Asynchronous Operation of Bufferless Crossbars

Georgios Passasind Manolis Katevenis
Foundation for Research and Technology - Hellas, Inst. oh@der Science - member of HIPEAC
FORTH-ICS, P.O. Box 1385, Vassilika Vouton, Heraklion, t&teGR-711-10 Greece

Abstract— It is widely believed that bufferless crossbar reassembly buffers are required at the crossbar outputs and
switches with virtual-output queues (VOQ) at their inputs can store-and-forwardoperation is enforced.
only operate when their input-output connections are recon In order to avoid the complexity of packet reassembly,

figured in synchrony, i.e. only under fixed-size cell traffic. . . .
P%cket-modeyschedu)fing has bgen studied, but, again, assing packet-modescheduling has been proposed in [5], [6]: the

that all packets consist of an integer number of cells, where crossbar configuration changes agaynchronouslybut an

the scheduling time coincides with the cell time. We show input-output connection is maintained until all cells ofth
that bufferless crosshars can operate directly on variablesize associated packet are forwarded to the switch output. Since
packets, with input-output connections being made and tom iha switch output knows that all cells of a packet arrive

down asynchronously with respect to each other. Although sth . A ;
operation can initially be thought of as an extension of pacét- consecutively in time(a) it needs no reassembly buffer, and

mode scheduling, the critical difference is that now the sabduling (P) it may start transmitting the packet right away, ioeit-
time is much longer than packet-size granularity. We study a throughis allowed. The advantages are particularly important

transformation of the well-known iSLIP scheduling algorithm to in systems requiring low latency and when traffic includes
asynchronous mode of operation, and we show by simulation large packets (e.g. jumbo frames [7]).

that it can be adapted to yield throughput close to 100% under) . .
a range of workloads. The overall result is an efficient schading Packet-mode scheduling assumes cell granularity for packe

operation, with the added advantages of eliminating (a) paet Size. The c_eII §ize is specified l?y the time. needed” by the
fragmentation overhead (no partially filled cells), and (b)packet scheduler circuit to run the matching steps, with a typicad s

reassembly in the egress datapath. being 64 Bytes [8]. As a result, when a packet occupies a non-
integral multiple of cells, its last cell is padded with resed
I. INTRODUCTION bytes. In order to switch the excessive informatiorernal

High-performance packet switches of moderate scale gr%eeduﬁ is needed, which is around two in the worst case

popularly architected with a bufferless crossbar fabrig; V €.9. with 65-Byte packets in a 64-Byte cell switch. Intdrna

tual Output Queueing (VOQ), and fixed-size switching uni,[é;peedup increases power consumption and limits port aad lin

ate scalability.
known ascells[1], [2], [3], [4]. External packets are segmente . . .
at the crossbar inputs into cells and queued in VOQs; the cell We study bufferless crossbar switches operating directly o

are switched through the crossbar to the outputs, where &Xéem"?" variable-size packets without prior _segmentuatm

g . xéd-size cells. We show how the scheduling task can be
original packets are reassembled and are afterwards tmnsr@arried out so that input-output connections are made and
ted on the line to the network.

. . . orn-downasynchronouslith respect to each other. In the
The crossbar configuration is decided by a central schedutl wnasy usim sP

[: L
running a parallel matching algorithm [1], [2]. During eaz rgsultmg system packet size granularity is independethef

time, each input requests the outputs corresponding to n?s)ﬁ_hedulmg time, and it can be infinitely snfallhe proposed

. eration, hence, improves upon synchronous packet-mode
empty VOQs, each output grants a single request, and eagneration by eliminating the need for internal speedup to

input, in turn, accepts a single grant. When the three steﬁ%
put, ’ P ge g ' .accommodate cell-padding overheads.
are completed, each output is matched to at most one inpu

