
Asynchronous Operation of Bufferless Crossbars
Georgios Passas1 and Manolis Katevenis1

Foundation for Research and Technology - Hellas, Inst. of Computer Science - member of HiPEAC
FORTH-ICS, P.O. Box 1385, Vassilika Vouton, Heraklion, Crete, GR-711-10 Greece

Abstract— It is widely believed that bufferless crossbar
switches with virtual-output queues (VOQ) at their inputs can
only operate when their input-output connections are recon-
figured in synchrony, i.e. only under fixed-size cell traffic.
Packet-mode scheduling has been studied, but, again, assuming
that all packets consist of an integer number of cells, where
the scheduling time coincides with the cell time. We show
that bufferless crossbars can operate directly on variable-size
packets, with input-output connections being made and torn
down asynchronously with respect to each other. Although such
operation can initially be thought of as an extension of packet-
mode scheduling, the critical difference is that now the scheduling
time is much longer than packet-size granularity. We study a
transformation of the well-known iSLIP scheduling algorithm to
asynchronous mode of operation, and we show by simulation
that it can be adapted to yield throughput close to 100% under
a range of workloads. The overall result is an efficient scheduling
operation, with the added advantages of eliminating (a) packet
fragmentation overhead (no partially filled cells), and (b)packet
reassembly in the egress datapath.

I. I NTRODUCTION

High-performance packet switches of moderate scale are
popularly architected with a bufferless crossbar fabric, Vir-
tual Output Queueing (VOQ), and fixed-size switching units,
known ascells[1], [2], [3], [4]. External packets are segmented
at the crossbar inputs into cells and queued in VOQs; the cells
are switched through the crossbar to the outputs, where the
original packets are reassembled and are afterwards transmit-
ted on the line to the network.

The crossbar configuration is decided by a central scheduler
running a parallel matching algorithm [1], [2]. During eachcell
time, each input requests the outputs corresponding to non-
empty VOQs, each output grants a single request, and each
input, in turn, accepts a single grant. When the three steps
are completed, each output is matched to at most one input
and vice-versa2. The crossbar is configured accordingly in the
subsequent cell time.

PIM [3] and iSLIP [4] are two well-known paradigms of
three-phase matching scheduling algorithms. PIM, iSLIP, and
the majority of the switch scheduling algorithms known in the
literature schedule cells ignoring which cell belongs to which
packet; packet transmission on the output line cannot, hence,
start at least until the output port has received the last cell of
the packet. Given that scheduler decisions cannot be predicted,

1 The authors are also with the University of Crete, Dept. of Computer
Science, Heraklion, Crete, Greece.

2The scheduling algorithm solves a bipartite graph matchingproblem.

reassembly buffers are required at the crossbar outputs and
store-and-forwardoperation is enforced.

In order to avoid the complexity of packet reassembly,
packet-modescheduling has been proposed in [5], [6]: the
crossbar configuration changes againsynchronouslybut an
input-output connection is maintained until all cells of the
associated packet are forwarded to the switch output. Since
the switch output knows that all cells of a packet arrive
consecutively in time,(a) it needs no reassembly buffer, and
(b) it may start transmitting the packet right away, i.e.cut-
through is allowed. The advantages are particularly important
in systems requiring low latency and when traffic includes
large packets (e.g. jumbo frames [7]).

Packet-mode scheduling assumes cell granularity for packet
size. The cell size is specified by the time needed by the
scheduler circuit to run the matching steps, with a typical size
being 64 Bytes [8]. As a result, when a packet occupies a non-
integral multiple of cells, its last cell is padded with useless
bytes. In order to switch the excessive information,internal
speedup3 is needed, which is around two in the worst case
- e.g. with 65-Byte packets in a 64-Byte cell switch. Internal
speedup increases power consumption and limits port and line-
rate scalability.

We study bufferless crossbar switches operating directly on
external variable-size packets without prior segmentation to
fixed-size cells. We show how the scheduling task can be
carried out so that input-output connections are made and
torn-downasynchronouslywith respect to each other. In the
resulting system packet size granularity is independent ofthe
scheduling time, and it can be infinitely small4. The proposed
operation, hence, improves upon synchronous packet-mode
operation by eliminating the need for internal speedup to
accommodate cell-padding overheads.

