
Approaching Ideal NoC Latency with Pre-Configured Routes

George Michelogiannakis1, Dionisios Pnevmatikatos2 and Manolis Katevenis1

Institute of Computer Science (ICS)
Foundation for Research & Technology - Hellas (FORTH) – member of HiPEAC

P.O.Box 1385, Heraklion, Crete, GR-711-10 GREECE
Email: {mihelog,pnevmati,kateveni}@ics.forth.gr

Abstract

In multi-core ASICs, processors and other compute en-
gines need to communicate with memory blocks and other
cores with latency as close as possible to the ideal of a direct
buffered wire. However, current state of the art networks-
on-chip (NoCs) suffer, at best, latency of one clock cycle
per hop. We investigate the design of a NoC that offers
close to the ideal latency in some preferred, run-time con-
figurable paths. Processors and other compute engines may
perform network reconfiguration to guarantee low latency
over different sets of paths as needed. Flits in non-preferred
paths are given lower priority than flits in preferred ones,
and suffer a delay of one clock cycle per hop when there
is no contention. To achieve our goal, we use the “mad-
postman” [5] technique: every incoming flit is eagerly (i.e.
speculatively) forwarded to the input’s preferred output,if
any. This is accomplished with the mere delay of a single
pre-enabled tri-state driver. We later check if that decision
was correct, and if not, we forward the flit to the proper
output. Incorrectly forwarded flits are classified as dead
and eliminated in later hops. We use a 2D mesh topology
tailored for processor-memory communication, and a mod-
ified version of XY routing that remains deadlock-free. Our
evaluation shows that, for the preferred paths, our approach
offers typical latency around 500 ps versus 1500 ps for a full
clock cycle or 135 ps for an ideal direct connect, in a 130
nm technology; non-preferred paths suffer a one clock cy-
cle delay per hop, similar to that of other approaches. Per-
formance gains are significant and can be proven greatly
useful in other application domains as well.

1also with the University of Crete, Dept. of Computer Science, Herak-
lion, Crete, Greece

2also with the Technical University of Crete, Dept. of Electronic and
Computer Engineering, Chania, Crete, Greece

1 Introduction

Networks-on-Chip (NoCs) are key components of the
emerging Systems-on-Chip (SoCs). As SoCs grow in area,
complexity and functionality, so do their communication re-
quirements in terms of performance (latency and through-
put) and number of interconnected components. Reducing
NoC latency is crucial for SoC performance, since it is in-
troduced to every communication pair within the SoC. La-
tency may become vital in the case of real-time SoCs. It
may also play an especially important role in the case of
processor units communicating with other processor units,
local memory, shared memory or cache blocks. In this pa-
per, we propose a NoC with latency close to the ideal,i.e.
that of long buffered wires. We examine our proposal in a
chip consisting of many processor units and RAM blocks.
However, our ideas are general and can be easily adapted to
other NoC styles.

We achieve low latency communication by defining and
differentiating pre-configured preferred low-latency paths
adapting the “mad-postman” [2, 5] technique proposed two
decades ago for inter-chip communication networks. Pre-
ferred paths are formed by pre-driving tri-state select sig-
nals within a switch. Therefore, flits will be eagerly (i.e.
speculatively) forwarded to their input’s preferred outputs.
Preferred path delay per hop is solely that of a pre-enabled
tri-state driver. Pre-enabling is crucial because these con-
trol signals fan out to many bits, thus driving them incurs
considerable delay.

Packets may consist of a single or multiple flits [11].
Flits that are eagerly forwarded to a wrong switch output
are terminated later in the network as “dead” flits. They
are forwarded to their correct output at a lower priority than
flits which originate from the input having this output as
preferred (if any), and suffer a latency of one clock cycle
when there is no contention.