) . ; . . bur study was motivated by our previous work on variable-
and vice-versa The crossbar is configured accordingly in thtgize packe)t/ switching irbuffe);ed cfossbar:{g] [10], [11].
subsequent cell time. ' '

di -k di fCrosspoint buffering allows for temporarily conflictingpiut-
o PIM E’] an 'SIF]I_P [4] r?r?j t;/_vo Wle - _nrc]nwn paradigms Oty \1nt matchings and, this, in turn, renders asynchronpts o
t ree-pnase matc Ing schedu mg.agorlt mS. PIM, 'SL",E 2 eration straightforward. Buffered crossbars can perfegtl|
the majority of the switch scheduling algorithms known ie th

. . . : . operate directly on variable-size packets, but could bigfés
Ilterztu.re scrk1edule cell_s ignoring r\1IVhICh celll_belongs tdakih crossbars do so as well?
packet; packet transmission on the output liné cannot,1enc s remainder of the paper is organized as follows. In

start at least yntil the output port ha§ _received the Ia$tor£e_| Section II, we describe the proposed switch operation. Sec-
the packet. Given that scheduler decisions cannot be peedicyi,, || examines the fairness properties of this operation

1 The authors are also with the University of Crete, Dept. ofmPater 3The switch core operates faster than the external lines.
Science, Heraklion, Crete, Greece. 4Packet size granularity is actually quantized by the crassiatapath
2The scheduling algorithm solves a bipartite graph matcipiraplem. width.

(©Copyright IEEE 2007 - to appear in Proceedings of HPSR 20030I8yn, NY, USA, May 30 - June 1, 2007 1

we indicate scenarios leading to starvation, and we propose
a method for starvation-free operation. In Section IV, we
describe observations from simulations, and in Section V we
present numerical results. We show that the proposed scheme
may be adapted to yield throughput close to 100% under a
range of workloads. We also show that, factoring-out pagldin
overheads, our scheme performs virtually as good as packet-
mode scheduling. Finally, Section VI is a conclusion.

Il. ASYNCHRONOUS OPERATION

In this section, we describe how to configure a bufferless
crossbar asynchronously for variable-size packets. Sgaity,
like in the original iSLIP [4], per-input and per-output irodr
robin arbiters compute bipartite matchings between carssb
inputs and outputs in three stepseguest grant, andaccept

The critical differentiation from iSLIP is that the arbiger Fi9- 1.

make scheduling decisions without being synchronized with
respect to each other, and new input-output matchings emerg
asynchronously.

We first describe some notation and assumptions that will be
used in the discussion to follow. I¥ is the size of the switch,
for 0 <4,j < N, VOQ;; denotes the VOQ corresponding to
outputj at inputi. Each input arbiter (or input for brevity’s
sake) submits requests to outputs corresponding to notlyemp
VOQs at this inputreg;; denotes a request signal from ingut
to outputj. Each output arbiter (or output) arbitrates between
received requests, grants a single request, and informs the
corresponding inpugrnt;; denotes a grant signal from output
j to input i. Each input arbitrates between received grants,
selects a single grant, and informs the corresponding gutpu
acpt;; (rjcti;) denotes an accept (reject) signal from input
to outputj.

The assertion of a request, grant, or accept signal is con-
sidered a zero-time asynchronous event. An arbitrationgs t
gered by a raised request or grant signal, and it is completed
in time 7. We consider the beginning of an arbitration period
an event having the lowest precedence among concurrently
occurring events. We call the interval” a scheduling (time)
window because an output and an input arbitration are needed
for a matching to be found. The scheduling window bounds
from below the supported packet size; the maximum packet
size on the other hand is unbounded.

We outline the switch operation describing an input and an
outputfinite state machine (FSM)

Inputi FSM 0 < j < N)
ldle State. As soon as a’OQ);; becomes non-empty,
input ¢ raises the request signakg;;. Requestsreg;;
remain raised until at least one of them is granted; then
inputi lowers allreg;; and transitions to thacceptstate
- see Fig. 1.
Accept State.In this state, input arbitrates among raised
grant signalsgrnt;; (grntin and grntip in Fig. 1). A
single grant is accepted dependent on the position of
an accept round-robin pointer, as in the original iSLIP;
the pointer is updated similarly to iSLIP. frnt;; is
accepted, input raises the accept signadpt,;; if grnt;;