Our study was motivated by our previous work on variable-
size packet switching inbuffered crossbars[9], [10], [11].
Crosspoint buffering allows for temporarily conflicting input-
output matchings and, this, in turn, renders asynchronous op-
eration straightforward. Buffered crossbars can perfectly well
operate directly on variable-size packets, but could bufferless
crossbars do so as well?

The remainder of the paper is organized as follows. In
Section II, we describe the proposed switch operation. Sec-
tion III examines the fairness properties of this operation;

3The switch core operates faster than the external lines.
4Packet size granularity is actually quantized by the crossbar datapath

width.

c©Copyright IEEE 2007 - to appear in Proceedings of HPSR 2007, Brooklyn, NY, USA, May 30 - June 1, 2007 1

we indicate scenarios leading to starvation, and we propose
a method for starvation-free operation. In Section IV, we
describe observations from simulations, and in Section V we
present numerical results. We show that the proposed scheme
may be adapted to yield throughput close to 100% under a
range of workloads. We also show that, factoring-out padding
overheads, our scheme performs virtually as good as packet-
mode scheduling. Finally, Section VI is a conclusion.

II. ASYNCHRONOUS OPERATION

In this section, we describe how to configure a bufferless
crossbar asynchronously for variable-size packets. Specifically,
like in the original iSLIP [4], per-input and per-output round-
robin arbiters compute bipartite matchings between crossbar
inputs and outputs in three steps –request, grant, andaccept.
The critical differentiation from iSLIP is that the arbiters
make scheduling decisions without being synchronized with
respect to each other, and new input-output matchings emerge
asynchronously.

We first describe some notation and assumptions that will be
used in the discussion to follow. IfN is the size of the switch,
for 0 ≤ i, j < N , V OQij denotes the VOQ corresponding to
output j at input i. Each input arbiter (or input for brevity’s
sake) submits requests to outputs corresponding to non-empty
VOQs at this input;reqij denotes a request signal from inputi

to outputj. Each output arbiter (or output) arbitrates between
received requests, grants a single request, and informs the
corresponding input;grntij denotes a grant signal from output
j to input i. Each input arbitrates between received grants,
selects a single grant, and informs the corresponding output;
acptij (rjctij) denotes an accept (reject) signal from inputi

to outputj.
The assertion of a request, grant, or accept signal is con-

sidered a zero-time asynchronous event. An arbitration is trig-
gered by a raised request or grant signal, and it is completed
in time T . We consider the beginning of an arbitration period
an event having the lowest precedence among concurrently
occurring events. We call the interval2T a scheduling (time)
window because an output and an input arbitration are needed
for a matching to be found. The scheduling window bounds
from below the supported packet size; the maximum packet
size on the other hand is unbounded.

We outline the switch operation describing an input and an
outputfinite state machine (FSM).
Input i FSM (0 ≤ j < N)

Idle State. As soon as aV OQij becomes non-empty,
input i raises the request signalreqij . Requestsreqij

remain raised until at least one of them is granted; then
input i lowers allreqij and transitions to theacceptstate
- see Fig. 1.
Accept State.In this state, inputi arbitrates among raised
grant signalsgrntij (grnt11 and grnt12 in Fig. 1). A
single grant is accepted dependent on the position of
an accept round-robin pointer, as in the original iSLIP;
the pointer is updated similarly to iSLIP. Ifgrntij is
accepted, inputi raises the accept signalacptij ; if grntij

statesignals
IDLE ACCEPT XMIT

time

T

req

req

req

req

11

12

13

14

grnt

grnt

grnt

acpt

rjct

rjct

11

12

13

11

12

13

VOQs becoming
non−empty

non−empty
VOQ already

VOQ already
non−empty

late grant

concurrent grants

 match found

Fig. 1. Example of the input state transitions in asynchronous scheduling.

