cell-time each, they have the same number
of pipeline stages and, therefore, can be both served by a single pipeline (as mentioned earlier). This
imposesthe restriction that only one operation, either for cell arriva or cell departure, may start on every
clock cycle, but this complies with the operation of the shared data buffer [KaV E95] (either aread or a
write operation may start on asinglecycle). A closer look at table 2 also reveal s that the two operations
perform accesses to the same memory block in corresponding stages. Thus, time sharing memory ports
between the two operationsis possible and safe, since only one of the two operations may bein a certain
pipeline stage on each clock cycle. Consequently, we actually need one memory port for every couple
of accesses to the same memory performed by the pipeline, one for a cell arrival and one for a cell
departure operation in corresponding stages. Taking into account the af orementioned observations and
table 2, we calculate the actual number and type of ports per memory needed. Thisinformation, aong
with the explanation of the ports' use, is shown in table 3. One can notice, that the number of portsis
the minimum. Thisis the result of carefully matching the actions and their timing for cell arrival and
departure operations.

4.1 Ports Calculation and Verification

Architecture, Operation and Design of the Queue Management Block 15

Memory Number | type of usage
block of ports | each port
V Pout 2 read/write | read/write VP/V Cout field on cell 11O
search search VP/V Cout field on credit arrival
OutMask 3 read/write | write/modify-read outmask field on cell 1/0
search search for enabled outlink on credit arrival
read read outmask field on credit arrival
CreditMask 2 write write creditmask field on cell arriva
read/write | modify-read creditmask field on credit arrival
LinkList 2 read/write | read/write next_cell_pointer on cell 1/0
write write next_cell_pointer on credit arrival
Head/Tail 4 read (1) read head/tail pointerson cdl I/0O
read (2) read head/tail pointers on credit arrival
write (1) | write head/tail pointerson cell 1/0
write (2) | write head/tail pointers on credit arrival

Table 3: Ports required and their purpose per memory block.

4.2 HTRF alternative organizations

The Head-Tail register file seems to be the most demanding, in terms of throughput, memory, since it
needs to be four-ported. A few other alternative organizationsfor theinformation provided by thisblock
were examined, in order to reduce the number of ports and avoid designing a four-ported SRAM. The
first alternative was to place the head and tail pointers in separate memories. Although it seemed, at
first sight, that both memories would be three-ported, operations on empty queues, where enqueueing
demands writing both head and tail pointers, raised the number of ports for the tail register file to
four. Since we would still have to design a four-ported SRAM and, in addition, a three-ported one,
this aternative was abandoned. The second alternative examined, was to keep head and tail pointers
separated and duplicate the tail register file as well. While write accesses to tail pointers would be
performed by both register files, a read access could be served by any single one of them. In thisway,
all three register fileswould be three-ported. Yet, the chip area wasted and the additional complexity of
control and bypass logic, made this solution unattractive too. After all, Head-Tail register fileisasmall
memory (54 x 17) and must operate at arather low speed for its size (20ns cycle time), hence we expect
that it will not be that difficult to design a four-ported SRAM cdll for it.

4.2 HTRF alternative organizations

16 Architecture, Operation and Design of the Queue Management Block
5. Queue Management Control

Control unitsin switch blocks are usually built as finite state machines (FSM). FSMs provide a smple
way to encode the state of the block and produce contral signals. In addition, their gate-level circuit
can be automatically derived from behavioral descriptions. Yet, the use of asingle FSM for the control
unit of the Queue Management block is practically impossible, because of its pipelined and superscal ar
operation. Since, the credits pipeline has four stages and the cells pipeline has 3, each one operating on
either acell arrival or departure, asingle FSM would have 432 () different states.

The method employed for the QM control unit is the one used for pipelined and superscalar CPUs
[PaHe93]. Once apipelineisinitiated, al the necessary control signalsare calculated on the first stage.
They are transferred to the foll owing stages through pipeline registers, until they are "consumed" by the
proper stage. Naturaly, on every stage, the information available at the timeis used in order to verify
the correctness of the control signals and to selectively ater or cancel some of them, if necessary. Two
such control units exist within the QM block: one for the credits pipeline and one for the cells pipeline.
In the following paragraphs, details about the two control units and their operation are presented. For
better comprehension of their operation, one must have in mind the operation of the whole block on the
various events, as described in section 3.

5.1 CreditsPipeline Control

The control unit of the credits pipeline is responsible for the control signals necessary during credit
arriva operations. The original generation of these signalsistriggered by the Credit Serialization block.
Figure 3 presents the flow-control diagram of the unit. The control signals presented in figures 1 and 2,
that are asserted in each stage, are shown inside the stage symbol. The arcs between the stages define
the next stage, and are | abel ed with conditionsthat select a specific next stage, when multiplenext stages
are possible. As mentioned earlier, the pipeline may be initiated every 32 out of 33 clock cyclesin a
cell-time, so multiple stages may be active simultaneously.

In stage 1 (search stage), the search enable signals for the VPout and OutMask memories are
activated. At the end of the stage, the result of the search action (signal credit_match) is used to decide
whether control will flow to the next stages, or the credit will be handed to the Credit Table block. Stage
2 (read & compare stage) sets the CRmod/re signal; this forces a modify access to one bit and a read
access to other 15 bitsin the CreditMask entry of the cell receiving the credit, through the corresponding
port. Asserting the OMre signal causes a read access to the corresponding OutMask entry. The results
of these two accesses are compare to detect if the cell isready. In stage 3 (read tail stage), asserting
HTVre2 triggers an access to the HTRF from the second read port, for the tail pointer and valid bit to be
read. Finally, in stage 4 (enqueue stage), control depends on whether the queue is empty at the time or

5.1 Credits Pipeline Control

Architecture, Operation and Design of the Queue Management Block 17

initialize pipeline

Stage 1 :
search
nocdlifound_ hgate Credit Table
\Lcell found
Stage 2 :
read& compare OMre=1 | cell notready__ (i icn
CRmod/re=1
\L cell ready
Stage 3 :
read tail

queue empty, queue not empty

Figure 3. Flow-Control diagram for the credits pipeline

not. In the second case, Ilist we2 is set to cause awrite access to the next_cell pointer of the current tail
in the LinkList memory, while asserting Twe2 causes the tail pointer to be updated through the second
write port of the HTRF. Inthefirst case, Ilist we2 isreset; Hwe2 and Vwe2 are set to force changing the
head pointer and the valid bit of the queue through the same HTRF port, as well.

5.2 CaeéllsPipeline Control

The control unit of the cells pipeline serves a dual function; it generates control signals for both cell
arrival and departure operations. Its flow-control diagram follows the two control streams in figure 4.
During a clock cycle, only one of two corresponding stages from the two streams may be active, since
either a cell arrival or departure operation may be initiated on a certain cycle by the Scheduler block.
Yet, more than one, not corresponding, stages can be active simultaneously from either streams.

The most important signal of the unit is the one that distinguishes cell arrival from cell departure
operations. It isactually generated by the Scheduler block and is propagated through the pipeline stages,
designating whether the stage should execute the cell arrival or departure actions. Thissigna (out/in.),

5.2 Cells Pipeline Control

18 Architecture, Operation and Design of the Queue Management Block

initialize pipeline on cell arrival initialize pipeline on cell departure
PIp \L
Stage 1: Stage 1:
read tail & DB address read head
cell dropped finish

cell not dropped cell ready

cell ready and
queue not empty,

cell not ready
or queue empty

Stage 2 :
read VP/V Cout VPre=1

OMmod/re=1

not last destination finish

Stage 2: VPwe=1 A
storecell data /' oMwe=1 OMWe=1 \ | ot read ist_re=1
CRwe=1 CRwe=1 |SE1NOLTeAV. finigh o
Ilist wel=1 llist_wel=0 last destination
cell last in queue cell not last in queue

Stage 3:

queue empty, queue not empty de?q%el.ie
Stage 3:
enqueue

finish

finish

Figure 4: Flow-Control diagram for the cells pipeline

along with its delayed by one clock cycle version (out/in_2), controls a number of multiplexors, that
select and prepare the correct input data and addresses for the accesses of the two operations. Thus,
out/in_ coordinates the time sharing of the pipeline resources by the two operations.

For cdll arriva operations, control flows according to the left stream in figure 4. In the first stage
(read tail & DB address stage), assertion of HTVrel triggers an access through the first read port of
the HTREF, in order to read the tail pointer and valid bit. The data received from the Free List and Cdll
Counters block are used to decide if the cell isto be dropped or not. Stage 2 (store cell data stage) sets
the write enable signals for the VPout, OutMask and CreditMask memories (VPwe, OMwe and CRwe
respectively), so that cell information is properly stored. If the cell is ready and the queue is not empty,
llist wel is set as well, so that the next_cell pointer of the current tail is written through the read-write
port of the LinkList memory. The appropriate address for this access, which is the previoudy read tail
pointer, is selected by the out/in_2 signal. Notethat thisis not the same with the address for the accesses
to the VPout, OutMask and CreditMask memories (celio_adr), which identifies the slot to which the
incoming cell isstored. If the cell isnot ready, the control flow terminates. Asserting Twel during stage
3 (enqueue stage), forces the DB address of the cell (freeslot_enc) to be written in the tail pointer entry
through the first write port of the HTRF. If the queue is empty, Hwel and Vwel are also set for the head
pointer and valid bit to be written.