©Copyright IEEE 2007 - to appear in Proceedings of HPSR 200G¢IByn, NY, USA, May 30 - June 1, 2007

IDLE ACCEPT XMIT

»le—le

%
IRNG
NG

%

'€q77 vOQ already
non-empty
reqr2
VOQs becoming oo
req13 non-empty
8474 vOQ already ot
non-empty
grnt11 C H
concurrent grants 4“
grnt12
grntrs late grant H

Hmatch found
acptr1

rict12 H

rict1s H

1 >

! }(_){ time

T

Example of the input state transitions in asynchusnscheduling.

Sy
% 4‘,{0 IDLE GRANT IDLE GRANT XMIT
%% (] | |

%

>e > |¢ 1 b

reqii

requests will be considered
in nxt decision, if still asserted

3

reqz1

reqst

req41

\

grnta1 H

—

grntay

rjicta1 H

H match found

acpt

>
time

Fig. 2. Example of the output state transitions in asynabusnscheduling.

is rejected, input raises the reject signaljct;;. Grant
signalsgrnt;; received in the middle of the arbitration
(grnt13 in Fig. 1) are registered and they are rejected
at the end of the arbitration. Inputtransitions to the
transmitstate when the arbitration is completed.
Transmit State. If grnt;; was accepted in thaccept
state, input starts forwarding the head packetl6OqQ);;.
Input i raises a request signatg;; for each non-empty
VOQ;; and transitions to thédle state one scheduling
window before the completion of the forwarding,

Outputj FSM 0 < i < N)

Idle State. Outputj remains in the current state until a
request signateq;; is raised; then it transitions to the
grant state — see Fig. 2.

Grant State. In this state, outputj arbitrates among
raised requestseq;;. A single request is granted depen-
dent on the position of a grant round-robin pointer, as
in the original iSLIP; the pointer is updated similarly to
iSLIP. If reg;; is granted, outpuj raises the grant signal
grnt;;. The output remains in thgrant state until signal
acpty; Of rjct;; is raised. It transitions to th&ansmit
state in the former case and to tite state in the latter

transmission space packet
packet k packet k+1

in3] I 1O [1 d
XMIT IDLE ~ACCEPT XMIT in2]) B g E—
>le ple >le [V W—] =] [
observe = select in0| O I . 1’0 |
grants grant Input - »>
assert T assert * N ime
i . N
\ input 2 releases input 2 requests output 2;
____fequests _______aceept ______ | output 2 no other input is idle so
l assert l input 2 is matched
grant i to output 2 again
select observe Output
Jl quest acptct) Fig. 4. Example of malicious traffic causing an asynchronpasket

XMITI GRANT ' XMIT scheduler to lock the crossbar in a fixed configuration. Assarhx 4 switch.
Input s is initially connected to output (for all 7 in [0,3]) and never switches
output in the future. The figure shows the 4 flows that are emtist served;
other flows with non-empty queues exist, but are never served

packet k ‘ packet k+1

B | time
2T
Fig. 3. Example of an input-output pair jointly passing thgb the FSM candidacies only for those inputs and outputs which aremot i
states in asynchronous scheduling. . . .
the middle of a packet-mode forwarding [5], [6]. The traffic
pattern shown in Fig. 4 would similarly lead a packet-mode
one scheduler to lock the crossbar in a fixed configuration — con-

Transmit State. Output j waits in this state until one sider time is now slotted and packets are integral multipfes
scheduling window remains for the completion of th&ells. Comparing our scheme to packet-mode scheduling, our

current packet forwarding; then it transitions to fioée scheme imposes a single additional constraint: when arubutp
state ’ (input) starts an arbitration, it further excludes candida for
. ' . . . those inputs (outputs) which are in the middle of an arbidgrat
Figure 3 depicts the state transitions of both an input andaip that tFi)me (Thig co)nstraint is meaningless in packet-mode
output in a typical case of successful matching on first.tri cheduling because inputs and outputs arbitrate in syngrho