GRANT

select

GRANT

select

XMITIDLE

T T TT

IDLE

time

req

req

req

req

11

21

31

41

grnt

grnt

rjct

acpt

21

41

21

41
match found

statesignals

in nxt decision, if still asserted
requests will be considered

Fig. 2. Example of the output state transitions in asynchronous scheduling.

is rejected, inputi raises the reject signalrjctij . Grant
signalsgrntij received in the middle of the arbitration
(grnt13 in Fig. 1) are registered and they are rejected
at the end of the arbitration. Inputi transitions to the
transmitstate when the arbitration is completed.
Transmit State. If grntij was accepted in theaccept
state, inputi starts forwarding the head packet ofV OQij .
Input i raises a request signalreqij for each non-empty
V OQij and transitions to theidle state one scheduling
window before the completion of the forwarding,

Outputj FSM (0 ≤ i < N)

Idle State. Output j remains in the current state until a
request signalreqij is raised; then it transitions to the
grant state – see Fig. 2.
Grant State. In this state, outputj arbitrates among
raised requestsreqij . A single request is granted depen-
dent on the position of a grant round-robin pointer, as
in the original iSLIP; the pointer is updated similarly to
iSLIP. If reqij is granted, outputj raises the grant signal
grntij . The output remains in thegrant state until signal
acptij or rjctij is raised. It transitions to thetransmit
state in the former case and to theidle state in the latter

c©Copyright IEEE 2007 - to appear in Proceedings of HPSR 2007, Brooklyn, NY, USA, May 30 - June 1, 2007 2

assert

packet k+1 packet k

time
2T

XMIT ACCEPT

observe select

XMITIDLE

grants

accept

packet k+1 packet k

XMIT

request
select observe

acpt/rjct

assert
grant

grant

assert
requests

GRANT XMIT

Input

Output

transmission

Fig. 3. Example of an input-output pair jointly passing through the FSM
states in asynchronous scheduling.

one.
Transmit State. Output j waits in this state until one
scheduling window remains for the completion of the
current packet forwarding; then it transitions to theidle
state.

Figure 3 depicts the state transitions of both an input and an
output in a typical case of successful matching on first trial.
Note that an input receives no grants in thetransmit state
because it aborts all its requests when it transitions toaccept
and it issues no request in thetransmitstate. With this design
choice we save switch throughput because an input can accept
no grants in thetransmit state. Otherwise, two connections
from the same input to two distinct outputs would have to be
configured. Also notice that since outputs do not synchronize
their arbitration, when some of them grant the same input, it
is likely that some grants will be raised while the arbitration at
the input has already been triggered. The input, hence, receives
grants in theacceptstate although, being already arbitrating, it
cannot accept them. Because of causality (the outcome of an
arbitration cannot be known in the beginning of the arbitration)
we cannot prevent the late grants from being raised. A similar
problem appears when pipelining the decisions of traditional
synchronous schedulers [12].

III. FAIRNESS

Assuming all inputs have queued packets for all outputs, an
output sees requests of and arbitrates among only those inputs
which are neither in the middle of an arbitration, nor in the
middle of a packet forwarding. It may happen that each time
an output starts an arbitration (transitions to thegrant state), a
fixed subset of the inputs have already started their arbitration
(already in theacceptstate), or they are in the middle of a
packet forwarding (transmit state). The output, then, sees no
requests from these inputs, and flows from these inputs to
this output starve. Figure 4 shows an example traffic pattern
causing the above situation. Symmetrically, an input may never
accept grants from a fixed subset of the outputs.

A synchronous packet-mode scheduler similarly suffers
from starvation because, during each cell-time, it considers

time

in0
in1
in2
in3

packetspace

input 2 releases input 2 requests output 2;
output 2 no other input is idle so

input 2 is matched
to output 2 again

Fig. 4. Example of malicious traffic causing an asynchronouspacket
scheduler to lock the crossbar in a fixed configuration. Assume a4×4 switch.
Input i is initially connected to outputi (for all i in [0,3]) and never switches
output in the future. The figure shows the 4 flows that are constantly served;
other flows with non-empty queues exist, but are never served.

candidacies only for those inputs and outputs which are not in
the middle of a packet-mode forwarding [5], [6]. The traffic
pattern shown in Fig. 4 would similarly lead a packet-mode
scheduler to lock the crossbar in a fixed configuration – con-
sider time is now slotted and packets are integral multiplesof
cells. Comparing our scheme to packet-mode scheduling, our
scheme imposes a single additional constraint: when an output
(input) starts an arbitration, it further excludes candidacies for
those inputs (outputs) which are in the middle of an arbitration
at that time. This constraint is meaningless in packet-mode
scheduling because inputs and outputs arbitrate in syncrhony.

