
Pipelined Multi-Queue Management in a
VLSI ATM Switch Chip with Credit-Based Flow-Control�

George Kornarosy, Christoforos Kozyrakisz, Panagiota Vatsolakiy, and Manolis Katevenisy

Institute of Computer Science (ICS), Foundation for Research and Technology – Hellas (FORTH)
Science and Technology Park of Crete, Vassilika Vouton, P.O.Box 1385, Heraklion, Crete, GR 711 10 Greece

E-mail: katevenis@ics.forth.gr Tel.: +30 (81) 391664 Fax: +30 (81) 391661

Proc. of 17th Conf. on Advanced Research in VLSI (ARVLSI’97), Univ. of Michigan, Ann Arbor, USA, Sep. 1997
URL: ftp://ftp.ics.forth.gr/tech-reports/1997/1997.ARVLSI.Pipe MultiQueue.ps.gz

ABSTRACT: We describe the queue management
block of ATLAS I , a single-chip ATM switch (router)
with optional credit-based (backpressure) flow con-
trol. ATLAS I is a 4-million-transistor 0.35-micron
CMOS chip, currently under development, offering
20 Gbit/s aggregate I/O throughput, sub-microsecond
cut-through latency, 256-cell shared buffer containing
multiple logical output queues, priorities, multicasting,
and load monitoring. The queue management block
of ATLAS I is a dual parallel pipeline that manages the
multiple queues of ready cells, the per-flow-group cred-
its, and the cells that are waiting for credits. All cells,
in all queues, share one, common buffer space. These
3- and 4-stage pipelines handle events at the rate of
one cell arrival or departure per clock cycle, and one
credit arrival per clock cycle. The queue management
block consists of two compiled SRAM’s, pipeline by-
pass logic, and multi-port CAM and SRAM blocks that
are laid out in full-custom and support special access

�Copyright 1997 IEEE. Published in the Proceedings of the
17th Conference on Advanced Research in VLSI, September
15-16, 1997 at the University of Michigan, Ann Arbor, MI,
USA. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works, must be
obtained from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: +1
(908) 562-3966.

yalso with the University of Crete, Department of Computer Sci-
ence

zcurrently with the University of California at Berkeley, Computer
Science Division. Email: kozyraki@cs.berkeley.edu

operations. The full-custom part of queue management
contains approximately 65 thousand transistors in logic
and 14 Kbits in various special memories, it occupies
2.3 mm2, it consumes 270 mW (worst case), and it op-
erates at 80 MHz (worst case) versus 50 MHz which is
the required clock frequency to support the 622 Mb/s
switch link rate.
KEYWORDS: single-chip ATM switch, VLSI router,
pipelined queue management, credit-based flow control.

1. Introduction

Processors, memories, switches (routers), and I/O
interfaces are the general-purpose building blocks
of contemporary and future unified computer-
communication systems. Interconnection networks
play a central role at all scales – system, local, or wide
area networking. Several architectural issues are simi-
lar in all these levels. High-speed interconnection net-
works use point-to-point links and switches in order to
avoid turn-around and arbitration delays and in order
to provide increased communication parallelism.

Quality of service (QoS) is of increasing concern in
interconnection networks. Improved QoS requires,
on one hand, reduced latency for high-priority traf-
fic. Among others, this means preemptive scheduling,
i.e. packet switching based on small-size quanta. In
two popular technologies, this is achieved using cells
in Asynchronous Transfer Mode (ATM) [14] or flits in
Wormhole Routing [5]. An ATM switch is a system that
buffers and routes ATM cells, i.e. fixed-size quanta con-
sisting of a 5-byte header and a 48-byte payload each.
User packets are segmented into cells at the source, and
reassembled from cells at their final destination. ATM
is connection-oriented: cells are routed based on their
connection ID (virtual path / virtual circuit number,

1

2

VP/VC), which appears in their header; connections
(fixed paths), and their corresponding routing-table en-
tries, must be set up before cells can flow along them.

Improved QoS also requires sophisticated flow con-
trol, which is based on managing each flow (connection,
group of connections, or set of packets) individually.
To achieve this, switches need to maintain and man-
age multiple queues, thus avoiding head-of-line block-
ing, and allowing high-priority or unblocked flows to
overtake lower-priority or blocked traffic. Implement-
ing multiple queues and managing them at high speed
will play an increasingly important role in switch de-
sign for high-performance networks.

This paper presents the implementation and man-
agement of multiple queues and of sophisticated flow
control information in hardware, inside a high-speed
VLSI router. We describe the core of the control sec-
tion of ATLAS I , a 20 Gb/s single-chip ATM switch.
In the past, switching and routing was often done “in
software”, on general-purpose computers or using em-
bedded processors, especially in LAN and WAN envi-
ronments; purely hardware routers were used mostly in
multiprocessors. Today, with the advent of gigabit net-
working, with the desire for improved QoS including
short latency, and with the resulting small cell/flit size,
high-performance switching has to be implemented in
hardware [22], and switches must employ flexible data-
structures for the cells stored in them, which were
not necessary before [4]. Contemporary VLSI tech-
nology provides the necessary capacity to fit such ad-
vanced switches on a single-chip, thus avoiding the
high cost and performance bottlenecks of multi-chip
organizations. Hardware management of non-trivial
data structures inside VLSI switches has appeared be-
fore in wormhole routers, e.g. [20], [3], [7]. VLSI ATM
switches have also been developed, e.g. [11], [18], [6].

Relative to such previous work, ATLAS I differs as
follows. ATLAS maintains multiple logical output
queues as a shared pool of identifiers with a single
shared controller, avoiding the high area cost of ded-
icated buffers and controllers per output queue, as in
the Prizma switch [6]. In addition, the operation of the
single controller in ATLAS I is pipelined, since it has to
manage the cell data structures at much higher rates
than previous switches [20] [11]. The ATLAS switch
implements multilane credit-based flow control (sec-
tion 2), while other switches either provide no flow
control at all [6] [11] [20], or only single-lane flow con-
trol [18]. Certain wormhole routers, like iWarp [3] and
Spider [7], support multi-lane backpressure flow con-
trol for a small number of channels or flow-groups, and
implement queuing with a dedicated fixed-sized buffer
per channel. ATLAS I , on the other hand, supports
65,536 flow-groups (4096 on each of the 16 ports), man-

ages 54 output queues of “ready” cells, and keeps track
of a number of “creditless” cells; all cells and queues
dynamically share a single buffer space. Finally, ATLAS
implements the above mentioned features in a single
chip instead of a “closet-sized” box [21], providing a
cost effective solution for high-speed interconnection
networks.