In order to provide preferred paths with flexibility and to
be able to distinguish incorrect eager forwarding, we utilize
a modified version of XY routing which remains deadlock-

c©Copyright IEEE 2007 - to appear in Proceedings of NOCS 2007, Princeton, NJ, USA, May 7 - 9, 2007 1

free. According to it, a flit is considered to have been cor-
rectly eagerly forwarded if it moves closer to its destination
in any of the two axes. A flit is considered dead if the dis-
tance between it and the destination increased in any of the
two axes with its last hop. This way, we can easily distin-
guish an incorrect eager flit forwarding, as well as a dead
flit in the network.

Network reconfiguration is possible at any time by any
processing element (PE) or other user block in the network.
It is accomplished by sending specially formatted single-
flit packets to the switching nodes that need to be recon-
figured. Reconfiguration can be requested at any time, but
is carefully applied to the switching node to prevent out-of-
order delivery of flits belonging to the same packet. Dealing
with out-of-order flit delivery complicates the NoC inter-
faces and is rarely allowed in NoCs.

To fully exploit the mad-postman technique and ensure
its proper operation, we take a slightly different approach
for switching node architecture than most past research.
Our switch resembles a buffered crossbar [8], having one
FIFO at each crosspoint and schedulers at each output. The
scheduler monitors the FIFOs and the preferred path, and
determines which FIFO it can serve next, if any. At each in-
put a combinational routing logic determines if the incom-
ing flit needs to be forwarded to a non-preferred output. If
so, it enqueues the flit in the appropriate crosspoint FIFO.

We evaluate our proposed approach on a 2D mesh topol-
ogy [3] tailored for our target application,i.e. processors
communicating with RAM blocks. We attempt to minimize
the number of switching nodes as well as the NoC over-
head by placing one switching node per 4 RAM blocks.
The RAM blocks are placed without any free space between
them, essentially forming a bigger block. We also investi-
gate floorplan options for our switching nodes by evaluat-
ing two different shapes (rectangular and cross-shaped), and
outline some modifications to our switch to further reduce
occupied area. Topology and floorplan choices, however,
do not affect our low-latency contribution and are made ac-
cording to application and optimization needs.

Simulation results show that, in a 130 nm technology,
our design functions at 667 MHz under typical case condi-
tions. It offers preferred path latency of approximately 360
ps per hop that increases to approximately 500 ps per hop
when taking into account an 1 mm long wire at each out-
put. This is compared to 135 ps latency for straight buffered
wires of a similar length that offer no configuration or rout-
ing capability. Non preferred path latency is one clock cy-
cle when there is no contention. Our base switching node
design, for 39-bit wide datapaths, occupies an area of 637
µm× 310µm when its floorplan is rectangular. We believe
that our proposed NoC concept is the means to approach
the ideal latency as closely as possible. It may also be com-
bined with orthogonal past NoC research to further improve

performance as well as other aspects.
The rest of the paper is organized as follows: Section 2

provides a summary of past NoC research. Section 3 ex-
plains the mechanism for pre-configured low latency paths.
Sections 4 and 5 present our proposed switch architecture
and describe our NoC’s topology. Section 6 presents our
placement and routing results, and section 7 identifies room
for future work. Finally, section 8 provides our conclusions.

2 Related Work

Research has examined performance-enhancement tech-
niques [6, 7, 9]. These approaches are based on pre-
computing routing, virtual channel (VC) allocation, and ar-
bitration decisions, as well as speculative pipelines to min-
imize deterministic routing latency. Implementations of
these approaches with VCs and various datapath widths are
able to function with a clock frequency of around 500 MHz
in technologies ranging from 70 nm to 130 nm. While these
approaches can yield per hop latency of one clock cycle,
this latency is not guaranteed. These designs suffer higher
penalties from contention and blocking delays, that signifi-
cantly increase latency. Moreover, one clock cycle per hop
is their minimum possible latency, while our proposed NoC
provides constant minimum per-hop latency, independent
of the clock period. Asynchronous approaches achieve 2 ns
per hop [1] for highest-priority flits.