Starvation-free operation can be guaranteed in a brute-
force way. Enforcing an output to remain idle until active
flows not served for a long time are served, we guarantee
no flow is left indefinitely unserved. If the inter-service time
interval indicating starvation is long enough, we expect the
throughput loss from the idling output to be negligible. Similar
techniques have been investigated in [13]. Due to space
constraints, in this paper we restrict our study to the throughput
asynchronous scheduling may offer and to a comparison
between asynchronous scheduling and synchronous packet-
mode scheduling. Issues related to starvation will be studied
in more depth in future work5.

IV. OBSERVATIONS FROM SIMULATION

This section describes observations from simulation. We
present the simulation environment and the numerical results
in the next Section V. In the discussion to follow, we assume
uniform traffic and we distinguish between two cases: (i)
average packet size is many scheduling windows, and (ii)
average packet size is few scheduling windows.

In both of the above cases, under light load outputs are idle
most of the time, and inputs are connected to outputs almost
as soon as they request them. Under heavy load, however,
contention becomes heavy, and the operation of the switch
depends on the packet size distribution of the workload.

When average packet size is large, connections emerge
incrementally until all inputs are eventually connected with

5We mention that, as was shown in [11], buffered crossbars do not
suffer from this starvation situation because input-output matchings are not
necessarily bipartite. More clever solutions to the starvation problem could
be based on this observation.

c©Copyright IEEE 2007 - to appear in Proceedings of HPSR 2007, Brooklyn, NY, USA, May 30 - June 1, 2007 3

sgnls

state

0

1

0

1

xmissions
output0

output1

time

inputs

outputs

req
req

00
01

req
req

10
11

grnt
grnt

00
10

grnt
grnt

01
11

X AI

G

X

X

X

lowered

X

X

T

T T

t t0 1

T

G G X

T T

AI X

I: Idle

A: Accept

X: Transmit

G: Grant

tt2 t3 4 t5 t6

input0 input0

input1 input1bubble

Fig. 5. Example of conflicting output decisions in asynchronous scheduling
when a pair of connections are torn down close in time with respect to each
other. We show a pair of connections; we assume the rest of theinputs and
outputs remain connected in the shown time interval. The connection from
input 0 to output 0 terminates at timet4; the connection from input 1 to output
1 terminates at timet5, with 0 < t5 − t4 < T . Inputs 0 and 1 raise requests
to both outputs at timet0 = t4−2T andt1 = t5−2T > t0 respectively; we
assume packets for both outputs are queued at the inputs, which is realistic
under heavy load and uniform traffic. Output 0 starts arbitrating at time t0
seeing only the request from input 0, and grants again input 0at time t2 =

t0 + T . Output 1, on the other hand, starts arbitrating at timet1 seeing the
requests from both inputs 0 and 1. Output 1 had previously granted input 1,
thus, it grants input 0 at timet3 = t1 + T > t2. Input 0 accepts output
0, since the grant from output 0 was asserted first, and rejects output 1 at
time t4 = t2 + T . A new connection from input 0 to output 0 is configured
at that time. Output 1 remains idle until timet6 = t4 + 2T . When packet
size is large, this problem affects performance only under the heaviest of the
loads, because the time an output remains idle is negligiblecompared to the
packet time. Note that in synchronous operation, packets would be padded,
and connections would terminate concurrently; outputs 0 and 1 would start
their arbitration concurrently, they would both see requests from both inputs,
and they would switch inputs with no throughput loss. Of course, there is
throughput loss due to padding bytes; in our evaluation (Section V)we factor
this loss out.

an output. In the general case, two or more packet trans-
missions rarely finish concurrently. Instead, (a) within one
scheduling window before, or after, the completion of a packet
forwarding, no other forwarding is completed6, or, (b) few
other transmissions are completed. In case (a), if there are
packets queued in the corresponding VOQ, the same input-
output connection is re-configured as was shown in Fig. 4
and Fig. 3. In case (b), the released outputs attempt to switch
inputs, but they fail, throughput is lost due to conflicting
output decisions, and the same connections are re-configured
with high probability. We explain how in Fig. 5. Under
heavy load, it is, thus, likely that asynchronous scheduling re-
configures the same connection for as long as there are packets
queued in the corresponding VOQ. Asynchronous scheduling
degenerates to anexhaustive servicediscipline [13]. When the
VOQ drains, the corresponding input and output remain idle
for a short period of time, and switch to the output and input
that finish their packet forwarding first. In the next SectionV,

6This is also the case for packet-mode scheduling.