5.2 Cells Pipeline Control

Architecture, Operation and Design of the Queue Management Block 19

Control for cell departure operations follows the right stream in figure 4. At stage 1 (read head
stage), setting HTVrel forces the head and tail pointersto be read through thefirst read port of the HTRF.
Reading the VP/VCout field of the cell is succeeded by asserting the VPre signa in stage 2. At the
same time, the read/write port of the LinkList memory isused to read the pointer to the next cell in the
gueue (llist_re set). Finadly, a modify-read access is triggered in the the OutMask memory, by setting
OMmod/reand selecting the correct input datawith the out/in_signal. If the 15 bitsread are dl zero, the
cell is currently transmitted to each last destination and, therefore, dequeue stage (stage 3) must follow.
In the case that the cell departing is not the last one in the queue, asserting Hwel forces the next cell
pointer just read to be selected by the out/in_2 signal and written in the HTRF as the new head pointer

(using the second write port). Otherwise, the Vwel signal is set, so that the valid bit of the queue is
reset.

5.2 Cells Pipeline Control

20 Architecture, Operation and Design of the Queue Management Block
6. Bypass Control and Datapaths

Superscalar and pipelined processing naturally involves data hazards [PaHe93][PaHe95]. The data used
for calculations by thefirst pipeline may be simultaneously atered by the second one. The same situation
can aso come up between different stages of the same pipeline. In order to confront with this problem,
one must first locate the sources of data hazards and the conditions under which they arise, and then
provide for a stable solution. Two methods for solving this problem are usualy employed [PaHe93].
Thefirst one, stalling a pipeline whenever a data hazard occurs, is unacceptable for the ATLAS | switch,
since stalling would result to either dropping incoming cells and credits, or underutilizing the output
throughput. With the second solution, called bypassing (or forwarding) results, one provides additional
propagation pathsfor the datain order to make them avail able to therest of the block as soon asthey are
calculated, without waiting for them to be transferred to their regular position.

There are two sources of hazards in the Queue Management block. Thefirst one, and the easiest to
deal with, is caused by concurrent arrivals of cells and their corresponding credits. The second sourceis
concurrent or back-to-back operationsto the same ready queue, which may lead to use of mistaken head
and tail pointers. Intherest of this section, we examine the hazard conditionsfor both cases and present
the bypass datapaths and control necessary for correct operation.

6.1 Cédl/Credit Arrival Bypass

In thefirst stage of cell arrival operations, the Credit Table block is accessed for available credits for the
incoming cell. Similarly, in thefirst stage of credit arrival operations, the creditless cell list is searched
for cellswaiting for theincoming credit. Yet, if thetwo pipelined operationsfor thearrivals of acell and
its corresponding credit overlap, it is possible that they will "miss’ each other. In other words, the cell
will not receive the credit from the Credit Table, while the search action during the credit arrival will
fail. Asaconsequence, the cell will be blocked, along with al the following cells of its flow-group.

Figure 5 presents the possible overlapping between the pipelines serving the arrivals of a credit and
its corresponding cell, along with the situations when hazards occur. Boxes of the cell arrival pipeline
describe the actions for a not ready cell, while the credit arrival pipeline depicts the actions for a credit
expected by no cell inthe CLL.

In situation 1, the credits pipeline searches for cells waiting for the credit at the sametimethe cells
pipeline stores the cell information in the block memories. Since one cannot guarantee which value of
the memory entries written, the old or the new one, will actualy be compared to the search pattern, itis
safer to consider that this entries will not match ©. Thus, situation 1 conceals a hazard case. The same
holds for situation 2, where the search action takes place one clock cycle before the cell information is

SMatch canceling is accomplished by pulling down the match lines of memory words written during the same clock cycle.

6.1 Cell/Credit Arrival Bypass

Architecture, Operation and Design of the Queue Management Block 21

Stage 1: Stage2: Stage 3: Stage 4

Credit Arrival Op It —> {Search VPoul—=| Update [—— >
| & OutMask| | | Credit Tablg | !
0
Stagel: | | | Stage2: Stage3:
Cell Arrival Op Init ——= | Credit Tahlg—=> [Store Cell ‘
Read 3 Info 3
} Stage 1: Stage 2 Stage 3:
Cell Arrivdl Op Init ——= | Credit Tahlg——> | Store Cell
1 Read ! Info
3 | Stagel: Stage 2 Stage 3:
Céll Arriva Op ! Init ——= | Credit Tabl|g——= [Store Cell [—=
| | Read 3 Info |
clock cycle

Figure 5: Data hazards between credit and cell arrival operations.

stored, while the read access to the Credit Table by the cell arrival pipeline is performed even before
the credit starts being processed by the QM block. On the other hand, no hazard existsin situation 3, if
writing and reading the same entry of the Credit Table presents the new data to the memory output ”.

Bypass datapaths for situations1 and 2 are provided in the diagram of the QM block (figure 1). For
situation 1, the hazard is avoided by keeping the decoded DB address of the incoming cell instead of the
mask indicating the search result. In thisway, the search access successfully detects the incoming cell.
The necessary multiplexor is being controlled by the crd_bypass_1 signal, asserted when the incoming
cell served by the second stage of the cells pipeline belongs to the same flow-group with the credit
currently at the first stage of its pipeline. Situation 2 is handled by setting the bit corresponding to the
arrival link of the credit (indicated by crin_link_2 vector) in themask of available creditsfor theincoming
cell (celiCRmask). Therest actions of the credits pipeline are canceled in order to avoid transferring the
credit to the Credit Table aswell. This bypass action is controlled by the crd_bypass_2 signal, which is
set whenever the incoming cell and credit, being served by the two pipelinesin their first stages, belong
to the same flow-group.

"This can be handled by the peripheral circuits of the Credit Table memory without any modifications to its basic memory
cell.

6.1 Cell/Credit Arrival Bypass

22 Architecture, Operation and Design of the Queue Management Block
6.2 Head-Tail Pointers Bypass

Cdll and credit events change the status of the ready queues and the creditless list. While the latter is
kept as a pool of cells, thus no special structure or connectivity is maintained, the ready queues are kept
as linked lists. The status of these listsis kept in the form of the head-tail pointers and the valid bits,
all stored in the HTRF memory, and is updated every time a cell isadded in the list (on a credit or cell
arrivad), or acdl is removed from it (on a cell departure). References and updates to this information
must always be executed in the "correct” order in order to preserve the connectivity of thelist. Failureto
maintain this order may lead to reading or writing wrong pointers, and consequently, either 1osing some
cells and blocking their corresponding flow-groups as well (if they are flow-controlled), or creating non
existing cells.

Changesin the queue status are performed in two stageson all events. Inaninitial stage, the current
gueue statusisread from the HTRF. Thisislater used, a ong with the data about the credit or cell served,
to caculate the new queue status, which is written back to the HTRF in a following cycle. Thistime
difference between reading the current status and writing the new one, may be one or two clock cycles,
hence it is possible for another action to aso modify or read the queue status in the meanwhile. One
must make sure that each of the two or more actions operating on the same queue concurrently will read
and write the correct datain awell defined order, so that the queue structure remains consistent.

The normal way of working through this problem would be to try to spot al the possible cases of
hazard caused by concurrent operations on the same queue. Yet, the possible valid timing combinations
of the three events and different queue states (empty, one cell in, more than one cellsin), measure up to
482(!), as proven by simulations conducted, thus examining them one by one is practically impossible.
For this reason, an aternative strategy is used. First of al, case analysisis performed for every one of
the six possible combinations of two concurrent events, in order to spot simple hazard conditionsand the
bypass rules necessary to handle them. For each operation, analysisis confined only to stages between
the one where the queue status is read and the one where the new statusis written. This reduces credit
arriva operations to only two stages, while cell arrival and departure operations remain three stages
long. Theanalysisfor the case of possibleconcurrent executions of one cell arrival and one credit arrival
operation, both working on the same ready queue, is showninfigure 6. Assuming that the same datacan
bewritten and read in the same clock cyclein the HTRF, only two situations of hazard exist. In situation
1, the cdll receiving the credit will actually be enqueued before the incoming cdll, thus the tail pointer
and valid bit read by the incoming cell in stage 1, must be bypassed val ues from the credits pipeline. On
the other hand, in situation 2, both cells are enqueued in the same clock cycle. We choose to have the
cell receiving the credit last, since bypassing the tail pointer and valid bit from the cells pipeline to the
credits pipelineisfeasible®. Apart from the bypass, the write access to the HTRF performed by the cell

8The cell arrival pipelineis already using the tail pointer and valid bit, at the time the situation is detected.