Thus, ATLAS I provides a combination of high
speed, credit-based flow control, multiple queues in-
side a shared buffer, and multicasting that is unique
among wormhole routers and VLSI ATM switches.
To implement this combination, a sophisticated queue
management unit is needed; it uses multi-port and
content-addressable memories, which operate inside
two parallel pipelines where bypassing resolves depen-
dencies without stalling. This paper presents the queue
management unit of ATLAS I .

Section 2 gives an overview of the ATLAS I single-
chip ATM switch. Section 3 presents the architecture
and internal organization of the queue manager of
ATLAS I , including a description of its dual pipeline.
Finally, section 4 describes the VLSI implementation of
this queue manager, placing particular emphasis on the
parts of it that were laid out in full-custom.

2. Overview of the ATLAS I Switch Chip

ATLAS I is a general-purpose, single-chip, gigabit ATM
switch, intended for use in high-throughput and low-
latency systems ranging from wide area (WAN) to
local (LAN) and system/desktop (SAN/DAN) area
networking, supporting a mixture of services in a
range of applications, from telecom to multimedia
and multiprocessor NOW (networks of workstations).
ATLAS I is being developed within the "ASICCOM"1

project.
Figure 1 presents an overview of ATLAS I ; the fea-

tures that are underlined in the figure are dealt with in
this paper. This 16x16 switch uses point-to-point serial
links running at 622 Mbits/s each (link bundling also al-
lows configurations of 8x8 at 1.25 Gbps/link, 4x4 at 2.5
Gbps/link, etc.). The links run ATM on top of IEEE Std.
1355 “HIC/HS” [1] as physical layer, using the BULL
“STRINGS” GBaud serial-link transceivers [15]. HIC
was preferred over SONET because of simpler circuitry,
lower latency, and the capability to encode (unbundled)
credits. Internally, ATLAS I operates as a crossbar, with

1funded by the European Union "ACTS" (Advanced Commu-
nication Technologies and Services) Programme. The ASICCOM
Consortium consists of industrial partners (INTRACOM, Greece;
SGS THOMSON, France and Italy; BULL, France), telecom opera-
tors (TELENOR, Norway; TELEFONICA, Spain), and research insti-
tutes (FORTH, Greece; SINTEF, Norway; Politecnico di Milano, Italy;
NCSR Democritos, Greece).

Kornaros, e.a.: Pipelined Multi-Queue Management in a VLSI ATM Switch Chip

3

1

1

1

1

1

1

1

1

load monitoring (acceler. CLP meas. HW)

256-cell shared buffer

20 Gigabit/s aggregate I/O throughput

GBaud serial HIC links, link bundling

sub-microsecond cut-through latency

54 (logical) output queues

3 service classes (priority levels)

translation/routing table, multicasting

CMOS (0.35 micron), 50 MHz core

flow control: EFCI, credit (multilane backpr.)

2

1

0

15

2

1

0

15

Gen. Purp. Bldng Block for Universal Netw.

ATLAS I: Single-Chip ATM Switch

622 Mb/s622 Mb/s

Figure 1: ATLAS I chip overview

a 256-cell shared buffer. Three levels of priority are im-
plemented; each level has its own queues. The cells
in the shared buffer are logically organized in 51 out-
put queues (3 times 16 outputs plus 1 management
port) and 3 multicast queues; output queueing elimi-
nates head-of-line blocking. Owing to the all-hardware
control and to the virtual cut-through provided by the
crossbar, cell latency through the switch chip at low
network load is well below one microsecond.

One of the most distinctive features of ATLAS I is
its (optional) provision of credit-based flow control (mul-
tilane backpressure). Under backpressure [5], cells are
never dropped, because they are only transmitted when
buffer space is known to exist at the receiver (i.e. af-
ter having acquired a credit). Single-lane backpres-
sure indiscriminately starts or stops the transmission
of any cell according to buffer space availability; it per-
forms poorly due to head-of-line blocking effects. Mul-
tilane (per-connection) backpressure fixes this problem:
connections or groups of connections are queued and
flow-controlled independent of each other, allowing
the selective bypassing of cells, according to priorities
and feedback from downstream congestion. The credit
protocol of ATLAS I is reminiscent of QFC [2], but is
adapted to hardware implementation over short and
reliable links.2 Provision of credit-based flow control
offers significant advantages [13] [8], and places impor-
tant requirements on the queue management circuits of
ATLAS I (section 3).

More information on the aspects of ATLAS I that are
not covered in this paper can be found in [9].

Figure 2 shows an abstract block diagram of

2each credit corresponds to one cell-slot in a buffer, and identifies
one flow group for which it is destined; flow groups are sets of con-
nections that are flow-controlled together; there can be up to 4096
different flow groups on each ATLAS I link; there can be at most 1
cell of any given flow group inside ATLAS I at any given time, for
the reasons explained in section 3.1.

arb

arb

input latches

output muxes

creditsheaders

cell bodies

cell

htrf
rqhtrfcll

ctcll

htrfrq
cllsch

logical
queues

Outgoing Links

Incoming Links

Time-Shared (16 out + 16 in)
Dual-Ported (cells I/O, creditsIn)
Pipelined (1 cell + 1 credit / cycle)

in multiple

headers

credits

Addr

ct
htrf

rtt

Routing, Translation, Scheduling,
Queue & Credit Management

space
buffer
shared

Control:

Memory
Pipelined

Cell
Buffer

for 256 cells

Figure 2: Simplified ATLAS I block diagram

ATLAS I . Cell bodies are stored in the shared buffer,
which also provides switching and virtual cut-through.
This buffer is implemented according to the pipelined
memory organization, which offers considerable ad-
vantages [10]. The pipelined buffer can initiate one
cell operation (write or read) per clock cycle. The con-
trol section of ATLAS I makes routing decisions, trans-
lates ATM connection numbers (VP, VC), schedules the
use of the pipelined memory buffer and the servicing
of links, and manages the cell queues and the credits.
This control section operates on cell headers, buffer ad-
dresses, and credit flow-group ID’s only – it need not
and does not see cell bodies.

ATLAS I uses a clock of frequency 50 MHz or higher,
so that there are at least 33 clock cycles per cell-time (the
cell-time is approximately 700 ns for the 622 Mbps OC-
12 link rate). Sixteen cycles per cell-time are needed
in the worst case to service the 16 input links, an-
other 16 cycles are needed for the 16 outputs, and
one occasional extra cycle is necessary for the manage-
ment/microprocessor port. The fabrication technology
offers quite fast circuit operation, so there is a consid-
erable safety margin in the speed of the ATLAS I core:
we design the circuits to operate at a 12 ns worst-case
cycle time, although chip operation will be at 50 MHz
eventually.