sgnls

state I I AA XA X

I A X I A I

G X G G X G G

G G G G GX X

0

1

0

1

xmissions
output0

output1

X

I

time

T T T T T T T T T T

inputs

outputs

req
req

00
01

req
req

10
11

grnt
grnt

00
10

grnt
grnt

01
11

I: Idle
G: Grant

A: Accept

X: Transmit

input 0 input 0 bubble

input 1 input 1

bubble

bubble

Fig. 6. Example of grant pointers moving in lock step in asynchronous
scheduling. Assume a2×2 switch, packet size is1.025T ×R, and all inputs
request all outputs. If the grant pointers of both outputs point to input 0 at
some point in time, they keep moving in lock-step and throughput is lost.
grnt01 is always raised later thangrnt00, it is, hence, always rejected, and
input 0 cannot be connected to output 1 (the rejected grants are shaded);
grnt10 is always raised later thangrnt11, it is always rejected, and input
1 cannot be connected to output 0. The grant pointers keep moving in lock
step until V OQ00 or V OQ11 drains. Notice that due to this behavior the
VOQs grow up non-uniformly, and the grant pointers are prevented from
desynchronizing as in the original iSLIP. Also notice that if packets had
the minimum size, the output arbiters would always start their arbitration
concurrently, and their grant pointers would desynchronize as in the original
iSLIP.

we show that the throughput loss occurring when the outputs
fail to switch inputs, results to an increase in packet delayat
loads greater than 97%. We also show that, as a result of the
degeneration described above, the reconfiguration frequency
of the crossbar is significantly reduced when packet size is
large.

When average packet size is comparable to the scheduling
time window, on the other hand, the grant pointers tend to
move in lock-step, and performance degrades. We explain
how in Fig. 6, which extends the scenario of Fig. 5. In the
next section, we show that when average packet size is close
to the minimum, the saturation throughput of asynchronous
scheduling and of plain synchronousround-robin matching –
RRM [4] are almost the same.

V. PERFORMANCE EVALUATION

We used event-driven simulation to model our scheme,
which we compare to packet-mode scheduling. We modeled
the packet-mode scheduler described in [5] using slotted-time
simulation.

In our workload, packet size granularity was0.025 schedul-
ing windows (2T) for asynchronous scheduling7; packets were
integral multiples of cells for synchronous scheduling. We
factored-out the padding overheads incurred by synchronous
operation in order to compare pure scheduling efficiency; the
latter assumption clearly favors the synchronous system.

7Minimum IP packet size is 40 bytes. Then, with 2T=40 byte-times, we
have 1-byte granularity.

c©Copyright IEEE 2007 - to appear in Proceedings of HPSR 2007, Brooklyn, NY, USA, May 30 - June 1, 2007 4

 100

 1000

 10000

 100000

10.980.960.940.920.90

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
2T

)

Input Load

Asynch - trimodal pck size

Synch - trimodal

Asynch - uniform

Synch - uniform

Fig. 7. Packet delay of asynchronous and synchronous scheduling under
uniform traffic and trimodal, or uniform packet size.

We run all simulations until the simulated time became
greater than at least5× 106 ×N scheduling windows, where
N is the switch size. We assumed one scheduling time window
coincides with one cell time. We considered the switch satu-
rated when the total backlog at any input port became greater
than25×103×N scheduling windows. Fabric size was always
16 × 16.

First, we studied performance under uniform traffic in terms
of average packet delay. We defined average packet delay as
the time interval between the moment the first byte of a packet
starts entering the switch to the moment its first byte starts
departing averaged over the number of packets. We report
packet delay in number of scheduling windows. When the
switch is saturated, packet delay is considered infinite.

A. Uniform traffic

1) Minimum-size packets:We considered Poisson arrivals
of minimum-size packets for asynchronous scheduling and
i.i.d Bernoulli arrivals of cells for synchronous scheduling.
We found that asynchronous scheduling is marginally more
efficient under loads less than 0.5, while at heavier loads the
delay curves of the two systems match. (see theSLIP curve
in Fig. 5 of reference [4].)