6.2 Head-Tail Pointers Bypass

Architecture, Operation and Design of the Queue Management Block 23

, 1 Stage 1: : Stage 2: : Stage 3:
Cell Arrival Op Init ——= | ReadTall |—— —+= | Update Tail
! & vdid | 1 [[Head-Vli

Stage3: | Stage 4 :
CreditArrivd Op * * * ——= [Read Tal |[——= | Update Tall
& vaid [Head-Vdli

! Stage3: | Stage 4 :
Credit Arrival Op +++ ——>|ReadTal |——= | UpdateTail
| & Valid [Head-Valid

Stage 3: ! Stage 4 :

Credit Arrival Op T ﬁ% Rgetaii/ ;?éjl — [ldré%t% 'Ii:\lai\il
: : : Stage 3: : Stage 4 :
Credit Arrival Op +++ —| ReadTal [——= [Update Tail
! ! ! & Vvdlid ' |[Head-Vdlid

clock cycle
Figure 6: Data hazards from concurrent cell and credit arrival operations on the same ready queue.

pipelineis canceled.

By performing such an analysis for each pair of concurrent events, table 7, which summarizes the
hazard cases for the data read and written through the four ports of the HTRF and the combination of
eventsthat causes them, can be constructed. For values read or written, that only one hazard case exists,
the bypass condition and rule is the one indicated by the simple case analysis. On the other head, for
the tail pointer and vaid bit read through read port 1, for which multiple hazard cases exist, al possible
combinations of cases must be checked aswell. Yet, some combinationsare not valid, sincethey assume
concurrent initiation of a cell arrival and a cell departure operation. Hence, only three combinational
cases exist for each value, and it is easy to define bypass condition and rules for them too (by conducting
detailed case analysis).

The above described procedure results to the bypass conditions and sources summarized in table
4. Thelast column states the bypass condition in terms of the stages in the two pipelinesthat have to be
active and operating on the same queue. For the cells pipeline, the kind of operation served by the stage
is stated in parenthesis. The value forwarded is given in acoded form © in the third column. In addition

SCrC : DB address of the cell receiving the incoming credit; InC : DB address of the incoming cell; Cancel : write access

6.2 Head-Tail Pointers Bypass

24

Architecture, Operation and Design of the Queue Management Block

HTRF READ PORT 1

HTRF READ PORT 2

I

1

I

1

HEAD PTR TAIL PTR VALID BIT |HEAD PTR TAIL PTR VALID BIT
® cell arrivals |@ cell arrivals ® cell - credit |® cel] - credit
combination combination arrivals arrivals
. combination combination
® cell arrival ® cell arrival
cell departure cell departure
READ combination combination
® cdl -alcredit ® cell -alcredit
arrivals arrivals
DATA combination combination
® cell departure
credit arrival
combination
® cell departure | ® cell - credit ® cell departure
credit arrival arrivals credit arrival
combination combination combination
DATA
TO
WRITE

HTRF WRITE PORT 1 HTRF WRITE PORT 2

Figure 7. Summary of the hazard situations for the data read and written to the HTRF.

to these rules, we assume that reading and writing a HTRF entry in the same clock cycle, produces the
new value as read result. These rules are implemented through the multiplexors placed at theinputs and
outputs of the HTRF (shown in figure 2). Their control signals are produced by combinatorial logic, a
few gates and equality comparators, that detects the bypass conditions and activates the proper bypass
path each time.

6.3 Bypassrulesand datapath verification

Asmentioned earlier, maintai ning the correct connectivity for theready queuesiscrucial for theoperation
of the switch. In addition to that, we expect that concurrent events on the same queue will be an often
case when switch the operates under heavy load, bundled links are used or most of thetraffic is destined
to alimited number of destinationsin the network. In other words, we expect that bypass conditionswill
appear frequently. Since bypass rules properly maintain the queues connectivity on concurrent events,
their correctness needs to be verified through extensive simulation, before hardware implementation.

Two functional models were written for simulation use. They both receive cell and credit events as
inputs and maintain the status of a single ready queue. Thisincludes head and tail pointers, the valid bit
and one pointer per cell in the queue, in order to build thelinked list structure. Thefirst model, called the

is being canceled.

6.3 Bypassrules and datapath verification

Architecture, Operation and Design of the Queue Management Block 25

HTRF Bypass | Bypass
Data Prio | Value | Condition
Tail Ptr 1 (Read) 1 CrC | CellsStage 1 (any); Credits Stage 3
2 INC | CellsStage 1 (any) and 2 (arriva)
Valid Bit 1 (Read) 1 1 Cedls Stage 1 (arrivd); Credits Stage 3
2 1 Cdls Stages 1 (arrival) and 2 (arrival)
3 0 Cdls Stage 1 (arrival) and 2 (departure); departing cell last
Tail Ptr 2 (Read) CrC | Cells Stage 2 (arrival); Credits Stage 3
Valid Bit 2 (Read) 1 Cedlls Stage 2 (arrival); Credits Stage 3
Head Ptr 1 (Write) CrC | Cells Stage 2 (departure); Credits Stage 3; departing cell last
Tail Ptr 1 (Write) Cancel | Cdls Stages 2 (arrival); Credits Stage 3
Valid Bit 1 (Write) 1 Cdlls Stages 2 (departure); Credits Stage 3

Table 4: Bypass conditions and sources, according to priority (when multiple sources exist), for data
read and written in the HTRF.

real-model, updates this information on each enqueue or dequeue operation caused by an event, in the
same way thisis performed by the Queue Management block. This means that the model follows both
the pipelined operation and the bypass rules of the block. On the other hand, the second model, called
sim-model, maintainsthe statusinformation by serving al eventson asingleclock cycle. Eventsstarting
concurrently are served on afixed order, credit eventsfirst and cell events second. There are no hazard
cases and no need for bypassing in the sim-model. Verification of the bypass rules is accomplished by
feeding the same events to both models and comparing the two queues at regular intervals. Mismatches
between the status or the connectivity of the queues, indicates that certain bypassruleis either incorrect
or missing.

The model swere used with two simulation methods. Thefirst one performs random tests. Random
events are generated and fed to the models. The appearance probability of each event is controlled by
uniform random variables within segments of parameterized length. On regular intervals, the generation
of eventsisinterrupted and the queues mai ntai ned by thetwo model sare compared. Millionsof simulated
clock cycles for the two models were executed with this method.

Although extensive testing with random patterns should probably reveal most errors, still one can
not be surethat al possible error situations are examined. In order to make sure that no combination of
events was |eft without being tested, we developed the second simulation method. In this method, we
create and test automatically all valid combinationsof active pipeline stages and queue states (empty, one
cell in the queue, many cells in the queue) on a certain clock cycle. Since the credits pipeline has four

6.3 Bypassrules and datapath verification

26 Architecture, Operation and Design of the Queue Management Block

stages and the cells pipeline has 3 stages with dual role, there are 24 « 3% = 432 possible combinations
of active stageson aclock cycle. Each one of them, if itisavalid one, iscreated for the two modelsfor
each of the three queue status. The combinations of stages are created by generating the proper events
within a few cycles, while the queues are initiated to contain the desired number of cells each time.
After afew clock cycles, used by the real-model to serve the events, the two queues are compared for
mismatches. In thisway, not only we can detect errors in the bypass rules but specifically spot the cases
incorrectly handled as well. Once the simulation of the two models with this method was successfully
performed, the correctness of bypass rules was assured.

6.3 Bypassrules and datapath verification

Architecture, Operation and Design of the Queue Management Block 27
7. Management Commands Support

Apart from the normal operations, the Queue Management block must also support management com-
mands. By using these commands, we must be able to read and write every memory entry in the block.
The purpose of their existence is to enable testing of the functionality of the block, proper initialization
of the memories and the execution of the algorithm for lost cells/credits detection [KSVMC96].

All blocks exchange data and addresses for management commands through two busses that run
across the whole switch, and connect the various blocks with the Switch Control and Monitoring block.
The functionality of thisblock isto receive management commands from incoming cells or through the
Test/Configuration port, forward them to the appropriate block within the switch and return their results
to the proper destination. The first bus, C_bus, is 9 bits long and identifies the block and the register
within it, from/to which data are read/written through the other bus. The second one, |_bus, is 16 bits
long and transfers management data and commands to and from the various blocks.

mgnt_adr mgnt_adr_dec

VPout
2% LLout —
Eoder celout_omask
mgnt_data 6 HTVout ——
mgnt_adr{ 7:0} crd_mask
“ 15 \0 1/ opCodel]
Mdone nxt .
mdata |e madr_le A 11 10 01 00 opCode[3:2]
KEJ KE—‘ OUT_REG
DATA_REG COM_REG JELH 16 e
Mdone -
16
| _bus

— to Queue Management Control

C bus

Figure 8. The Queue Management interface for management commands.

The QM block interface for management commands (figure 8) mainly consists of three registers.
The DATA _REG register stores data for write accesses through management commands, while the
COM _REG register keeps the address of the accesses and their opcode. OUT _REG register stores the
data read through these commands. Each one of the three registers has a unique 9bit address within the
switch. When one of these addresses appears on the C_bus, either data on the | _bus are stored in the
DATA _REG or COM _REG register, or the contents of OUT_REG are driven on the | _bus. In the rest
of this section, we explain the commands supported, their format and how they are served by the QM

7. Management Commands Support

28 Architecture, Operation and Design of the Queue Management Block

block.