Note that an input receives no grants in ttransmit state ; . .
.) . " Starvation-free operation can be guaranteed in a brute-
because it aborts all its requests when it transitionacicept . L . :
force way. Enforcing an output to remain idle until active

and it issues no request in thansmitstate. With this design .
. : . flows not served for a long time are served, we guarantee
choice we save switch throughput because an input can acceg\lﬁlow is left indefinitely unserved. If the inter-serviceng

. X) N
;grgrt?]r;ti;;;hﬁrﬁs{g':Vjéag?'stiagt]eormsjt’stvv\\llguf;?]gsgt't%n%nterval indicating starvation is long enough, we exped th

! put ; P l}?woughput loss from the idling output to be negligible. $am
conflgurt_ad. AISO hotice that since outputs do not sync_hmnllz chniques have been investigated in [13]. Due to space
the|r arbitration, when some of ”“?m gran_t the same m.pUt’c'onstraints, in this paper we restrict our study to the tghput
is likely that some grants will be raised while the arbitatat asvnchronous scheduling mav offer and to a comparison
the input has already been triggered. The input, henceivesce y 9 Y P

grants in theacceptstate although, being already arbitrating, iPetween asynchronous scheduling and synchronous packet-

cannot accept them. Because of causality (the outcome of.nglﬂde scheduling. Issues related to starvation will be etlidi

arbitration cannot be known in the beginning of the arhitrat ifmore depth in future wofk
we cannot prevent the late grants from being raised. A simila

s S " V. OBSERVATIONS FROM SIMULATION
problem appears when pipelining the decisions of tradtion

synchronous schedulers [12]. This section describes observations from simulation. We
present the simulation environment and the numerical tesul
I1l. FAIRNESS in the next Section V. In the discussion to follow, we assume

Assuming all inputs have queued packets for all outputs, #fiform traffic and we distinguish between two cases: (i)
output sees requests of and arbitrates among only thostsingiyerage packet size is many scheduling windows, and (ii)
which are neither in the middle of an arbitration, nor in th@verage packet size is few scheduling windows.
middle of a packet forwarding. It may happen that each time In both of the above cases, under light load outputs are idle
an output starts an arbitration (transitions to gnant state), a most of the time, and inputs are connected to outputs almost
fixed subset of the inputs have already started their atinitra &S soon as they request them. Under heavy load, however,
(already in theacceptstate), or they are in the middle of acontention becomes heavy, and the operation of the switch
packet forwardingttansmit state). The output, then, sees nélepends on the packet size distribution of the workload.
requests from these inputs, and flows from these inputs toWhen average packet size is large, connections emerge
this output starve. Figure 4 shows an example traffic pattéfnerementally until all inputs are eventually connectedhwi
causing the above situation. Symmetrically, an input magne
accept grants from a fixed subset of the outputs. Swe mentiqn that, as was ;hown in [11_], buffered cr_ossbars aib n

A synchronous packet-mode scheduler similarly Suﬁesuffer from this starvation situation because input-otutmatchings are not

-)) i . Fl%cessarily bipartite. More clever solutions to the st@waproblem could
from starvation because, during each cell-time, it considebe based on this observation.

(©Copyright IEEE 2007 - to appear in Proceedings of HPSR 20030I8yn, NY, USA, May 30 - June 1, 2007 3

output0 _ inputo \ inputo —] outputd—input 0 input 0 [Gubbley — B
xmissions xmissions
outputl inputl bubble inputl — i outputl — [input 1 input1 |-
>«
% %
NG X A X _ e 1A X I A X | A _
S >le—>le—>i< S PP D] i
regoo 0 reqo [L L T L 0
reqo1 — reqor g
X I A X inputs I A X I AX inputs
>ie Ple—rie | [P >
reqio -] 1 reqio - [L]] 1
reqii _ requa] _
X G X _ G X G G X G G _
Sle e 1< > —>ie >
grntoo n] 0 grntoo — n n— 0
grntip lowered grntio 1 1
X G G X outputs G G X G G X G outputs
>ie »ie »ie —le—| [—Ple—> l—>i
grnto1 n] 1 grnto1 — I L 1
grnti1] _ grnti1] N _
\é\é\éﬂé\ 1 1dl | | | | | | | | | | | 1 1dl
e TT T T T T T T T'7T : Idie
‘(?‘ﬁ)‘ G: Grant G: Grant
1 ; L . 1
I U T —» | A: Accept I —» | A: Accept
to t1 t2 t3 ta ts te time 5 time .
X: Transmit X: Transmit