2) Variable-size packets:We repeated the previous ex-
periment assuming that external packets have variable size.
For asynchronous scheduling we considered Poisson packet
arrivals, while for synchronous scheduling we assumed packet
arrivals are decided by an ON-OFF model, as in [6]. We
experimented with trimodal and uniform packet size. In the
first case, 60% of the packets had size2T × R (1 cell for
synchronous scheduling), 20%28.8T ×R (15 cells) and 20%
75T ×R (38 cells); this packet size distribution resembles the
respective one in real-world IP networks [14]. In the latter
case, packet size was uniformly distributed between2T × R

and 75T × R. Figure 7 shows the simulation results. We
observe that for loads up to 97% the delay curves of the
two systems almost match. For greater loads, however, packet
delay increases significantly in our system. The reason was
explained in Fig. 5.

3) Corner packet-size conditions:Fig. 8 plots the saturation
throughput of asynchronous scheduling when packet size is
constant1.025T ×R, or uniform betweenT ×R and2T ×R.
We observe that the saturation throughput now drops to 63%

 1

 10

 100

 1000

 10000

 100000

10.80.60.40.20

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
2T

)

Input Load

Constant pck size, 1.025TxR

Uniform pck size, [TxR, 2TxR]

Fig. 8. Saturation throughput of asynchronous scheduling under uniform
traffic and pathological packet size conditions.

of the link capacity in the first case, and to 78% in the second
case. The reason for the performance degradation is the failure
of the grant pointers to desynchronize, as we explained in Fig.
6.

4) Virtually large packets:We can improve performance by
virtually increasing the size of the external packets. Switch-
ing multiple small packets each time when an input-output
connection has been configured8 we get saturation throughput
close to 100%, as in Section V-A.2 – average packet size
was well above 10 scheduling windows in the experiment
of Section V-A.2. The method we propose is similar to the
method proposed in [15], [10]: when the occupancy of a VOQ
exceeds a threshold valueQ × (2T × R), Q is an integer
greater than zero, the packets at the head of the queue whose
cumulative size exceeds the threshold value appear in the
scheduler circuit as a single external packet with size equal
to the cumulative size of these packets; if the occupancy of
a VOQ is below the threshold value, the boundaries of the
internal packets coincide with the boundaries of the external
packets. Simulation results for various values ofQ are shown
in Fig. 9; packet size is1.025T×R. Note that forQ = 1 we get
the baseline system. Also observe that for values ofQ greater
or equal to 8, we get switch throughput near 100%. Delay
increases withQ because asQ increases, a greater backlog is
required for the switch to start operating efficiently.

5) Crossbar reconfiguration probability:We measured the
crossbar reconfiguration probability as the probability anin-
put switches output in its next scheduling decision. Figure
10 shows the crossbar reconfiguration probability for asyn-
chronous and synchronous scheduling under minimum or
trimodal packet size. When load is low, VOQs are empty, and
the probability equals the probability a packet arriving atan
input is destined to an output different than the output the
previous packet at this input was destined to. As load increases,
VOQs become backlogged, and the probability depends on
the packet-size distribution. When packet size is minimum,
both asynchronous and synchronous scheduling reduce to the
original iSLIP. Under heavy load, iSLIP degenerates to time

8One could argue that then the padding overheads are negligible, and, hence,
our scheme loses its advantage over synchronous scheduling. This is correct
only when traffic is uniform. Consider the scenario described in [15] (Section
II), where many light flows are never backlogged, and steal bandwidth through
padding bytes from a heavy flow.

c©Copyright IEEE 2007 - to appear in Proceedings of HPSR 2007, Brooklyn, NY, USA, May 30 - June 1, 2007 5

 1

 10

 100

 1000

 10000

 100000

1.00.90.80.70.60.5

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
2T

)

Input Load

Q=1
2
4
8

16
32
64

Fig. 9. Saturation throughput of asynchronous scheduling as a function of
the threshold value. Traffic is uniform and packet size is1.025T × R.

division multiplexing, and, hence, the crossbar reconfiguration
probability equals 1. When packet size is trimodal, the re-
configuration probability is significantly reduced and appears
almost the same for both asynchronous and synchronous
scheduling. This is reasonable since for both schemes the same
connections are maintained for multiple scheduling windows
as explained in sections III, IV. The probability is further
reduced applying the method described in Section V-A.4.

B. Unbalanced Traffic

We modelled unbalanced traffic based on the Zipf’s law,
as suggested in [16]. Figure 11 plots the attainable switch
throughput as a function of the Zipf orderk. Asynchronous
scheduling reaches the same throughput with synchronous
scheduling. Throughput increases with the threshold value
Q because the crossbar reconfiguration frequency is further
reduced asQ increases, and the scheduling task is further
simplified.