7.1 Management Commands and their For mat

Management commands are sent to the QM block by writing to the COM _REG register. Its contents
are divided into five fields, presented in figure 9. Bits 7 to O contain the address for the memory access
performed by command. For accesses to the HTRF, only bits5to 0 are actually used. Bits 11 to 8 serve
as the opcode of the command. Bit number 12 is the trigger bit, which identifies whether the register
contains an unserved and valid management command. This bit is read by the control circuitsin order
to schedule and serve the command. Assoon asit isexecuted, thishit isreset. The extrabit (bit number
13) isused as the 17th data bit in write accesses to the HTRF and the CreditM ask memory, because their
word is one bit longer than the DATA _REG register. The last two (most-significant) bits are not used.

15 1413 12 11 87 0
Unused| Ex | Tr | opCode | Address

Tr = Trigger Bit
Ex = ExtraBit

Figure 9: Command Register (COM _REQG) fields.

The Queue Management block recognizes the following commands, which are also summarized
for conveniencein table 5, dong with their opcode and required data:

VPout Read Thiscommand reads one of the 256 entriesintheVVPout memory. The accessis performed
through its read/write port, normally used by the cells pipeline.

VPout Write Writes an entry in the VPout memory. The data written are the 12 least-significant bits
(11-0) in the DATA _REG register. It uses the same port with the corresponding read command.

OutMask Read Reads an entry in the OutMask memory. It is performed through the read/write port,
used for cell arrival and departure operations. All bits in the DATA _REG register must be reset
before the access is performed.

OutMask Write This command writes an entry in the OutMask memory. The contents of the
DATA REG register are used as write data. It is served from the same memory port with the
OutMask Read command.

CreditMask Read/Modify Using this command one can set some bits while reading the rest in a
CreditMask memory entry. Bits to be set are indicated by ones in the corresponding bits of the

7.1 Management Commands and their Format

Architecture, Operation and Design of the Queue Management Block 29

DATA _REG register and the extra bit. The new values of the bits set are also presented with the
read data. The access is served through read/write port of the CreditMask memory, used by the
credits pipeline during usual operation. In order to perform a plain read access, all bits in the
DATA _REG register, aswell as the extra bit in the COM _REG register, must be reset.

LinkList Read Readsan entry from the LinkList memory. The access usesitsread/write port, normally
used by the cells pipeline.

LinkList Write Writesan entry intheLinkList memory. The 12 |east-significant bitsinthe DATA_REG
register are used as input data. It uses the same port with the corresponding read command.

HTRF Read Readsaword fromthe Head-Tail Register File (HTRF). It is performed throughits second
read port, normally used for credit arrival operations.

HTRF Write This command writes aword in the HTRF. The contents of the DATA _REG register as
well as the extra bit, are used as write data. The access uses the second write port of the register
file, normally used by the credits pipeline.

‘ ‘ Memory Access ‘ opCode ‘ Datarequired ‘
1 V Pout Read 0000 no data necessary
2| VPout Write 0001 DATA_REG (12 LS hits)
3| OutMask Read 0010 DATA_REG=0
4 | OutMask Write 0011 DATA_REG
5 | CreditMask | Read/Modify | 1101 | DATA_REG plus Extra bit=modify_mask
6| LinkList Read 0100 no data necessary
7 LinkList Write 0101 DATA _REG (12 LS bits)
8 HTRF Read 1010 no data necessary
9 HTRF Write 1011 DATA _REG plus Extrabit

Table 5: QM management commands (opCode and required data).

7.2 Implementation of Management Commands

Management Commands are not served by the QM block as soon as they are issued. This would
not be possible to achieve without either stalling the normal block operation or providing additional
memory portsfor their accesses. Neither effect isdesirable. Memory blocksare aready multiported and
complex. In addition, the algorithm for lost credits/cells detection, that uses management commands,

7.2 Implementation of Management Commands

30 Architecture, Operation and Design of the Queue Management Block

may be executed every few seconds, thus stalling the switch for its execution would be unacceptable.
The commands are served as soon as the memory port they need isnot used by acell or credit operation.
Hence, in the worst case, a management command will be served 32 cycles after it reaches the QM
block, since at least one of the 33rd clock cycles within afew cell-timesis not necessary for any normal
operation. The circuit serving management commands in the QM block works as described in the
following paragraphs.

Whenever the trigger bit in the COM _REG is set, the opCode field, along with the memory ports
status, are used to detect when this command can be served. The necessary port is available if the
pipeline stage, within which it isused, isinactive. Assoon as it is detected that the proper memory port
will be unoccupied in the next clock cycle, the management data and address, either in a decoded or
encoded form, are fed to the corresponding memory. Thisis done with one of the management access
signas (VP/IOMmac, CRmac, LLmac and HTVmac), shown in figures 1 and 2. In the following cycle,
the memory control signal corresponding to the access is asserted and the trigger bit is reset.

Data produced during read commandsare selectively transferred to the OUT _REG register, through
two multiplexors, controlled by the command’'s opCode (shown in figure 8). If the data read are less
than 16 bits, they occupy the least significant bits of the register. On the other hand, if the dataread are
17 bitslong (HTRF and CreditMask memory), bit number O (least significant) is discarded.

When the access and the transfer of the resultsto the OUT_REG register are complete, the Mdone
signal ispulled down for one clock cycle. Thisnatifiesthe Switch Control and Monitoring block that the
command has been successfully executed, and that the result data (if any) are availablein the OUT_REG
register. Itisuptothisblock to read them beforethey are overwritten by theresultsof asecond command.
As soos as Mdoneis pulled up again, the QM block can accept a new management command.

7.2 Implementation of Management Commands

Architecture, Operation and Design of the Queue Management Block 31
8. Block Functional Simulation and Testing

Functional simulation and testing of the Queue Management block has been performed, in order to
ensure its correct operation, prior to its VLS| implementation. In the previous sections, we presented
a number of conclusions, operations and methods, whose validity is easier tested through functional
simulation than layout or gate level design checks. Extensive testing can reveal a wide range of errors,
from architectural errors to incorrect synchronization or timing between different actions of the same
operation, as well as certain aspects of the block architecture and operation that are so far neglected.

Queue Management
Block Functional Model

queues
status

Random Credit events Queues Status

Block Outputs

outputs

and Cdll Events
Generator

and Connectivity
Comparator

Comparator

queues
status

Queue Management
Block Simulation Model

Figure 10: The organization used for functiona simulation and testing of the QM block.

The organization used for the simulation is presented in figure 10. The QM block functional
model, written in Verilog-XL [Veri94] as al therest of the code for this simulation, implements all the
operations and functions described in the previous sections, with a clock cycle precision. This means
that sub-blocks described in it, such as memories, decoders or control units, are these that will actually
be designed, and were written in a behaviora manner so that they execute on each clock cycle the
same operation with the real hardware. Control logic is described in a strictly behavioral manner, since
thisis easier to do when changes are frequent, and one can get excellent gate-level netlist from this
description by using sophisticated synthesistools. On the other hand, the QM block simulation model is
abehaviord high-level description of the block, that executes all operationswithin asingle clock cycle.
Consequently, sub-blocksin thismodel do not match thereal hardware, but al the necessary information

8. Block Functional Simulation and Testing

32 Architecture, Operation and Design of the Queue Management Block

in order to perform the same operations is maintained. Testing the QM block is achieved by regularly
comparing the operations and status of the two models.

The random credit and cell events generator model simulates the rest of the switch by feeding
events and inputs to the two models with the appropriate timing. The operation of all the switch blocks
interacting with the QM block is taken into account in this model, so that the type and the timing of
input signalsis correct. Events generation is random; yet, the appearance probability of each event and
its characteristics are parameterized. In thisway, we can control the number cells entering or leaving
the block, their flow-group, whether they have al credits available on their arrival, etc. This makes it
possible to run a number of different simulations and test the block under various conditions, loads and
types of traffic. There are aso two comparator models. The outputs comparator continuously watches
all outputs of the two models, such as the not_empty and reserve masks, and interrupts the simulation
when they differ. The status and connectivity comparator isused in regular intervalsin order to compare
the memory contents of the QM models, and make sure that the queues maintained are the same and
do follow basic rules (such as ho list becomes a cyclic one). Whenever this comparator is used, events
generation is temporally stalled. With the aforementioned simulation models, extensive testing to the
QM block has been performed (millionsof simulated clock cycles of operation).

M anagement commandswhere tested by extending the events generator to produce such commands
as well. The outputs comparator was also extended to be able to detect correct completion of these
commands. Yet, management commands changing the queues' status, i.e. write or modify commands,
were also tested by injecting afew predetermined commands by hand, since random generation of such
commands could destroy the correct connectivity of the ready queues.