Finally, routing algorithms have also been proposed.
Many recent NoCs utilize adaptive routing algorithms [4,
12], to route around congested or other problematic ar-
eas according to some criteria. As explained in subsec-
tion 3.4, our NoC implements a deterministic routing al-
gorithm. Flexibility in preferred paths is already provided.
The implementation of adaptive routing algorithms for non-
preferred paths is left as future work.

3 Preferred Paths

3.1 Mad-Postman

Mad-postman [2,5] was introduced in inter-chip packet-
switched communication networks. It offered minimal per-
hop latency by eagerly forwarding an incoming flit to the
same direction in the same axis that it entered the switch
from. There was no logic or delay during this forwarding
more than that of simple multiplexor or tri-state cell. In-
coming flits were also stored in the switch for checking that
they were correctly eagerly forwarded. The network strictly
followed XY routing algorithm. Thus, a flit was regarded as
correctly eagerly forwarded if it followed XY routing. Flits
which were incorrectly forwarded remained in storage in
the switch and were later sent to the appropriate output. We
find that this concept can be applied to NoCs.

c©Copyright IEEE 2007 - to appear in Proceedings of NOCS 2007, Princeton, NJ, USA, May 7 - 9, 2007 2

3.2 Preferred Paths

The original mad-postman strictly followed XY routing.
Therefore, a flit would suffer a routing logic and buffering
penalty once at its final hop (in order to be ejected to the
local PE output), and possibly once more when it changed
axes when traversing the network. We would like our NoC
to be able to provide complete paths with the minimum per-
hop latency. Moreover, we would like to provide the flex-
ibility to change those paths at run-time to meet various
application demands, such as a processor allocating more
RAM blocks for itself. To meet these goals, we introduce
preferred paths.

Each input is directly connected to a tri-state buffer at
each other port’s output. Each output has at most one pre-
ferred input. That input’s tri-state driver is pre-enabled.
Therefore, an incoming flit to that input would be eagerly
forwarded to each output having this input as preferred.
This is achieved solely with the delay of a pre-enabled tri-
state driver. Note that an input may have multiple pre-
ferred outputs. Thus, preferred paths can fork and simu-
late a broadcast network if so desired at run-time. However,
preferred paths may not converge as only one tri-state may
safely drive a wire at any time.

Each input also features a combinational routing logic
that examines each incoming flit and determines whether
it must be forwarded to an output other than the preferred.
If so, it enqueues it in the appropriate crosspoint FIFO to
be later forwarded by that output’s arbitration logic. A flit
needs to be forwarded to an output if it was mistakenly ea-
gerly forwarded. Later hops regard that flit as dead.

Dead flits are not forwarded to any output by the rout-
ing logic. They propagate through the network in preferred
paths until they reach an input with no preferred outputs.
Then, they are either terminated or forwarded in XY manner
and possibly enter a circle, as discussed in subsection 3.6.
Dead flits occupy resources and therefore may be a nui-
sance. However, previous research indicates that this effect
does not reduce the performance of the network beyond that
of virtual cut-through or wormhole networks [5]. If fair ar-
bitration is desired without demands for very low latency at
some part of the network, that part can be reconfigured to
remove any preferred outputs from switch inputs.

3.3 Packet Format

Packets may consist of a single or multiple flits, in the
manner described in [11]. Single-flit packets are used for re-
configuration and read requests. Multi-flit packets are used
for transferring multiple words of data to write to a RAM,
or from a RAM as a reply to a read request. Flits feature 6
packet ID and 1 flit type control bits. The flit type bit marks
the initial flit of a packet as request (single-flit packet) or

address, and thereafter data flits with the same packet ID as
body or tail. The 32 payload bits contain data in the case of
data flits and destination address, byte enables and packet
type in the case of address or request flits. Each switch is
identified by unique X,Y coordinates. The flit’s final des-
tination is determined by two extra bits specifying the user
block among the 4 the switch is connected to.