ATLAS I Core Complexity
Block Logic Memory

(Kxtors) (Kbits)
Queue Management:
CAM’s, multiport RAM’s 65 14
(full-custom)
Credit Table (semi-custom) 10 70
Control (semi-custom) 10 3

Other Core (semi-custom):
Link Interfaces, Elastic Buffers 260 -
Cell Buffer 30 110
Routing, VP/VC Translation 20 300
Scheduler, Control, Miscellanies 75 6
Total 470 503

Proc. of 17th Conf. on Advanced Research in VLSI (ARVLSI’97), Univ. of Michigan, Ann Arbor, USA, 15-16 Sep. 1997

4

block

Queue
Managemen

block
Full-custom

ATLAS I Switch

15mm

~3mm

~3mm
15

 m
m

Empty
Space

Chip Core

7.
6

m
m

PADS

PADS

~0.5mm

~0.5mm

Serial Link Tranceivers

Serial Link Tranceivers

P
A

D
S

8 mm

11.4 mm

2.3 mm

2

2

Figure 3: ATLAS I switch chip floorplan

At the time of this writing, most of the switch blocks
have been fully designed, at the gate or transistor level,
and verification is in progress. ATLAS I will be fabri-
cated in a 0.35 micron CMOS process, by SGS Thom-
son, Crolles, France. The majority of the chip uses
semi-custom logic and compiled SRAM blocks, while a
small part had to be laid out in full-custom; the reasons
for using full-custom and the circuits in it are analyzed
in section 4. As shown in figure 3, the chip will consist
of a core, placed inside a pre-existing ring. The ring is
supplied by BULL, Les Clayes sous Bois, France; it con-
tains the bonding pads and the GBaud serial-parallel
converters. The core contains the switch logic and oc-
cupies approximately 60 mm2. Its complexity is given
in the table below, measured in thousands of transistors
for logic circuits and in Kilobits for SRAM. The elastic
buffers are implemented out of discrete flip-flops, so the
logic count of the link interfaces appears inflated. The
rest of this paper deals with the Queue Management
Block, which is the hardest part of the ATLAS I core;
section 3 describes its architecture, and section 4 dis-
cusses the implementation of its full-custom part.

3. Queue Management Organization

The heart of the ATLAS I control is the Queue Manage-
ment (QM) Block, which keeps track of the cells that are
waiting for credits, the credits that are waiting for cells,
and the cells that are ready for departure. This section
presents the architecture and hardware organization of
the QM block.

3.1 Logical Queue Architecture

Cells are treated differently according to whether or
not their connection (VC) is subject to backpressure.

The high priority class is intended for real-time policed
traffic, like voice, where dropping cells is preferable
over delaying them; hence, this class is not subject to
backpressure. The middle priority class is intended for
policed, backpressured traffic (e.g. data with service
guarantees); low priority is for non-policed, backpres-
sured traffic (e.g. flooding data). Hence, only middle
and low priority connections are subject to credit-based
flow control, when such control is enabled. Cells that
are not subject to backpressure, and cells that are back-
pressured but have acquired the credit that is necessary
for their departure are called ready cells, because they
are ready for departure as soon as their outgoing link(s)
become available. Ready cells are placed in the ready
queues. There is one ready queue per outgoing link and
per priority level for unicast cells, as shown in figure
4. This output-queueing organization eliminates the
head-of-line blocking associated with input queueing.

Incoming
Cells

Cell List
CreditLess

(CLL)

non-backpressured VC’s

backpressured
VC’s

ties
priori-

lo

mi

hi

Outgoing

lo

mi

hi

Links

Credits

Per-flow-group
queueing

Table

Credit

(CT)

Ready Queues
(RQ)

Figure 4: ATLAS I logical queue architecture

There is also one ready queue per priority level for
multicast cells (not shown in figure 4), shared among
all links. Each cell can be in at most one queue at a
time; this restriction, imposed in order to control hard-
ware complexity, is the reason why multicast queues
are shared among links. If the head cell in a multicast
queue is destined to a set of outputs A, multicast cells
behind it are blocked, including those destined to other
outputs, B. We estimate that this blocking will have
a minimal effect on performance, because (i) unicast
cells destined to outputs B are not blocked; (ii) within
each service (priority) class, the scheduler services the
multicast queue with higher priority than the unicast
queues; and (iii) cells in the multicast queue have al-
ready acquired all credits needed, so they depart to all
of their destinations within one cell-time.

Backpressured cells that have not found an appropri-
ate credit wait in the CreditLess Cell List (CLL) until such
a credit arrives. The CLL is conceptually organized as a
set of queues, one per flow group, so that, when a credit

Kornaros, e.a.: Pipelined Multi-Queue Management in a VLSI ATM Switch Chip

5

arrives, it can be acquired by a cell of its flow group
without being blocked by other flow groups (a flow
group is a set of connections that are flow-controlled
together). ATLAS I can handle up to 64 K flow groups
(4 K per link), so a straightforward implementation of
the CLL using RAM would be very expensive; instead,
some key observations led to a manageable implemen-
tation using content-addressable memory (CAM). First,
there can be at most one cell per flow group inside an
ATLAS I chip3. In this way, there is no need to remem-
ber any cell sequence inside a flow group, so no real
queues are needed inside CLL. Second, given that there
can be at most 256 cells inside ATLAS I at any given
time, there can be at most 256 non-empty “queues” in
the CLL. Hence, the CLL is implemented as a CAM, as
discussed in section 4.1.

3.2 Centralized versus Distributed Controller

ATLAS I uses a single control unit, which is time-shared
among all links. This centralized controller was pre-
ferred over a “distributed” architecture –where each
input or output link or both would have their own con-
trol circuits– for a number of reasons:

� a different number of cells in the data buffer may be
destined to each output; if each output had its own
controller, each one of these controllers would have
to keep track of a potentially large number of cells
(256 in the worst case); by maintaining all logical
queues inside a single, central data structure (of
size 256), unnecessary extra storage is eliminated;

� multicasting and link bundling are simpler with a
centralized control architecture;

� when two controllers in the distributed architec-
ture need to communicate, arbitration is needed,
which introduces complexity; in the centralized
architecture, arbitration is only needed at a single
place: the first stage of the control pipeline;

� operation of the central controller matches well and
is synchronized to the operation of the pipelined
memory buffer.

The centralized controller needs to have a higher av-
erage throughput than each controller in a distributed
architecture (but its peak throughput may not be higher).

3this restriction does not limit the maximum achievable through-
put per flow group in SAN environments, because ATLAS I is fast
enough for the cell-credit round-trip-time to be less than one cell-
time for short links; thus, even a single active connection can saturate
such a short link. Additionally, this restriction has a beneficial effect
on burst and hot spot tolerance [8]: a mis-behaving flow group is not
allowed to use up more than one slot in the ATLAS I buffer memory.