Apart from thetests conducted with theabove organi zation, the Queue Management bl ock functional
model will also betested in the functional simulation of thewhole ATLASI switch. In addition to further
undetected errors, these simulationswill aso check theinteroperability and synchronization of the block
with the rest of the switch.

8. Block Functional Simulation and Testing

Architecture, Operation and Design of the Queue Management Block 33
9. Block Hardware (VL SI) Implementation

The Queue Management block is currently designed using both full-custom and semi-custom VLS
techniques. The target technology is the SGS-Thomsom Microe ectronics 0.5¢m CMOS technology
with three metal layers and one polysilicon layer, operating at a supply voltage of 3.3 volts.

The five memories included in the block are multi-ported and have critical timing requirements
and, therefore, need to be designed with full-custom mask-level layout techniques [WeEs93]. They al
are static memories. On the other hand, control logic and the rest of the block logic will be designed
with semi-custom layout techniques. Semi-custom gate-level layout can be produced automatically from
functional or behavioral descriptions by using synthesistools, such as Synopsys [Syn94].

In this section, we present the two-ported memories and their peripheral circuitsalready laid out in
full-custom CMOS, and also describe the VLS| implementation of the remaining static memory blocks.

9.1 Content-AddressableMemory Cells

The VPout and OutMask memory blocks have to be content-addressable (CAM) [Gros92] in order to
accommodate for the search action in the first stage of credit arrival operations. There are two basic
aternativesin the layout of static CAM cells[TroS92], presented in figure 11. The left one, 9 transistor

word line word line

A@A A@L

S |

% match-line . e
match-line

9 xtors CAM Cdll 10 xtors CAM Cdll

Figure 11: The two layout alternatives for static CAM cells.

cell, consists of a traditiona SRAM cell, plus a two-transistor exclusive-OR comparator and a pull-
down transistor for the match-line. The right one, 10 transistor cell, on the other hand, includes two
transistorsin series for each bit-line, creating two NAND gate pull-down paths for the match-line. The
first aternative needs only threetransistorsin total to pull-down the match-line when the value stored in
the cell isdifferent from the one on the bit-line, because it takes advantage of the complementary nature

9.1 Content-Addressable Memory Cells

34 Architecture, Operation and Design of the Queue Management Block

of thetwo outputs of the cell. The 10 transistor cell will need twice as widetransistorsinthe NAND gate
pull-down pathsin order to offset the series discharge path, and more to offset the additional capacitance
of the match-line due to an extra contact per cell 1°. Yet, dueto its symmetry, thiscell may belaid out in
lessarea. Since, we are more concerned with achieving high clock cycle period than area optimization,
the 9 transistor cell will probably be used.

@
=
o . o
bit2 bitl % bitl bit2
b = word line 2
— itRW itRW .
bis| | PRW bitS X word linel _
*+ * 1 Rl
’—‘ FJ LAD

i
E

o

o | L T 1Ly

’:L.._l—.‘ = I match line

match-line o -
iz .

G (b)

Figure 12: Content-addressable memory cells : (@) the two-ported VPout memory cell, and (b) the
three-ported OutMask memory cell.

The cell for the VPout memory is shown in figure 12(a). It is a two-ported static cell. The first
port (S port) is content-addressable, while the second one (W port) is aplain RAM port. The OutMask

phil d

. — output
|

Th]
iz #;; ﬁ; phi2

Figure 13: The match accelerator layout.

match-line

memory cell, in figure 12(b), differs in two ways. First of dl it is a three-ported cell, with one CAM
and two RAM ports. Furthermore, a variation of the normal CAM port is employed, for which asingle
bit-line (match enable) is used to search the memory only for logic one and don't care values [Sidi91].
Thisvariation comesfrom the 10 transistor CAM cell, as such a9 transistor cell variation would have an

©Even if a single contact is shared by both paths, the capacitance will be increased due to the extensive overlap of metal
(match-line) and the n-type active area of the pull-down chain.

9.1 Content-Addressable Memory Cells

Architecture, Operation and Design of the Queue Management Block 35

additional contact between diffusion and polysilicon, and therefore occupy larger area and have longer
pull-down time.

Thereisarace conditionfor both cells. If aword in one of thetwo memoriesis concurrently written
and searched, partial or unnecessary discharge of the match-line may occur. In order to avoid that, we
can selectively discharge on every clock cycle the match-lines of the words written. Race conditions
between read or write operationsin the three-ported OutM ask memory cannot occur, because of the way
thismemory is used.

bitl | | bit2 bit2| | bitl
word line 2

word line 1

Figure 14: The two-ported SRAM cell for the CreditMask and LinkList me mories.

Since the search access of CAM memories is usually twice as slow as the read-write accesses,
especidly in the case where the match-line is discharged by a single memory cell, some care must be
taken in order to accelerate it. The match accelerator circuit [OY T89], depicted in figure 13, could
be used in order to achieve high-speed search access. This circuit detects if the match-line is being
discharged. In this case, it cuts off the match-line from the output line, and the latter is discharged
faster, since it has smaller stray capacitance. Yet, because such circuits are usually sensitive to noise
and unstabl e voltage supply, and since the correctness of the search accessis crucia for the operation of
the credit-based flow control protocol, we believe it is safer to use a plain inverter with properly raised
threshold voltage in order to achieve the desired speedup [Uyem92].

9.2 Random-Access Memory Cells

The CreditMask and LinkList memories, along with the Head-Tail register file are static random-access
blocks.

The memory cdll for the first two, shown in figure 14, can be the same : a two-ported static RAM
cell. The cell had been layout in full-custom CMOS and its size is 11.8um x 12.25um. Yet, the partial
overlapping of cells within the two-dimensional memory array reduces the actual cell size to 10.6pm x
10.55um. The peripheral circuits for the two memory blocks are different since the second port of the
LinkList is used for write accesses, while for the CreditMask memory is used for read/modify accesses.

9.2 Random-AccessMemory Cells

36 Architecture, Operation and Design of the Queue Management Block

p—1—

ouT

R
BIT Hg; BIT

Figure 15: The single-ended operational amplifier laid out for the memoriesin the QM block.

ouT

The overall sizes of the layout of the two memoaries, including the bit-line drivers, sense-amplifiers and
output latches, are 175m x 1410pum and 175pm x 1402:m respectively.

5

o
3
Pl

bdkdld

T

VOLTAGE (volts)

ol R .

[¢] 5e-09 le-08 1.5e-08 2e-08
TIME (sec)

Figure 16: SPICE waveforms of the extracted netlist from the CreditM ask layout, showing the operation
of the sense amplifier.

The sense amplifier circuit laid out for these to memory blocksis a typical CMOS single-output
operational amplifier [HaMa88], presented in figure 15. The amplifier consists of a four-transistor cur-
rent mirror, connected to a current source. The output of the amplifier drives an inverter, designed to
have a 1.5V threshold voltage. Its output feeds the output latch. This design was selected because it
issimple, easy to layout and can safely operate under al process and environment conditions. Its only
disadvantage is the delay in amplifying. Yet, the long clock cycle period (20ns) of the QM block is

9.2 Random-AccessMemory Cells

Architecture, Operation and Design of the Queue Management Block 37

enough for thecircuit to properly work. Figure 16 presentsthe SPICE waveforms of the extracted circuit
from the CreditMask memory layout (including all parasitic capacitances). In thisfigure, one can seethe
behavior of the bit lines and the sense amplifier while reading an one. During theread phase (PHI2 high)
the voltage difference between the two bit linesis amost 1V. Nodes OUT and OUT have full voltage
swing and, by the end of the read phase, are at 3.3V and OV respectively. The size of the sense ampli-
fier cell is10.6pmx 14.5um. The samesenseamplifier will be used withthe other threememoriesaswell.

bitd | bit3 | bi2 | bitl bitl bit2| bit3| bitd
word line 2
wordlinel .
T 1
J 1L, >: 1
—_— —4 >— —9
! L
'F—I,—J 1r—o<}_‘. \:‘74.
L L]
word line 3
word line4

Figure 17: Thefour-ported SRAM cell for the Head-Tail Pointer register file.

Thecell for theHTRF will beafour-ported one (figure 17), and probably the most difficult to design.
Although afour ported RAM sounds extremely difficult to design, we believeitisfeasible. The HTRF
is not larger than a usual register file found in modern processors. These register files are multiported
aswell. In addition to that, the relative slow clock period aimed (20ns), supports the conception that a
54x17 bits four-ported RAM is possible. Still, during the design of this memory block, we will have to
deal with the problem of fitting two rows of sense amplifiers below it (the same problem exists for the
OutMask memory two).

9.2 Random-AccessMemory Cells

38 Architecture, Operation and Design of the Queue Management Block
10. ThePriority Enforcer Circuit

The Priority Enforcer (PE) was laid out in full-custom CMOS first out of al the other circuitsin the
Queue Management block to be designed with full-custom VLS techniques. The main reasons for that
were: a) the increased complexity and difficulty of its design, b) its critical role in the operation of the
credit-based flow-control protocol and ¢) the fact that there has been limited work and experiencein the
design of such circuits in the past.