VI. CONCLUSION

We proposed and evaluated bufferless crossbar switches
operating directly on variable-size packets under the arbitration
of an asynchronous crossbar scheduler. The operation elimi-
nates packet reassembly and allows for cut-through, like the
synchronous packet-mode operation does, while at the same
time, as opposed to the packet-mode operation, it relieves from
cell-padding overheads and the associated crossbar speedup
requirements. The proposed operation may yield throughput
close to 100% under a range of traffic patterns, and has
common performance characteristics with the packet-mode
operation.

ACKNOWLEDGEMENT

This work was supported by the European Commission in
the context of the SARC (Scalable Computer Architecture)
integrated project #27648 (FP6), and the HiPEAC network of
excellence.

REFERENCES

[1] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, andM. Horowitz,
“The Tiny Tera: A packet switch core,” inHot Interconnects V, August
1996.

[2] Cisco 12000 Series Routers,Cisco 12008 and Cisco 12012 Routers.,
http://www.cisco.com/en/US/products/hw/routers/ps167.

1

0.8

0.6

0.4

0.2

10.80.60.40.2

C
ro

ss
ba

r
R

ec
on

fig
ur

at
io

n
P

ro
ba

bi
lit

y

Input Load

Asynch - min pck size, Q=1

Synch - min

Asynch - trimodal, Q=1

Synch - trimodal

Asynch - trimodal, Q=16

Fig. 10. Crossbar reconfiguration frequency with asynchronous and syn-
chronous scheduling under uniform traffic and minimum, or trimodal packet
size.

1.0

0.96

0.92

0.88

1086420

S
w

itc
h

T
hr

ou
gh

pu
t

Zipf Order, k

Asynch - Q=64

Asynch - Q=16

Asynch - Q=01

Synch

Fig. 11. Switch throughput of asynchronous scheduling under unbalanced
(Zipf) traffic. Packet size is trimodal.

[3] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-speed switch
scheduling for local-area networks,”ACM Trans. on Computer Systems,
vol. 11, no. 4, pp. 319–352, Nov. 1993.

[4] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp.
188–201, 1999.

[5] S. H. Moon and D. K. Sung, “High-performance variable-length packet
scheduling algorithm for IP traffic,” inIEEE GLOBECOM, November
2001.

[6] A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Packet-
mode scheduling in input-queued cell-based switches,”IEEE/ACM
Transactions on Networking, vol. 10, no. 5, April 2002.

[7] J. Hurwitz and W. Feng, “Initial end-to-end performanceevaluation of
10-gigabit ethernet,” inIEEE Hot Interconnects XI, August 2003.

[8] S. Iyer, R. Kompella, and N. McKeown, “Analysis of a memory
architecture for fast packet buffers,” inProceedings of IEEE HPSR, May
2001.

[9] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and N. Chrysos,
“Variable packet size buffered crossbar (CICQ) switches,”in IEEE ICC,
June 2004.

[10] M. Katevenis and G. Passas, “Variable-size multipacket segments in
buffered crossbar (CICQ) architectures,” inIEEE ICC, May 2005.

[11] G. Passas and M. Katevenis, “Packet-mode scheduling inbuffered
crossbar (CICQ) switches,” inIEEE HPSR, June 2006.

[12] P. Gupta and N. McKeown, “Design and implementation of afast
crossbar scheduler,”IEEE Micro, vol. 19, no. 1, pp. 20–28, Jan.-Feb.
1999.

[13] Y. Li, S. Panwar, and H. J. Chao, “Performance analysis of a dual round
robin matching switch with exhaustive service,” inIEEE Globecom,
November 2002.

[14] Cooperative Association for Internet Data Analysis,
http://www.caida.org.

[15] K. Kar, T. Lakshman, D. Stiliadis, and L.Tassiulas, “Reduced complexity
input buffered switches,” inHot Interconnects VIII, 2000.

[16] I. Elhanany, D. Chiou, V. Tabatabaee, R. Noro, and A. Poursepanj, “The
network processing forum switch fabric benchmark specifications: An
overview,” IEEE Network, vol. 19, no. 2, 2005.

c©Copyright IEEE 2007 - to appear in Proceedings of HPSR 2007, Brooklyn, NY, USA, May 30 - June 1, 2007 6