Thus, the design of the central controller is more of a
challenge, but it is doable and advantageous, as we
show in this paper. In order to provide the required
switch throughput, the ATLAS I control unit must han-
dle cell (arrival/departure) events at the rate of one per
clock cycle; to achieve this, the unit is pipelined. Incom-
ing credits are handled by a second, parallel pipeline of
the control unit, at the rate of one per clock cycle; in this
way, up to 2 credits per link per cell-time can be ser-
viced, which is twice the worst-case average rate. The
two pipelines of the control unit (figure 2) start with an
arbitration stage, that chooses one of the incoming links
that are currently requesting service. The cell pipeline
continues with the routing/translation stage, in paral-
lel with the scheduler that decides whether to service
an output or an input. The rest of the stages concern
queue management, and are explained more at length
below.

3.3 Hardware Data Structures

Figure 5 presents the data structures maintained and
managed by the ATLAS I hardware in order to imple-
ment the above queue architecture. All information
that concerns a given cell is stored in memories that are
“parallel” to the cell buffer, i.e. the address of the cell
body in that buffer is the identifier of that cell, and is
used to access all related information. Ready queues
are maintained as linked lists of cells; since each cell
can belong to at most one ready queue (section 3.1),
one next-pointer per cell is needed, held in the Queue
Pointer memory (the primary port field in that memory
concerns multicast cells only, and is used while schedul-
ing their transmission). The fact that each cell can be in
at most one ready queue also restricts the peak through-
put requirements on the controller: otherwise, inserting
cells into multiple queues at certain times would dictate
a much higher instantaneous rate of operations. The 54
queues that are needed in ATLAS I are identified by the
contents of a 54x17 memory, the Head/Tail Register File
(HTRF) (the valid bit distinguishes empty queues from
non-empty ones). One alternative that was examined
but rejected was to implement ready queues using se-
quence numbers. For each queue, a first and last sequence
counter would be kept (this is similar to the HTRF). For
each cell, a sequence number would be stored along
with the rest of the cell status (this is similar to the next-
pointer field). However, in order to locate the front cell
in a queue, a content-search would be needed on the
sequence number field, instead of a simple RAM access
with the linked-list organization.

Other information maintained for each cell is: its
flow group number (12 bits), i.e. the identifier of the
set of connections to which it belongs for flow-control

Proc. of 17th Conf. on Advanced Research in VLSI (ARVLSI’97), Univ. of Michigan, Ann Arbor, USA, 15-16 Sep. 1997

6

Free
List

0
1

53

garb. 0...010...054
78

21
31

254

1

2 11
0

0

0...010...0

0...010...0
0...010...0

0...010...0
0...010...0

0...010...0
0...000...0

group
flow

outMask creditMask

head tail

next
port

primary
class

8

4 17

8

8 12 17

17

4096

valid Ready
Queues
(RQ)

(CLL)
Cell List

CreditLess
16+1 links

4096

x
flow groups

Head/Tail Reg.File

Queue
Pointers

0
1
2

253
254
255

cell A

cell B

cel C

cell D

cell bodies
Buffer

0
0

0
0

1 (empty)

Cell

(CT)
Table
Credit

Figure 5: Queue management data structures

purposes; the outMask, which is a 17-bit mask iden-
tifying the desired outgoing link(s) for the cell (the
17th link corresponds to the management/external-
microprocessor port); the creditMask, a 17-bit mask in-
dicating the outgoing link(s) for which the cell has ob-
tained a credit; and the service class identifier. All this
information is important for creditless cells, so the mem-
ory that holds it is called the CreditLess Cell List (CLL).
The outMask field is also of interest for ready multi-
cast cells (other ready cells can deduce all information
needed from the queue number that they belong to).
Creditless cells do not belong to any ready queue, so
their next-pointer field is not used. In the example of
figure 5, the (shaded) cell 253 is creditless (its credit-
Mask and outMask differ in one bit).

Five separate memory blocks are used in ATLAS I to
implement the above organization. This separation is
discussed in section 4, and was necessary because of
the different access types and timing for each field. A
sixth, 256x1 memory with a priority encoder is used as
the Free List, identifying empty slots in the cell buffer.

3.4 Queue Management Pipelines

The operations performed on the above data struc-
tures are cell arrival, cell departure, and credit arrival
(credit departures occur upon cell departures, and are
included in that operation). As explained in section 3.2,
the ATLAS I controller performs these operations us-
ing two parallel pipelines –one for cell operations and
one for credit arrivals. Cell operations are initiated by
the switch scheduler. The scheduler gives higher pri-
ority to servicing outgoing links over incoming links,

since delaying the outputs causes unnecessary loss of
throughput, while incoming cells will never be lost, in-
dependent of when in the cell-time they are serviced.
For cell arrivals, routing and translation occurs in par-
allel with scheduling, thus determining the cell’s flow
group, outMask, and service class. Queue management
takes place in the last three stages of the cell pipeline,
and in the last four stages of the credit pipeline, as il-
lustrated in figure 6 and explained below.

outMask, write HTRF
read HTRF Dequeue:

(write CT) head->next Free List

flow group, or HTRF
read Enqueue:

outMask rd/wr CLL (tail) tail->next

read HTRF
write HTRF
Enqueue:read CT write cell

Free List tail->next

cell
arrival

cell
departure

credit
arrival

pi
pe

lin
e

1
pi

pe
lin

e
2

time

write: CLL,

read: cell,

write: HTRF,
search: write CT;

Figure 6: The two queue management pipelines

Cell Arrivals: During the first QM pipeline stage, the
Credit Table (CT) is read, looking for credits for this
cell. In parallel, the service class and the outMask of
the incoming cell are used as index to read the proper
RQ tail pointer from the HTRF; this will be used to
enqueue the cell, in case it is ready. Also, the Free List
is searched for the first empty slot.

In the next stage, the cell is recorded in the CLL. If

Kornaros, e.a.: Pipelined Multi-Queue Management in a VLSI ATM Switch Chip

7

the cell is ready, the tail pointer of the proper queue
is used to write the address of the arriving cell in the
next-pointer entry. The credits that were read from
CT and that were needed by the cell (CT & outMask)
are recorded in the CLL and have to be cleared in the
CT. This clear operation would normally occur during
this stage, and would require an additional port in the
CT memory. In order to avoid this additional port, so
that the CT can be a compiled SRAM rather than laid
out in full custom, the clear operation is recorded in a
“write buffer” and performed during the first stage of
a cell departure operation (cell departures do not need
to access the CT). There are 17 registers in this write
buffer, together with the corresponding comparators
and bypass logic.