In this section, we present in detail the operation of the Priority Enforcer circuit, analyze the most
important design techniques for improving its performance and describe our implementation and its
layout to be used with the QM block. Finally, we present two methods for designing cyclic priority
enforcers.

10.1 The Operation of thePriority Enforcer

Therole of the Priority Enforcer isto select one of the wordsin a content- addressable memory (CAM)
that matched during a search operation. Theinputs of the circuit are the match-lines of the CAM, i.e. a
large sequence of bits containing many ones and only afew zeros, which indicate those memory words
that matched with the search pattern. Its output is a sequence of equal size, where a single zero exists,
the one that corresponds to the "first" one in theinitial input vector. The Priority Enforcer is necessary
in any application of CAMs, where multiplewords may match during a single search operation, and can
be used in order to implement in hardware sel ection algorithms such as First Come-First Served (FCFS)
and Round-Robin.

In order to evaluate a certain bit of the output of the PE, we must first calculate the outputs
corresponding to al the least significant bitsin the input vector. To be more specific, we need to know
whether one or more zeros exist in those bits or not. In the first case, the output bit is set, whilein the
second one it is the same with the corresponding input bit. The signal indicating the existence or not
of a zero in the least significant bits is called Nobody-Else-Higher (NEH) and such a signa has to be
calculated for each input bit. Theequationsfor theoutput and NEH vector are: OUT; = NEH;_1+IN;
and NEH;, = IN;* NEH; 1 (NFEHy= 1). Table6, presents an example of the operation of the PE,
that detects the leftmost zero in a 16-bit input vector.

From the above paragraph itisobviousthat the problem of enforcing priority isdirectly proportional
to the one of carry calculation and propagation in binary addition. In that case, the input carry for
each bitwise addition depends on the addition result, and therefore the carry, on the least significant
bits. Furthermore, an adder could be used to construct a PE that detects the rightmost zero. Thisis
accomplished by adding one to the input vector and then using an inverter and a NAND gate per bit to
calculate the final output, as explained figure 18.

10.1 The Operation of the Priority Enforcer

Architecture, Operation and Design of the Queue Management Block

IN 1111001101101 111
NEH|1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 O
ouT|j1 11101 1111111111

Table 6: The operation of a Priority Enforcer detecting the leftmost zero in 16-bit vectors.

IN: 110111011211 011111
+ 1

11011101111 00000

OouT: 1111111111011111

39

Figure 18: Example of the detection of the rightmost zero by using an adder.

The priority enforcer can aso be related to the design of OR gates with large input sets. Supposing
we could calculatethe signa O R; for each input bit, where OR; = I No+ I N1+ ...+ I N;_1, the output
for a PE that detects the leftmost one in the input vector can be produced by using an inverter and an
AND gate per bit (figure 19).

10.2 Design Alternativesfor the Priority Enforcer

The Priority Enforcer can be easily designed as a regular structure with aripple-signal, as presented in
figure 20. The N F H; calculation propagates from the top to the bottom. Taking into account that an
AND gateis actually designed in CMOS as a NAND gate followed by an inverter, there is atwo gates
delay per bit. Thus, the total delay of the PE is 2N gates (for N inputs). This can be reduced to half
by combining couples of ripple cells and modifying the second onein order to use the N £ H,_ signal
instead, as shown in figure 21. Still the delay of N gates, restricts the use of such circuitsto applications
with small N (16 or 32 the most).

A PLA could aso be used for the design of a PE with only two gates delay. Yet, for alarge N, the
PLA would be a huge one and the delay would be equal to that of two N-input gates!

In order to speed up the operation of the PE, we can take advantage of the similarity of the NEH
signal calculation to the carry propagation problem, and use techniques similar to carry lookahead and

10.2 Design Alternatives for the Priority Enforcer

40 Architecture, Operation and Design of the Queue Management Block

IN: 00001000101000O00O0

ORi : 00000O11111111111
|

OuT : 0000O100000O0O0O0O0OO0O0O

Figure 19: Example of the detection of the leftmost one by using multiple OR gates.

carry prediction [WeEs93]. The NEH vector can be calculated by the dual tree structure presented in
figure 22. The role of the upper tree is to reduce the number of input signals to a ripple structure, so
that its fast evaluation is feasible. At each level, the inputs are combined in groups and for each one
of them a NOR gate is used to detect if one or more zeros exist within it. The initia inputs of the tree
are inverted and the outputs of the NOR gates at each level are fed (inverted too) as inputs to the next
one. For example, if inputs are ways combined in groups of eight, outputs of the first level indicate
the existence of a zero in every group of eight inputs, those of the second one indicate the existence of
azero in every group of sixty-four inputs and so on. After an appropriate number of levels, the inputs
are reduced to a small number, e.g. 8 or 16, and can be fed to aripple-structure. Thiscircuit calculates
the NEH signal for each group formed in thelast level of the upper tree. The NEH for thefirst groupis
(naturally) hardwired one.

The lower tree of the structure uses the outputs of the abovementioned ripple chain, aswell as the
outputs from each level of the upper tree, in order to decompose the groups, calculate the NEH signal
for each one of them and, finally, evaluate the NEH signal for each original input. Each level consists
of aripple structure per group. For example, a certain level may have as inputsthe NEH signalsfor the
groups of sixty-four inputs (NEH-64) and the signalsindicating the existence of a zero in every group of
eight inputs (ZERO-8), produced in the upper tree. Each NEH-64 signal is used as the original NEH in
aripple chain, where the inputs are the ZERO-8 signals and the outputs are the NEH signals for every
group of eight inputs. In this way, the lower tree produces the final NEH signals for each initial input
by using the same number of levels with the upper one. After that, a single gate per bit is needed in
order to calculate thefina output of the PE. From the above description of the tree structureit is obvious
that the original inputs, as well as the outputs from each level of the upper tree have to propagate until
the corresponding leve of the lower tree. The number of levels per tree depends on the number of the
original inputs (N) and, naturally, the number of inputsthat afast ripple chain or aNOR gate may have
in the available CM OS technol ogy.

10.2 Design Alternatives for the Priority Enforcer

Architecture, Operation and Design of the Queue Management Block 41

VDD
'
INO —= —+—= OUTO
NEHi-1 CELL |
IN1 —= —+— OUT1
CELL |
v
1»—[)97 .
. — OUTI —= 4
INi DC CELL |
V
CELL |
CELL v
‘) CELL |
NEHi v
CELL
v
INn-1 —= —+= OUTn-1
CELL
v
Nobody

Figure 20: A ripple-signal Priority Enforcer with 2N gates delay.

10.3 VLS Techniquesfor Speeding-Up the Priority Enforcer

The above described dual tree structure for the PE can be accelerated by using techniques available in
full-custom CMOS design. Theseinclude dynamic circuit methods, domino timed logic and pipelining.

The upper treein the PE consistsof levelsof NOR gates. Static CMOS NOR gateswith largefan-in
are slow, because of the pmos transistors connected in series, and occupy a large area, since they need
apmos and a nmos transistor per input. In order to avoid both negative effects we can use precharged
NOR gates with domino timing [Uyem92]. A precharged NOR gate is presented in figure 23. While
the PHI clock signal islow, node OUT is precharged. When PHI is set, the gateis evaluated and, if one
or more inputs are high, node OUT is discharged and node OUT is set. This gate has almost the half
size of the static equivalent one, since it uses a single pmos transistor for pull-up. In addition to that,
multiple cascade precharged gates can be evaluated in the same clock phase. In order for asignal to be
an acceptable input for a precharged gate, it must either remain low or change from low to high during
the evaluation phase. The inverse transition (from high to low) is dangerous, since it would create an
unnecessary and irreversible partial pull-down of the OUT node. Yet, node OUT either remains low, if
no input is high, or rises from low to high during the evaluation phase, if some inputs are high, due to
the pull-down of node OUT. Thus, it is safe to feed the output of such a gate to another one and evaluate
them both in the same clock phase. Thistype of timingiscalled domino timing and allowsusto evaluate
multiplelevels of the upper tree concurrently.

10.3 VLS Techniquesfor Speeding-Up the Priority Enforcer

42 Architecture, Operation and Design of the Queue Management Block

NEHi-1 VDD

INO —~ -— OUTO

- ' - OUT]
INI DO W ! IN1T — -+ OUT1

—b CELL |
v

NEHi

INi+1 o P ouTin CELL|

CELL INn-1 —= -~ OUTn-1
i CELL,
J

NEHi+1 Nobody

Figure 21: The modified cell for theripple-signal PE, that reduces its delay to that of N gates.