Fig. 5. Example of conflicting output decisions in asynclogs scheduling Fig. 6. Example of grant pointers moving in lock step in asynoous
when a pair of connections are torn down close in time witlpeesto each scheduling. Assume 21x 2 switch, packet size i$.0257" x R, and all inputs
other. We show a pair of connections; we assume the rest ahfhags and request all outputs. If the grant pointers of both outputstpto input 0 at
outputs remain connected in the shown time interval. Thenection from some point in time, they keep moving in lock-step and thrqughs lost.
input O to output 0 terminates at timg; the connection from input 1 to output grnto: is always raised later thagrntoo, it is, hence, always rejected, and
1 terminates at times, with 0 < t5 — ¢4 < T'. Inputs 0 and 1 raise requestsinput 0 cannot be connected to output 1 (the rejected gramtsslaaded);
to both outputs at timey = t4 — 27 andty = t5 — 2T > to respectively; we grntio is always raised later thagrnii1, it is always rejected, and input
assume packets for both outputs are queued at the inputshvghrealistic 1 cannot be connected to output 0. The grant pointers keepnmav lock
under heavy load and uniform traffic. Output O starts artiitgaat timetg step until VOQqoo or VOQ11 drains. Notice that due to this behavior the
seeing only the request from input O, and grants again inpatttinets = VOQs grow up non-uniformly, and the grant pointers are pr@e from
to + 7. Output 1, on the other hand, starts arbitrating at ttmeseeing the desynchronizing as in the original iSLIP. Also notice thatpackets had
requests from both inputs 0 and 1. Output 1 had previouslgtgdainput 1, the minimum size, the output arbiters would always startr thebitration
thus, it grants input O at times = ¢; + 17" > t2. Input O accepts output concurrently, and their grant pointers would desynchmrg in the original
0, since the grant from output 0 was asserted first, and sefmatput 1 at iSLIP.

time t4 = t2 + T. A new connection from input O to output O is configured

at that time. Output 1 remains idle until timg = ¢4 + 27". When packet

size is large, this problem affects performance only unberheaviest of the ;
loads, because the time an output remains idle is negligibfepared to the we show that the throthpUt loss oceurring when the outputs

packet time. Note that in synchronous operation, packetsidvbe padded, fail t0 switch inputs, results to an increase in packet delay
and connections would terminate concurrently; outputs @ Awould start |oads greater than 97%. We also show that, as a result of the

their arbitration concurrently, they would both see retmé&om both inputs, ; ; : ; ayu
and they would switch inputs with no throughput loss. Of seurthere is degeneration described above, the reconfiguration fr en

throughput loss due to padding bytes; in our evaluationti@ed/)we factor Of the crossbar is significantly reduced when packet size is
this loss out. large.
When average packet size is comparable to the scheduling