In the final stage, if the cell was ready, the new tail
pointer and the non-empty bit are written into the HTRF
memory. If the queue was previously empty, the head
pointer must be written as well, and the scheduler is no-
tified that the queue is no longer empty. These HTRF
accesses could alternatively be performed one cycle ear-
lier, but that would conflict with the HTRF access pat-
tern of cell departure operations.

Cell Departures: During the cycles when the scheduler
instructs the cell pipeline to handle a cell departure on
a given output at a given priority class, operations pro-
ceed as follows. In the first stage, the head and tail
pointers for the corresponding ready queue are read
from the HTRF. The head pointer is used to locate the
cell body (for transmission) and the rest of the informa-
tion about it; the tail pointer is read in order to detect if
this was the last cell in the queue (head==tail).

In the second stage, the OutMask memory is accessed
as follows: the bit corresponding to the current output
link is reset, while the remaining 16 bits are read. If
these other 16 bits are all zero, the cell must be dequeued
and its slot given to the free list, because it was either a
unicast cell or a multicast cell currently departing on its
last output. The pointer to the next cell in the queue is
also read in parallel, since it will be needed in the case
of dequeueing. In the third stage, the cell is dequeued
if necessary. This involves notifying the Free List and
updating the queue head pointer in the HTRF, and the
valid bit if this was the last cell in the queue; in the
latter case, the scheduler is notified that this queue is
now empty.

Credit Arrivals: Credit arrivals are handled by the sec-
ond pipeline, at the rate of one per clock cycle, in par-
allel with cell events. This is a 4-stage pipeline. In the
first stage, the credit flow-group and a 16-bit mask in-
dicating the link it arrived from are used to search the
CLL (flow-group and OutMask fields) for cells waiting
for this credit. This search requires a full match on the

flow-group field, while the OutMask is only searched
for a bit that is set, which simplifies the circuit. No
creditMask read is necessary: the fact that a credit just
arrived implies that this flow group had no credit be-
fore.

In the second stage, if no cell was waiting for this
credit, the credit is written into the CT; since there can
be at most one credit per flow group, a simple write-1
suffices –no read-modify-write is required. Else, the
creditMask of the selected cell is updated by setting the
bit that corresponds to the arrival link, while reading
the other 16 bits; the outMask is also read. By com-
paring the two masks, it is determined whether the cell
became ready, i.e. whether it received the last credit it
was waiting for and has to be enqueued. The third and
fourth stages perform the enqueue operation, if the cell
just became ready. Using the cell’s outMask and ser-
vice class, the proper queue address is formed to read
the HTRF. In the next stage, tail!next is written, and
tail and valid are updated; if the queue was previously
empty, head must also be written and the scheduler
must be notified.

3.5 Control of the Queue Management Pipeline

The queue management pipeline is controlled in a way
similar to the usual RISC processor pipelines: control
signals are generated during the initial stage, and they
are propagated down the pipeline, through pipeline
registers, until they are “consumed” in the appropriate
stage. Pipelined and multiported operation can lead
to data hazards: operations performed in parallel but
without coordination could lead to inconsistent results,
like destroying the connectivity of a queue, generating
non-existing cells, dropping cells or credits, etc.

In the ATLAS I case, all data hazards can be resolved
using bypassing (forwarding) [17], without ever needing
to stall the pipeline. There are 2 bypass cases to handle
(almost) simultaneous arrivals of a cell and its corre-
sponding credit, and 12 bypass cases to handle con-
current or back-to-back operations on the same Ready
Queue. Five comparators (one 16-bit, one 12-bit, and
two 8-bit) and a few tens of gates detect and control
the bypass conditions. Six multiplexors are used to
perform the bypasses (two 8-bit 2-to-1, one 8-bit 3-to-1,
one 1-bit 2-to-1, and two 1-bit 3-to-1 multiplexors). Cor-
rectness of the pipelines and their control was verified
by the parallel simulation of two models: (i) behavioral
model of queue management transactions, performed
one-by-one, without interleaving; (ii) functional (RTL)
model of the two pipelines and their control logic. The
test vectors included some random patterns, as well as
a computer-generated exhaustive list of all 432 possible
cases of concurrent or back-to-back cell and credit oper-

Proc. of 17th Conf. on Advanced Research in VLSI (ARVLSI’97), Univ. of Michigan, Ann Arbor, USA, 15-16 Sep. 1997

8

256

256

256

256

256
match line

8 8

256

17 1712 128

FGout

CrdinLink
CelloutOmask

CellinOmask
CrdOmask

Omask

1712
SS

cell_in
address mngt_adr crin_adr

18 18

CellinCRmask

CellPrio
18

Crdmask+
CrdCRmask

pre
deco
der

Inlatches
Bitline drivers
Sense amps

Inlatches
Bitline drivers

Sense amps

Inlatches
Bitline drivers

Sense amps

142 um 180 um 60 um 50 um 23 um 127 um 136 um

der
deco
pre

80um

17um

28um

20um

CrdinFGCellinFG
d

ec
o

d
er

P
ri

o
ri

ty
E

n
fo

rc
er

en
co

d
er

memorymemory dec

50 um

19
40

 u
m

outMaskflowGroup creditMask
memory

Figure 7: The main full-custom block

ations, each one being applied to queues in 3 different
states (empty, single cell, two or more cells). Correct-
ness was checked by comparing the queue’s status and
the outputs of the two simulators. A detailed descrip-
tion of the ATLAS I queue management unit, including
all the bypassing rules, can be found in [12].

4. VLSI Implementation of Queue Manage-
ment

As seen in section 3, the ATLAS I queue management
(QM) unit requires RAM and CAM blocks with mul-
tiple access ports. In the design environment that we
use, single- or dual-ported SRAM’s can be generated
by a compiler, while SRAM’s with 3 or more ports and
CAM’s have to be laid out in full-custom. The table
below summarizes the port requirements of the QM
memory blocks; for full-custom memories we also give
the type of the ports required.

Memory Block Ports Memory and Port Type
Credit Table 2 compiled 2-port SRAM
next pointer 2 compiled 2-port SRAM

flowGroup 2 read/write (1), CAM (1)
outMask 3 read (1), read/modify (1),

CAM (1)
creditMask 2 write (1), read/modify (1)
Head/Tail RF 4 read (2), write (2)
Free List 2 CAM (1), write (1)

The Head/Tail Register File (HTRF) is the most de-
manding memory block in terms of number of ports.
Alternative organizations were examined to see if we
could reduce this number. First, one could maintain
separate memory banks for head and tail pointers. Still,

enqueue operations on empty queues require 4 ports for
the tail register file, because both head and tail point-
ers must be updated. Second, one could keep separate
head and tail banks, while also replicating the tail bank.
While updates to tail pointers would have to be made in
both copies, read operations could be served by either
one, thus reducing the number of ports to 3 for each
bank. However, the total area would be larger than one
4-port memory, and full-custom layout would still be
needed.