In asimilar way, we can replace the ripple structuresin the lower tree with multiple precharged OR
(or NOR) gates, as explained in the subsection 9.1 . The use of such gatesrequiresal inputsof theripple
structured to be inverted, but in this case we will be able to evaluate multiple gates (i.e. multiple tree
levels) in the same clock phase. The only disadvantage is that one would have to design another NOR
gate (with different fan-in) for each cell in the ripple structure previously used. Thefirst onewould have
asingle input (inverter), the second one two and so on. In order to avoid that one can merge multiple
NOR gates into a Manchester chain circuit [WeES93], presented in figure 24. A Manchester chainis a
dynamic circuit that can be used for eva uation of multiple OR-type results. During the low phase of the
clock signal PHI, al nodes I NT; are precharged. When is PHI high (evauation phase), al nodes are
discharged through the series of nmos transistors, upto the point of the chain where the first low input
appears. Supposing that the 7 NV; signals are the inverted original inputs, OUT; is the result of a NOR
gate on thefirst (i-1) inputs. One can aso nhotice that the outputs follow the domino timing, thus can be
fed directly to a second chain, which is evaluated in the same time with the first one. The first input of
aManchester Chain can be the NEH signal of the least significant inputs, in case it does not operate on
thefirst group of inputs.

In case the input set is very large, the use of dynamic precharged logic with domino timing may
not be enough by itself to significantly reduce the delay of the Priority Enforcer. For example, if N=512
and all the gates (NOR and Manchester chains) have 8 inputs, thereare 2 x loggN — 1 = 5levelsinthe
dual tree structure, thus 5 levels of logic to be evaluated in a sequential manner. This is a significant

10.3 VLS Techniquesfor Speeding-Up the Priority Enforcer

Architecture, Operation and Design of the Queue Management Block 43

IN

|| T
I | . _NOR || NOR !
| UPPER
| | TREE
| NOR |
| v LOWER
| - | TREE
hpme Chair} -] Ripple Chain Q RippleChaiﬂ ﬁipplecﬁaiﬂ

NEH

Figure 22: The dual tree structure for a high speed Priority Enforcer.

improvement compared to the N=512 levels of logic in the simple ripple structure, but may still be
infeasible in designs with high clock speed, such asthe ATLASI switch (50 Mhz). In order to overcome
this problem, we can add pipelining between the levels of the dual tree. One can separate the treelevels
in pipeline stages, so that the desired clock frequency is achieved. Each stage must comprise of at least
one tree level. Neighboring stages do not have to operate on the same data set in consequent clock
cycles. Since precharged logic is used, stages can operate in consequent clock phases. While the one
stage is evaluated, the next oneis precharged and viaversa. Thus two pipeline stages on each inputs set
in every cycle. Still, we would like to notice that, the addition of pipelining does not reduce the overall
delay of asingle evaluation of the PE circuit. Yet, it raises the rate at which we can feed inputs and get
results from it to one set per clock cycle, which isimportant for high performance designs.

10.3 VLS Techniquesfor Speeding-Up the Priority Enforcer

44 Architecture, Operation and Design of the Queue Management Block

Py,

PHI

Figure 23: A N-input precharged NOR gate with an output inverter for domino timing.

Finally, alast source of delay in the dual tree structure of the PE, is the propagation of the original
inputs and the results of the upper tree throughout the circuit. Folding the two trees together eliminates
this delay. Corresponding levels of the two trees become neighboring and intermediate results have to
propagate over a small distance. Thisfolding is particularly useful when the result of the PE hasto be
used as an address for a read/write access to the same CAM, since the result comes out from the same
side that the inputs came from (the side where the CAM is).

10.4 ThePriority Enforcer in the Queue M anagement Block

The Priority Enforcer laid out in full-custom CMOS for the Queue Management block of the ATLAS
| switch has 256 inputs, since it is fed with the combined match-lines from the VPout and OutMask
memories (256 words each). It detects the first word that matched during the search operation, aways
starting from the top (word 0). The dual tree structure with the techniques described in the previous
section were applied in its design, adapted to the 0.5um CM OS technology provided by SGS-Thomson.
Yet, no folding of the two trees was necessary, since the output is used as a decoded address to both the
CreditMask and OutMask memories. Thefloorplan (in ablock diagram style) of the PE circuit is shown
in figure 25, aong with the sizes of the various parts of the circuit. The floorplan has been turned right
by 90 degrees in order to be easier to examine.

Both treesin the PE consist of asinglelevel. In the upper tree, there are 16 precharged NOR gates

10.4 The Priority Enforcer in the Queue Management Block

Architecture, Operation and Design of the Queue Management Block 45

INO IN1 IN2 IN3

prev_NEH ——

PHI —

OuTO OuUT1 ouT2 OuUT3

Figure 24: A 4-input Manchester Chain circuit.

with 16 inputs, which produce the signals indicating the existence of a zero in every group of 16 inputs
(ZERO-16). The pull-down part of each NOR gate spreads over the vertical area of the corresponding
inputs. In thisway we avoid having to bring the 16 inputs close together (loss of area in turning wires),
without sacrificing speed, which is proportional to that of reading from a memory of 16 words (where
the pull-down paths aso spread in the vertical dimension). Instead of feeding the ZERO-16 signalsto
a single Manchester chain, we use 16 precharged NOR gates to get the NEH signal for each group of
16 inputs. These gates achieve faster (parallel) calculation without any area cost, as the are placed in
the otherwise unutilized area at the top and bottom of the single Manchester chain. Thefirst gate has a
singleinput (inverter), the second one has two and so on. The output of the last gate indicates whether a
single match existsor not. The output of each NOR gateisused asaprevious NEH input signal signal to
the corresponding Manchester chain in the lower tree. In other words, the output of the first NOR feeds
the second Machester chain, the output of the second one goes to the third Machester chain, etc.

The lower tree consists of alevel of 16 Manchester chains with 16 inputs. Each chain has been
broken in two parts of 8 inputs each, where the last output of the first oneis used as a NEH input to the
second one, as presented in figure 26 (the precharge pmostransistors have been omitted). The connection
of the two sub-chain in this way is possible because of the domino timing of their inputs and outputs.
In order to further reduce the delay of the chain, the width of the nmos transistors is increased as we
move from the right to the left side of each chain. In this way, the current that can pass through the
nmos transistorsin the chain constantly increases as the charge flows from the intermediate nodes to the
ground, and thus, all nodes in the chain are pulled-down faster. In figure 27, there are the waveforms
from the evauation of a Manchester chain with all inputs high (worst case), as produced by SPICE
simulation on the netlist extracted from actual layout, including all the parasitics capacitances. One can
see that, when the PHI clock signal is set (evaluation phase), the OUT7 node is pulled-up, causing the
nodes in the second sub-chain to be evaluated as well. Within 3ns, the last output (OUT15) is pulled-up

10.4 The Priority Enforcer in the Queue Management Block

46 Architecture, Operation and Design of the Queue Management Block

MATCH-LINES (256)

EE! EE! i

256 INVERTING LATCHES

1200 pm | | 16 PRECHARGED NOR16
4530um | " 'PRECHARGED NOR1, NOR2, ..., NOR16

i i ;

480pm | 256+16 ONE PHASE INVERING LATCHES
| NOBODY

1830 pm | i 16 MANCHESTER CHAINS

iy Y ;
10.00pm | 256x2 ONE PHASE INVERING LATCHES

BUFFERED MATCH-LINES (256) and NEH SIGNALS (256)

3033.6 pum

Figure 25: The floorplan of the Priority Enforcer in the Queue Management block.

as well and the evaluation of the Manchester chain finishes.

The circuit is separated in two pipeline stages by a column of one phase pipeline latches. Thus,
it takes one clock cycle (20ns), or two clock phases to produce a single result. The fist stage includes
the upper tree, as well asthe NOR gates used instead of the intermediate Manchester chain. The second
stage includes only the lower tree. The gates needed in order to evaluate the final output from theinitial
inputs and the NEH signal where not added, since their functionality will be included in the wordline
driver of the CreditMask memory. Hence, the outputs of the circuit are the NEH vector and the initial
inputs (matched lines) interleaved.

Thetotal size of the Priority Enforcer circuit is 3033.6:m x 90.4u:m, including the output latches.
The horizontal dimension could be further reduced, but we choose not to in order to guarantee the correct
operation under all circumstances. Thevertical dimension (11.85xmx 256 = 3033.6,:m) wasfixed from

10.4 The Priority Enforcer in the Queue Management Block

Architecture, Operation and Design of the Queue Management Block 47

INO IN15

CLLLLLLT TLLLLLL]

OuTOo ouT7 OuT8 OuUT15

Figure 26: The 16-input Manchester Chain circuit used in the Queue Management block.

the start, since the PE circuit must match with that of the OutMask CAM. Thecircuit was tested with the
STSPICE transistor-level simulator [ST96], provided by SGS-Thomson, under al possible process and
environment conditions.

10.5 CyclicPriority Enforcers

As mentioned in section 9, the Priority Enforcer may have to be a cyclic one, in order to guarantee
randomness and fairness in the distribution of incoming credits in the case of merging flow-groups. A
cyclic PE does not search for the first word that matched always from a static point (top or bottom).
The starting point moves cyclically, so that al zeros in the input vector have an equa probability to be
selected.

There are two possible ways to implement the cyclic motion of the starting point. Thefirst oneis
to start searching from one place below of the previously selected word. If word 255 was previously
selected, we start from the top. The second one is to move the starting point cyclically one place at the
time: first word O, then word 1, ..., etc. Both methods have advantages and disadvantages and may
prove to be the appropriate oneto use.