time window, on the other hand, the grant pointers tend to
an output. In the general case, two or more packet tranfiove in lock-step, and performance degrades. We explain
missions rarely finish concurrently. Instead, (a) withineonhow in Fig. 6, which extends the scenario of Fig. 5. In the
scheduling window before, or after, the completion of a gacknext section, we show that when average packet size is close
forwarding, no other forwarding is complefecor, (b) few to the minimum, the saturation throughput of asynchronous
other transmissions are completed. In case (a), if there &gheduling and of plain synchronowsind-robin matching —
packets queued in the corresponding VOQ, the same inpRRM[4] are almost the same.
output connection is re-configured as was shown in Fig. 4
and Fig. 3. In case (b), the released outputs attempt to flswitc
inputs, but they fail, throughput is lost due to conflicing We used event-driven simulation to model our scheme,
output decisions, and the same connections are re-cordiguféich we compare to packet-mode scheduling. We modeled
with high probability. We explain how in Fig. 5. Underthe packet-mode scheduler described in [5] using slottad-t
heavy load, it is, thus, likely that asynchronous schegufex Simulation.
configures the same connection for as long as there are packetn our workload, packet size granularity was25 schedul-
queued in the corresponding VOQ. Asynchronous scheduliiig windows (2T) for asynchronous schedufingackets were
degenerates to a@xhaustive servicdiscipline [13]. When the integral multiples of cells for synchronous scheduling. We
VOQ drains, the corresponding input and output remain idfactored-out the padding overheads incurred by synchmnou
for a short period of time, and switch to the output and inp@peration in order to compare pure scheduling efficienay; th
that finish their packet forwarding first. In the next Sectign latter assumption clearly favors the synchronous system.

V. PERFORMANCE EVALUATION

“Minimum IP packet size is 40 bytes. Then, with 2T=40 byteetimwe
6This is also the case for packet-mode scheduling. have 1-byte granularity.

(©Copyright IEEE 2007 - to appear in Proceedings of HPSR 20030I8yn, NY, USA, May 30 - June 1, 2007 4

100000 ¢

10000 ¢

Asynch - trimodal pck size —8—

Synch - trimodal

Asynch - uniform

Synch - uniform

R

—_——

100000

10000

1000

100

10

1000 ¢

1k

Average Packet Delay (2T)
Average Packet Delay (2T)

1.025TxR —8—

Constant pck size,

Uniform pck size, [TxR, 2TxR] —e—
1 1 1 1 1 1 1 1 1 1 1
0.98 1 0 0.2 0.4 0.6 0.8 1

Input Load

Fig. 8. Saturation throughput of asynchronous schedulindeu uniform
traffic and pathological packet size conditions.

100

1 1
0.94 0.96
Input Load

Fig. 7. Packet delay of asynchronous and synchronous slahgdunder
uniform traffic and trimodal, or uniform packet size.

1 1
0.90 0.92

We run all simulations until the simulated time becamef the link capacity in the first case, and to 78% in the second
greater than at leastx 10° x N scheduling windows, where case. The reason for the performance degradation is theeail
N is the switch size. We assumed one scheduling time wind@#the grant pointers to desynchronize, as we explainedgn Fi
coincides with one cell time. We considered the switch sate-
rated when the total backlog at any input port became greater) Virtually large packets\We can improve performance by
than25 x 10% x N scheduling windows. Fabric size was alwaysirtually increasing the size of the external packets. Shvit
16 x 16. ing multiple small packets each time when an input-output
First, we studied performance under uniform traffic in termsonnection has been configufade get saturation throughput
of average packet delay. We defined average packet delayckse to 100%, as in Section V-A.2 — average packet size
the time interval between the moment the first byte of a packeas well above 10 scheduling windows in the experiment
starts entering the switch to the moment its first byte sta$ Section V-A.2. The method we propose is similar to the
departing averaged over the number of packets. We reperéthod proposed in [15], [10]: when the occupancy of a VOQ
packet delay in number of scheduling windows. When thexceeds a threshold valu@ x (27 x R), @ is an integer
switch is saturated, packet delay is considered infinite. greater than zero, the packets at the head of the queue whose
cumulative size exceeds the threshold value appear in the

o))) ~scheduler circuit as a single external packet with size lequa
1) Minimum-size packetswe considered Poisson arrivalgg the cumulative size of these packets; if the occupancy of