During the design of the full-custom parts, we opted
for simplicity and robustness of operation, rather than
using complicated techniques for achieving highest
speed. ATLAS I has a considerable architectural com-
plexity, so we preferred to reduce the design time and
risk of the full-custom part. As mentioned in section 2,
we designed all of our circuits to operate at a 12 ns cycle
time under worst-case conditions, although the OC-12
link rate of 622 Mb/s only requires a 50 MHz clock. In
this way, we have a good safety margin, we need less
timing optimization after placement and routing, and
we are prepared for a higher-speed ATLAS II switch.
We preferred synchronous designs, which are less sen-
sitive to delay skews, are easier to verify, and do not
need carefully-tuned on-chip timing signal generation.
For memory configurations, we used the conventional
static CMOS memory cell, which has lower power dis-
sipation in standby mode and greater immunity to tran-
sient noise and voltage variation than other cells. Large
loads, such as common clock signals, are driven by a
tree of buffers rather than a single, large driver, so as
to reduce power dissipation. All branches of the clock
tree were balanced to avoid skew. We used multiple

Kornaros, e.a.: Pipelined Multi-Queue Management in a VLSI ATM Switch Chip

9

power supply lines in order to reduce the amplitude
and duration of transients.

4.1 Full-custom part description

The main full-custom block consists of three memo-
ries –flowGroup, outMask, creditMask– two decoders,
one priority enforcer, one normal encoder, and their
peripheral circuits. Its block diagram and floor plan
is shown in figure 7. Another full-custom block is
the four-ported Head/Tail Register File SRAM, and the
third full-custom block is the Free List, a chain of 256
D-flip-flops, a decoder, a priority enforcer, and an en-
coder.

Bit BitS
Word Line

BitS Bit

Line
Match

Word Line1

Bit1

Match Line

Bit1

Word Line2

Bit2Enable
Match

Bit2

Figure 8: The dual-ported flowGroup cell and the three-
ported outMask cell

The CMOS technology used has 0.35 �m gate length
(NMOS & PMOS), twin-tub, a single polysilicon layer,
and five metal layers. The power supply is 3.3 Volts
(+0.3/-0.6 V).

In the block of figure 7, the creditMask is the simplest
part. It uses a conventional dual-ported SRAM cell,
but its peripheral circuits are modified to support the
read/modify operation: one bitline is externally pulled
down to set one bit, while the other bitlines are used
for reading the remaining bits. The flowGroup memory
has 3072 associative memory elements, organized as
256 rows of 12 bits each. The cell contains 9 transistors
and is shown in figure 8. Although the NAND ver-
sion of the CAM cell (with 10 transistors) occupies less
area, we did not use it due to its slower discharging
of the matchline [16]. The outMask memory contains
256x17 memory cells. The first port is used for normal
read/write accesses, the second port for read/modify,
while the third port is used for a special type of content
addressability. When searching outMask, any stored
word that has one or more common “1” bit(s) with the
search pattern will give a match. Thus, a single bit-
line (match enable) per column is used to search this
memory [19].

As shown in figure 7, the sense amplifiers and output
latches are laid out between the bitline drivers and the
memory core, thus decreasing the length of clock wires
and reducing potential skew problems. Address pre-
decoders and sense amplifiers are only enabled only
during the cycles when they are needed, thus econo-
mizing on power dissipation.

The priority enforcer is necessary for the proper op-
eration of the CAM, since multiple words can match
during a search. Its input is a vector consisting of
the matchline results. The output of the priority en-
forcer is a vector of the same size with a single “1” at
the “first” 1 in the input vector. A dual-tree structure
was designed (figure 9) to implement a kind of carry
lookahead and carry prediction [23], propagating the
existence of any single match (the outputs NE mean
“noone else higher matched”). Dynamic precharged
logic with domino timing was used to reduce the de-
lay. Furthermore, the priority enforcer was separated
in two stages, each operating on a different clock phase;
one stage is precharged while the other one is operat-
ing (one-phase pipeline latches exist between the two
stages). The first stage includes a two-level tree of dy-
namic NOR gates, serving as a lookahead generator for
the second pipeline stage. The latter consists of Manch-
ester chains operating on separate groups of 16 match-
lines. The priority enforcer was laid out in an area of
60�m x 1857�m; the vertical dimension is dictated by
pitch matching to the CAM block. Simulation results
(figure 10) proved it to be operational at 100MHz clock
frequency, under worst case simulation conditions. A
detailed description of the architecture and the opera-
tion of the priority enforcer can be found in [12].

Another full-custom block, not included in figure 7, is

Proc. of 17th Conf. on Advanced Research in VLSI (ARVLSI’97), Univ. of Michigan, Ann Arbor, USA, 15-16 Sep. 1997

10

i+
15

m
lin

e_
la

tc
he

d
m

lin
e_

la
tc

he
d

i+
8

m
lin

e_
la

tc
he

d
i

i+
7

m
lin

e_
la

tc
he

d

D Q

D Q

D Q

D Q

D Q

D Q

D Q

.

.

.

1
φ

.

.

.

15

1
0

60 mµ

18
57

µm
.
.
.

.

.

.

18 µm
Priority Enforcer

stage A stage B

match(i-1)_bypass

stage B

2

2
φ

φ

.

.

.

.

.

.

.

.

.

.

.

.

.

42 µm

stage A (level 1)

1

m
at

ch
lin

e0
m

at
ch

lin
e2

55

match0
bypass

match1

match15

bypass

bypass

φmline_latched0

mline_latched255

stage A (level 2)

NEi+8

NEi+15

NEi+7

NEi

latch
pipeline

Figure 9: Priority enforcer circuits and floorplan

the Head/Tail Register File. It employees a four-ported
SRAM cell depicted in figure 11. Its relatively small
size –54 rows by 17 columns– easily provides a short
access time. The cell size is 7.25�m x 14.1�m. The last
block in the full-custom part of queue management is
the Free List (figure 12). It is a string of 256 flip flops,
maintaining the state of available slots in the shared
data buffer. Initially all slots are marked as 1 (free). A
search for an empty position is processed by a priority
enforcer, yielding the first 1 found from the top of the
bit string. By the end of the cycle, the selected flip
flop is cleared, and its encoded address is supplied as
output. An additional decoder is necessary to set the
appropriate flip flop when the slot with a given address
is freed.