Building a cyclic PE does not demand the design of a completely new circuit. We can built cyclic
Priority Enforcers of both typesby using two simple (or static) PESs, likethe one described in the previous
subsection. At first, we examinethecyclic PE wherethe starting point isaways one place below from the
previously selected word. Thefirst static PE always operates on the original inputs, i.e. the match-lines.
The second one operates on the initia inputs, after they have passed through OR gates with the NEH
produced in the previous cycle. In this way, we set al zeros above the place selected in the previous
cycle (including that one). If the second static PE detects a zero, we keep as final NEH vector the one
it produced. Thisindicates the first zero existing below previously selected word and until the bottom
(word 255). If not, we use the NEH vector of the first static PE, which identifies the first zero from the

10.5 Cyclic Priority Enforcers

48 Architecture, Operation and Design of the Queue Management Block

4.5 T J J j
; ‘ : "PHI"
: : : "OUT?"
Ao QU T e]

VOLTAGE (volts)

0 5e-09 le-08 1.5e-08
TIME (sec)

Figure 27: SPICE waveforms of the extracted netlist from the 16-input Manchester chain layout.

top and, therefore from the top until the previously selected word. Thus, by using the signalsindicating
whether a static PE found a zero or not (signal hobody), we can implement the cyclic motion, at the cost
of two static PE, a buffer for the previous NEH vector and a multiplexor.

The cyclic Priority Enforcer for the second method can be constructed in exactly the same way, by
replacing the buffer for the NEH vector with a"cyclic" shift register. This register would consist of 256
simple latches connected in arow. On every clock cycle, the contents of the latches are shifted by one
place. Initialy al latches have an one stored. On each clock cycle a zero is inserted in the top latch,
apart from the case when the pattern 01 was stored in the last two latches. In this case, al latches are
reset. With this"cyclic" shift register we create the NEH vector as if the selected word moved cyclically
by one place on every clock cycle. By using both static PE in the same with as with the first method, we
have acyclic Priority Enforcer where the starting point cyclically shifts one place on each cycle.

10.5 Cyclic Priority Enforcers

Architecture, Operation and Design of the Queue Management Block 49
11. Conclusions

Throughout thiswork, it is obvious that maintaining high performance data structures for cellsin ATM
switches, isfar morecomplicated thanit wasin older switches. Additional queueshaveto beimplemented
due to the priority-based routing and the multicasting support, while the rate of events has risen due
to the high link throughput and the flow control protocol needed. The demands in both speed and rate
of operations supported, can be met by using techniques such as pipelined and superscalar processing
of events. Thisapproach significantly reduces hardware complexity, especialy in the control unit, and
enables higher utilization of hardware resources, such as memory ports. Yet, one should also consider
the hazard situations that may arise, and provide for a solution through bypassing datapaths.

The Queue Management block, that was presented, uses this approach to maintain 54 output
gueues and one pool of cellsin the shared data buffer of the ATLAS | switch. It contains five memory
blocks, whose size depends on the buffer’s size, and the nhumber of ports for each one is restricted
to minimum. The block also implements the proper bypass rules for safe operation and supports
management commands. It was functionally simulated, with aclock cycle precisions, in order to ensure
correctness of its operation prior to the VLS| implementation. In addition, the the Priority Enforcer
circuit was both studied and designed, while the full-custom design of the memory cells necessary was
analyzed.

The Queue Management block, aswell asthewhole ATLASI switch, iscurrently inthe VLS| design
phase. After that, the testing and post-layout verification phase will follow. The switch isexpected to be
sent for fabrication in March 1997. Apart from the usual post-fabrication testing of the chip, itsoperation
will aso be presented by using the ASICCOM demonstrator and test/management software devel oped
within the same project.

11. Conclusions

50 Architecture, Operation and Design of the Queue Management Block

Acknowledgments

ATLAS | is being developed within the ASICCOM project, funded by the European Union ACTS
Programme.

Many peopleinvolved in the ASSICOM project have contributed to thiswork. | wish to acknowl-
edge in particular Peny Vatsolaki for her contribution to the architecture of the Queue Management
block, Chara Xanthaki for her help with implementationissues and, finaly, professor ManolisKatevenis
for hisoveral guidance.

| a'so want to thank my parents for their love and support.

Acknowledgments

References

[CoST88] J. Coudreuse, W. Sincoskie, J.S. Turner: “Guest Editoria in Broadband Packet Commu-
nications’, |EEE Journal on Selected Areas in Communications, vol. 6(8), December 1988, pp.
1452-1454.

[Gros92] K. Grosspietsch: “ Associative Processors and Memories: A survey”, IEEE Micro, June 1992,
pp. 12-19.

[HaMa88] M. Haskard, I. May: “Anadog VLSl Design, nMOS and CMOS’, Prentice Hall, ISBN
0-13-032640-2, 1988.

[HIKa88] M. Hluchyj, M. Karol: “Queueing in High-Performance Packet Switching”, IEEE Journal on
SH. Areasin Communications, vol. 6, no. 9, December 1988, pp. 1587-1597.

[KaSS96] M. Katevenis, D. Serpanos, E. Spyridakis: “Credit-Flow-Controlled ATM versus Wormohole
Routing”, Technical Report FORTH-ICS/TR-171, "ICS, FORTH, Heraklio, Crete, Greece, July 1996.
URL: filel//ftp.ics.forth.gr/tech-reports/1996/1996.TR171.ATM -vs_ Wormhole.ps.gz

[KaSv96] M. Katevenis, D. Serpanos, P Vatsolaki: “ATLAS I: A Genera-Purpose,
Single-Chip ATM Switch with Credit-Based Flow Control”, Hot Interconnects IV
Symposium, Stanford Univ., CA, USA, Aug. 1996. URL: file//ftp.ics.forth.gr/tech-
reports/1996/1996.HOTI.ATLAS | _ATMswitchChip.ps.gz

[KavE95] M. Katevenis, P. Vatsolaki, A. Efthymiou: “Pipelined Memory Shared Buffer
for VLSl Switches’, Proceedings of the ACM SGCOMM’'95 Conference, Cambridge,
Ma, USA, 30 August - 1 Sep. 1995 pp.39-48. URL: file//ftp.ics.forth.gr/tech-
reports/1995/1995.SIGCOM M 95.Pi peM emory ShBuf.ps.gz

[KSVMCO96] M. Katevenis, D. Serpanos, P Vatsolaki, E. Markatos, K. Courcoubetis: “ATLASI Archi-
tecture: Architecture of the ATM Switch Chip of ASICCOM”, version 1.1, ASICCOM Consortium
Internal Document, March 1996.

[LeB092] J. LeBoudec, “The Asynchronous Transfer Mode : A Tutoria”, Computer Networks and
ISDN Systems, val. 24, no. 4, May 1992.

[OYT89] T. Ogura, J. Yamada, S. Yamada, M. Tan-No: “A 20-kbit Associative Memory LSl for
Artificia Intelligence Machineg”, IEEE Journal of Solid-Sate Circuits, vol. 24, no. 4, August 1989,
pp. 1014-1020.

[PaHeO5] D. Patterson, J. Hennessy: “Computer Architecture : a quantitative approach”, Morgan
Kaufman Publishers, ISBN 1-55860-329-8, 1995.

51

[PaHe93] D. Patterson, J. Hennessy: “Computer Organization : the hardwaresofware interface”, Mor-
gan Kaufman Publishers, ISBN 1-55860-281-X, 1993.

[Sidi91] S. Sidiropoulos: “Fast Packet Switches for Asynchronous Transfer Mode”, Technical Report
FORTH-ICSTR-25, ICS, FORTH, Heraklio, Crete, GR, August 1991, 69 pages.

[ST96] “ST-SPICE User Manua”, SGS-Thomson, July 1996.
[Syn94] “HDL Compiler for Verilog Reference Manual”, Synopsys Inc, March 1994,

[TaFr88] Y. Tamir, G. Frazier: “High-Performance Multi-Queue Buffers for VLSl Communication
Switches”, Proc. of the 15th Int. Symp. on Computer Architecture, ACM SIGARCH val. 16, no. 2,
May 1988, pp. 343-354.

[Toba90] FA. Tobagi: “Fast Packet Switch Architectures for Broadband Integrated Services Digital
Networks’, Proceedings of the IEEE, vol. 78, January 1990, pp. 133-167.

[TroS92] N. Troullinos, C. Stormon: “Design Issues in Static Content-Addressable Memory Cells’,
CASE Center Technical Report No. 9208, CASE Center, Syracuse University, August 1992.

[Uyem92] John P. Uyemura: “Circuit design for CMOS VLY”, Kluwer Academic Publishers, ISBN
0-7923-9184-5, 1992.

[Veri9d] “Verilog-XL Reference Manua”, Cadence Design Systems|inc., v. 2.1, Decmber 1994.

[WeES93] N. Weste, K. Eshraghian: “Principles of CMOS VLS Desigh — a Systems Perspective”,
second edition, Addison-Wesley, ISBN 0-201-53376-6, 1993.

52