of minimum-size packets for asynchronous scheduling agdyoQ is below the threshold value, the boundaries of the
i.i.d Bernoulli arrivals of cells for synchronous schedgli internal packets coincide with the boundaries of the extern
We found that asynchronous scheduling is marginally mogg ckets. Simulation results for various valuesbfre shown
efficient under loads less than 0.5, while at heavier loads t Fig. 9; packet size i$.0257 x R. Note that forQ = 1 we get
delay curves of the two systems match. (see 3heP curve he paseline system. Also observe that for value§ afreater
in Fig. 5 of reference [4].) _ or equal to 8, we get switch throughput near 100%. Delay
2) Variable-size packetsWe repeated the previous eXincreases withQ because a€) increases, a greater backlog is
periment assuming that external packets have variable siz&ired for the switch to start operating efficiently.
For asynch_ronous scheduling we con;idered Poisson pack) Crossbar reconfiguration probabilitytWe measured the
arrivals, while for synchronous scheduling we assumedeack,sspar reconfiguration probability as the probabilityimn
arrivals are decided by an ON-OFF model, as in [6]. Wyt switches output in its next scheduling decision. Figure
gxperlmented with trimodal and uniform packet size. In thgy spows the crossbar reconfiguration probability for asyn-
first case, 60% of the packets had siZB x R (1 cell for - ¢chronous and synchronous scheduling under minimum or
synchronous scheduling), 2098.8T x R (15 cells) and 20% imodal packet size. When load is low, VOQs are empty, and
75T x R (38 cells); this packet size distribution resembles thge probability equals the probability a packet arrivingaat
respective one in real-world IP networks [14]. In the lattghpyt is destined to an output different than the output the
case, packet size was uniformly distributed betwe@nx< 2 previous packet at this input was destined to. As load irsasa
and 757 x R. Figure 7 shows the simulation results. WQ/OQS become backlogged, and the probability depends on
observe that for loads up to 97% the delay curves of thge packet-size distribution. When packet size is minimum,
two systems almost match. For greater loads, however, pagkgi asynchronous and synchronous scheduling reduce to the

delay increases significantly in our system. The reason W&gginal iSLIP. Under heavy load, iSLIP degenerates to time
explained in Fig. 5.

3) Corner packet-size condition&ig. 8 plots the saturation 80ne could argue that then the padding overheads are négligitd, hence,
throughput of asynchronous scheduling when packet SizeOWs scheme loses its advantage over synchronous schedUlingis correct
constantl.0257 % R. or uniform betweer x R and2T x R only when traffic is uniform. Consider the scenario desctibe[15] (Section

_ 1), where many light flows are never backlogged, and steadlvédth through
We observe that the saturation throughput now drops to 63f4ding bytes from a heavy flow.

A. Uniform traffic

(©Copyright IEEE 2007 - to appear in Proceedings of HPSR 20030i8yn, NY, USA, May 30 - June 1, 2007 5

100000 F———T—T—T—T—T—T T

10000

1k 4

2
£
o 8
N o
g I 08 | LN b
g“j 1000 | 1 s L Asynch - min pck size, Q=1 —e— ™.
P g L i " 4
% 100 F] é 0.6 i Synch-m|‘n —_—]
& £ Asynch - trimodal, Q=1 —— .
S 10 | 4 § 0.4 I Synch - trimodal —a— P
g 5 [Asynch - trimodal, Q=16 ---a--- [
z 1 b] 2 02| -
g L]
g L 4
1 1 1 1 1 1 1 1 1 1
0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.4 0.6 0.8 1
Input Load Input Load
Fig. 9. Saturation throughput of asynchronous schedul@ &unction of Fig. 10. Crossbar reconfiguration frequency with asynobmenand syn-
the threshold value. Traffic is uniform and packet sizé.&57 x R. chronous scheduling under uniform traffic and minimum, onadal packet
size.

division multiplexing, and, hence, the crossbar reconéian
probability equals 1. When packet size is trimodal, the re-
configuration probability is significantly reduced and aguse
almost the same for both asynchronous and synchronous
scheduling. This is reasonable since for both schemes the sa
connections are maintained for multiple scheduling winslow
as explained in sections lll, IV. The probability is further
reduced applying the method described in Section V-A.4.

B. Unbalanced Traffic

We modelled unbalanced traffic based on the Zipf's laj/9: 1 ughput
ipf) traffic. Packet size is trimodal.

as suggested in [16]. Figure 11 plots the attainable swit
throughput as a function of the Zipf ordér Asynchronous
scheduling reaches the same throughput with synchronoH;?
scheduling. Throughput increases with the threshold value
@ because the crossbar reconfiguration frequency is furthf‘lr]
reduced agy increases, and the scheduling task is furthe
simplified.