4.2 Design Results

The full custom blocks were simulated extensively, us-
ing the actual parasitic capacitances that were extracted
from the layout. Timing simulation, under worst-case
conditions (minimum-current nmos & pmos models,
105oC temperature, 2.7 Volt power supply), yielded the
results shown in the table below (external load driver
delay is not included). Searches are the slowest opera-

tion, given that the match lines span both FlowGroup
and OutMask memory blocks. The address and data
setup times were measured with respect to the clock
entering the full-custom block.

The power dissipation and the area of the full-custom
blocks are listed in the following table. Power dissipa-
tion is averaged over a 100ns simulation interval; in-
put activity was maximized. Typical figures refer to
25

oC, 3.3 Volt power supply, typical-current transistor
models; maximum refers to 0

oC, 3.6 Volt power sup-
ply, high-current transistor models. A major fraction of
the power is consumed by the memory blocks, which
are relatively large and multiported. The total typical
power dissipation of the full-custom part is 210 mW,
and its area is 2.26mm2.

5. Conclusions

High-speed operation and quality of service require-
ments of modern networks lead to the use of switch-
ing schemes with sophisticated flow-control. These
need efficient hardware implementations for maintain-
ing and managing multiple cell queues. We presented
the architecture and VLSI implementation of the queue
management in the ATLAS I single-chip ATM switch

Kornaros, e.a.: Pipelined Multi-Queue Management in a VLSI ATM Switch Chip

11

Timing Table
parameter min typ max unit
FlowGroup match access (from clock) 6.4 ns
OutMask match access (from clock) 6.3 ns
FlowGroup access (from clock) 4.4 ns
OutMask access (both ports in the same cycle) 5.7 ns
CreditMask modify access 4.9 ns
CreditMask cycle time 10 ns
Priority Enforcer (eval. phase stage A) 4.2 ns
Priority Enforcer (eval. phase stage B) 4.7 ns
HTRF access (from clock, by a single port) 3.1 ns
HTRF access (from clock, by all four ports) 4.9 ns
Address setup time 0.5 ns
Data setup time 0.5 ns

Power Dissipation and Area of Full-Custom Blocks
block Ityp Ptyp Imax Pmax Area

(mA) (mWatt) (mA) (mWatt) (mm2)
decoder A 2.6 8.6 3.6 12.9 0.097
decoder B 2.6 8.6 3.6 12.9 0.097
FlowGroup & OutMask mem 28.0 92.4 31.7 114.1 0.624
Priority Enforcer 1.8 5.9 2.5 9.0 0.116
Mux3-to-1 1.9 6.3 2.1 7.6 0.045
Encoder 2.0 6.6 2.3 8.3 0.246
CreditMask mem 9.7 32.0 11.1 40.0 0.264
HTRF mem 7.0 23.1 7.9 28.5 0.200
Free List 8.4 27.7 10.6 38.0 0.566
Total 64.0 211.2 75.4 271.3 2.255

ANACAD 22-Apr-97
13:40:45

File : test3.cou
ELDO V4.4.1 (ST Version) : PE (worst case)

0.0 5.0e-80.5 4.51.0 4.01.5 3.52.0 3.02.5
s

 0.0

 3.0

 1.0
 2.0

V V(PHI2)

matchline1

0.0 5.0e-80.5 4.51.0 4.01.5 3.52.0 3.02.5
s

 0.0

 3.0

 1.0
 2.0

V V(IN1)

0.0 5.0e-80.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.5

 4.0

 0.5

 3.0
 1.5

V V(NE1)

0.0 5.0e-80.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.5

 3.5

 0.5

 2.5
 1.5

V V(NE2)

0.0 5.0e-80.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.5

 3.0

 0.5

 2.0

V V(NE254)

0.0 5.0e-80.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.5

 2.5

 0.5
 1.5

V V(NE255)

match15_bypass latched

0.0 5.0e-80.5 4.51.0 4.01.5 3.52.0 3.02.5
s

-0.5

 3.5

 0.5

 2.5
 1.5

V V(MATCH)

Figure 10: Priority enforcer waveforms (worst case: no
input matched)

with credit-based flow. This VLSI chip, which is cur-
rently being implemented in a 0.35 micron CMOS tech-
nology with 5 metal layers and 3.3 V power supply,
incorporates several important features: high-speed gi-
gabaud serial links, a 256-cell pipelined memory shared
data buffer, 3 levels of priorities, and multicasting ca-
pabilities.

The queue management, which implements the
central ATLAS I control operations, is responsible for
maintaining multiple cell queues and credits, and for
handling multicasting. We showed how its pipelined
operation supports the high bandwidth requirements,
and services one cell and one credit operation per cycle.
We presented the implementation of the queue manage-
ment using compiled SRAM’s, semi-custom logic, and
full-custom blocks –two, three, and four-port CAMs
and RAMs with special ports, pipelined priority en-
forcers, decoders, and peripheral circuitry. This full-
custom part of queue management consists of approxi-
mately 65 thousand transistors in logic and 14 Kbits in
memories, it occupies 2.3 mm2, and it has been simu-
lated under worst case conditions to operate at 80 MHz,
dissipating 0.27 Watt.

Proc. of 17th Conf. on Advanced Research in VLSI (ARVLSI’97), Univ. of Michigan, Ann Arbor, USA, 15-16 Sep. 1997

12

B1

Word Line1

B1B2B3B4 B2 B3 B4
Word Line2

Word Line3

Word Line4

µ
m

µ m411

49
0 D
ec

od
er

D
ec

od
er

Core
(54 x 17) D

ec
od

er

Bitline drivers

D
ec

od
er

Output latches
Sense amps

Head/Tail Register File

Figure 11: The four-ported Head/Tail Register File

µ m

µ m

i

.

.

.

.

.

.

i

D
ec

o
d

er

P
ri

o
ri

ty
 E

n
fo

rc
er E

n
co

d
er

freed slot
address

first free slot
address

Top of List

19
40

292

NEH
OUT

consume
free slot

Bottom of List
(free slot : 1)
(filled slot: 0)

CK

1

0
Q

8 8

PR
D

Figure 12: The Free List circuit

6. Acknowledgements

This work was carried out within the “ASICCOM”
project, funded by the European Union, under the
ACTS (Advanced Communication Technologies and
Services) Programme. The ATLAS I chip is designed
together with Chara Xanthaki, George Kalokerinos,

George Dimitriadis, and Dionisios Pnevmatikatos, who
have also assisted in the queue management block de-
sign. Yannis Papaefstathiou has also helped. We thank
them all.

References

[1] IEEE Standard 1355-1995, ISO/IEC Standard 14575 DIS, Standard
for Heterogeneous InterConnect (HIC):low-cost, low-latency scalable
serial interconnect for parallel system construction, 1995. URL: http:-
//stdsbbs.ieee.org/groups/1355.

[2] Quantum Flow Control Alliance. Quantum Flow Control: A
Cell-Relay Protocol Supporting an Available Bit Rate Service.
URL: http://www.qfc.org, July 1995. Version 2.0.

[3] S. Borkar et al. Supporting Systolic and Memory Communica-
tion in iWarp. In Proceedings of the 17th Int. Symp. on Computer
Architecture, ACM SIGARCH, volume 18, pages 70–81, June 1990.

[4] J. Coudreuse, W. Sincoskie, and J.S. Turner. Guest Editorial in
Broadband Packet Communications. IEEE Journal on Selected
Areas in Communications, 6(8):1452–1454, December 1988.

[5] W. Dally and C. Seitz. Deadlock-Free Message Routing in Multi-
processor Interconnection Networks. IEEE Transactions on Com-
puters, C-36(5):547–553, May 1987.

[6] W. Denzel, A. Engbersen, and I. Iliadis. A Flexible Shared-Buffer
Switch for ATM at Gb/s Rates. In Computer Networks & ISDN
Systems, volume 27, pages 611–624. Elsevier Science B.V., 1995.

[7] M. Galles. Spider: A High-Speed Network Interconnect. IEEE
Micro, 17(1):34–39, Jan./Feb 1997.

[8] M. Katevenis, D. Serpanos, and E. Spyridakis. Credit-
Flow-Controlled ATM versus Wormhole Routing. Tech-
nical Report TR-171, Institute of Computer Science -
Foundation for Research and Technology Hellas (ICS-
FORTH), July 1996. URL: file://ftp.ics.forth.gr/tech-
reports/1996/1996.TR171.ATM vs Wormhole.ps.gz.

[9] M. Katevenis, D. Serpanos, and P. Vatsolaki. ATLAS I:
A General-Purpose, Single-Chip ATM Switch with Credit-
Based Flow Control. In Proceedings of the Hot Interconnects
IV Symposium, pages 63–73, CA, USA, August 1996. Stan-
ford Univ. URL: file://ftp.ics.forth.gr/tech-reports/1996/-
1996.HOTI.ATLAS I ATMswitchChip.ps.gz.

[10] M. Katevenis, P. Vatsolaki, and A. Efthymiou. Pipelined Mem-
ory Shared Buffer for VLSI Switches. In Proceedings of the ACM
SIGCOMM ’95 Conference, pages 39–48, Cambridge, MA., USA,
August 1995. URL: file://ftp.ics.forth.gr/tech-reports/1995/-
1995.SIGCOMM95.PipeMemoryShBuf.ps.gz.

[11] T. Kozaki, N. Endo, Y. Sakurai, O. Matsubara, M. Mizukami, and
K. Asano. 32x32 Shared Buffer Type ATM Switch VLSI’s for B-
ISDN’s. IEEE Journal on Sel. Areas in Communications, 9(8):1239–
1247, October 1991.

[12] Christoforos E. Kozyrakis. The Architecture, Operation and
Design of the Queue Management Block in the ATLAS I ATM
Switch. Technical Report TR-172, Institute of Computer Science
- Foundation for Research and Technology Hellas (ICS-FORTH),
July 1996. URL: file://ftp.ics.forth.gr/tech-reports/1996/1996.-
TR172.QueueManagement.ps.gz.

[13] H. T. Kung. Gigabit local area networks: A systems perspective.
IEEE Communications Magazine, 30(4):79–89, April 1992.

[14] J. LeBoudec. The Asynchronous Transfer Mode: A Tutorial.
Computer Networks and ISDN Systems, 24(4), May 1992.

[15] R. Marbot, A. Cofler, J. C. Lebihan, and R. Nezamzadeh. Integra-
tion of Multiple Bidirectional Point-to-Point Serial Links in the
Gigabits per Second Range. In Proceedings of the Hot Interconnects
I Symposium, CA, USA, August 1993. Stanford Univ.

Kornaros, e.a.: Pipelined Multi-Queue Management in a VLSI ATM Switch Chip

13

[16] N.Troullinos and C.Stormon. Design Issues in Static Content-
Addressable Memory Cells. Technical Report 9208, CASE Cen-
ter Syracuse University, August 1992.

[17] D. Patterson and J. Hennessy. Computer Organization: the hard-
ware/software interface. Morgan Kaufman Publishers, 1993.

[18] Y. Shobatake, M. Motoyama, E. Shobakate, T. Kamitake,
S. Shimizu, M. Noda, and K. Sakaue. A One-Chip Scalable 8 *
8 ATM Switch LSI Employing Shared Buffer Architecture. IEEE
Journal on Sel. Areas in Communications, 9(8):1248–1254, October
1991.

[19] S.Sidiropoulos. Fast packet switches for asynchronous transfer
mode. Technical Report TR-25, Institute of Computer Science -
Foundation for Research and Technology Hellas (ICS-FORTH),
Heraklio,Crete,GR, August 1991. URL: file://ftp.ics.forth.gr/-
tech-reports/1991/1991.TR25.Fast packet switches.ps.Z.

[20] Y. Tamir and G. Frazier. High-Performance Multi-Queue Buffers
for VLSI Communication Switches. In Proceedings of the 15th
Int. Symp. on Computer Architecture, ACM SIGARCH, volume 16,
pages 343–354, May 1988.

[21] T.Blackwell, K.Chan, K.Chang, T.Charuhas, B.Karp, H.T.Kung,
D.Lin, R.Morris, M.Seltzer, M.Smith, C.Young, O.Bhagat,
M.Chaar, A.Chapman, G.Depelteau, K.Grimble, S.Huang,
P.Hung, M.Kemp, I.Mahna, J.McLaughlin, M.T.Ng, J.Vincent,
and J.Watchorn. An Experimental Flow-Controlled Multicast
ATM Switch. In Proceedings of the First Annual Conference on
Telecommunications in Massachussetts, 1994.

[22] F.A. Tobagi. Fast Packet Switch Architectures for Broadband
Integrated Services Digital Networks. In Proceedings of the IEEE,
volume 78, pages 133–167, January 1990.

[23] N. Weste and Eshraghian. Principles of CMOS VLSI Design - a
Systems Perspective. Addison-Wesley, 2 edition, 1993.

Proc. of 17th Conf. on Advanced Research in VLSI (ARVLSI’97), Univ. of Michigan, Ann Arbor, USA, 15-16 Sep. 1997