(5]

VI. CONCLUSION

10 @

0.96 |

Asynch - Q=64 —e—
Asynch - Q=16 —e—]
Asynch - Q=01 —=—

0.92 |

Switch Throughput

0.88 |- Synch —_

Zipf Order, k

Switch throughput of asynchronous scheduling unaalanced

T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “Higleespb switch
scheduling for local-area networksCM Trans. on Computer Systems
vol. 11, no. 4, pp. 319-352, Nov. 1993.

N. McKeown, “The iSLIP scheduling algorithm for inputigued
switches,”I[EEE/ACM Transactions on Networkingol. 7, no. 2, pp.
188-201, 1999.

S. H. Moon and D. K. Sung, “High-performance variabledéh packet
scheduling algorithm for IP traffic,” iHEEE GLOBECOM November
2001.

We proposed and evaluated bufferless crossbar switchg$ A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F.iN&acket-

operating directly on variable-size packets under thettation
of an asynchronous crossbar scheduler. The operation-elinf,}]
nates packet reassembly and allows for cut-through, like th

mode scheduling in input-queued cell-based switché&EEE/ACM
Transactions on Networkingrol. 10, no. 5, April 2002.

J. Hurwitz and W. Feng, “Initial end-to-end performaneealuation of
10-gigabit ethernet,” iINEEE Hot Interconnects XIAugust 2003.

synchronous packet-mode operation does, while at the sar$ S lyer, R. Kompella, and N. McKeown, "Analysis of a memor

time, as opposed to the packet-mode operation, it relieoes f

cell-padding overheads and the associated crossbar gpeed
requirements. The proposed operation may yield throughput
close to 100% under a range of traffic patterns, and hgs
common performance characteristics with the packet-mode
operation. (11]

ACKNOWLEDGEMENT (12]

This work was supported by the European Commission in
the context of the SARC (Scalable Computer Architecturg)?’]
integrated project #27648 (FP6), and the HIPEAC network of
excellence. [14]

REFERENCES (15]

[1] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, ant¥l. Horowitz,
“The Tiny Tera: A packet switch core,” irlot Interconnects VAugust
1996.

[2] Cisco 12000 Series Router€isco 12008 and Cisco 12012 Routers.
http://www.cisco.com/en/US/products/hw/routers/p&16

[16]

©Copyright IEEE 2007 - to appear in Proceedings of HPSR 200GoIByn, NY, USA, May 30 - June 1, 2007

architecture for fast packet buffers,” Rroceedings of IEEE HPSRlay

2001.

M. Katevenis, G. Passas, D. Simos, |. Papaefstathiod, inChrysos,
“Variable packet size buffered crossbar (CICQ) switchesJEEE ICC,

June 2004.

] M. Katevenis and G. Passas, “Variable-size multipacéegments in

buffered crossbar (CICQ) architectures,”IEEE ICC, May 2005.

G. Passas and M. Katevenis, “Packet-mode schedulinguifered
crossbar (CICQ) switches,” ilEEE HPSR June 2006.

P. Gupta and N. McKeown, “Design and implementation ofaat
crossbar schedulerfJEEE Micro, vol. 19, no. 1, pp. 20-28, Jan.-Feb.
1999.

Y. Li, S. Panwar, and H. J. Chao, “Performance analyés @ual round
robin matching switch with exhaustive service,” IREE Globecom
November 2002.
Cooperative Association
http://www.caida.org.

K. Kar, T. Lakshman, D. Stiliadis, and L.Tassiulas, tReed complexity
input buffered switches,” itHot Interconnects VI1i12000.

I. Elhanany, D. Chiou, V. Tabatabaee, R. Noro, and A.rRepanj, “The
network processing forum switch fabric benchmark spetifina: An
overview,” IEEE Network vol. 19, no. 2, 2005.

for Internet Data Analysis