The initial flit of a packet is an address or request flit.
Data flits in the same packet have the same ID and will
be treated by each switch as the corresponding address flit
was. Since flits are eagerly forwarded without being able
to process their headers, all flits in a packet will be incor-
rectly eagerly forwarded in the same way throughout the
network. The same applies to the duplicate flit complica-
tion, explained in subsection 3.5. Attempting to do other-
wise would require combinational logic in preferred path
hops, and thus would dramatically increase per-hop latency.

3.4 Routing

Based on our need to accurately classify flits as dead,
we choose to implement a deterministic routing algorithm.
Non-deterministic (adaptive) routing algorithms introduce
the uncertainty in dead flit classification. This is due to
the fact that conditions, and therefore adaptive routing de-
cisions, are subject to change at any time. Therefore, the
switch currently examining a flit is unsure if the flit’s previ-
ous hop regarded this switch as the best next hop at the time,
or if the flit was incorrectly eagerly forwarded. Since mak-
ing switches aware of neighbouring network configuration
is too costly, we adopt a deterministic routing algorithm.

As a result, we chose a slightly modified version of XY
routing. XY routing instructs a flit to first complete its
movement in the X axis, and then switch to the Y axis to
reach its destination. Our NoC follows this routing algo-
rithm, but is more flexible in allowing eager forwardings
that do not adhere to strict XY routing. Specifically, a flit
is considered to have been correctly eagerly forwarded, and
therefore is not forwarded to another output by the switch,
simply if it is approaching its destination in any of the two
axes. This may result in a flit reaching its destination via a
route that does not comply with strict XY routing.

In the example Figure 1 illustrates, the flit arrives from
source S to destination D solely through preferred paths
(solid lines). Switch A sees that the flit approached des-
tination D in the Y axis, and therefore regards this eager
forwarding as correct. XY routing would have the flit pass
through non-preferred paths (dashed lines) and switch di-
mensions at node B, after having fully completed its traver-
sal in the X axis. Because we would like to provide pre-
ferred paths with full flexibility, and also because disallow-
ing these paths by forwarding flits again in non-preferred
paths introduces an unnecessary overhead, we choose to

c©Copyright IEEE 2007 - to appear in Proceedings of NOCS 2007, Princeton, NJ, USA, May 7 - 9, 2007 3

modify our XY routing algorithm accordingly. Similarly,
a flit is considered dead simply if it moves away from its
destination in any of the two axes.

S A B

D

b

c
1

a

3

2

Figure 1. Correct eager forwarding scenario
that does not comply with strict XY routing.

3.5 Duplicate Flits

Due to the above mechanisms, our NoC faces the com-
plication of multiple copies of the same flit reaching their
destination via different routes. An example of such an oc-
currence is illustrated in Figure 2. In that example, the flit
leaving source S will be eagerly forwarded via the preferred
path (solid lines) until it reaches destination D. However,
switch A will regard this eager forwarding as mistaken,
since it has no preferred path knowledge for its neighbours
and the flit’s distance from destination D increases in the Y
axis. Therefore, it will forward another copy of the flit to
destination D via non-preferred paths (dashed lines). Du-
plicate flits must be handled at the network interface logic
of the blocks. Network interface issues are addressed in
subsection 5.1.

S

A D

1

2

 3 4

 5

b c

Figure 2. Duplicate flit scenario.

3.6 Deadlock-Freeness

XY routing is deadlock-free [10]. Therefore, deadlock
hazards in our NoC are introduced by preferred paths since
they do not necessarily follow XY routing and flits propa-
gate in them without any control. Since preferred paths do
not content for resources and our NoC follows XY routing
otherwise, no flits will indefinitely wait to be served. To
guarantee this, a switch needs to be able to serve FIFOs,
and therefore resolve contention, if the preferred path has
been continuously active for an unreasonably long period of
time with a FIFO non-empty. FIFOs are then served until

all are empty. During this time, flits arriving in the broken
preferred path will be enqueued in the appropriate FIFO be-
hind previous flits of the same packet. However, we need
to investigate the possibility of a flit traversing the network
indefinitely. We combat this issue in two ways.

First, we provide constraints which, if followed, guaran-
tee that no flit will indefinitely travel through the network.
If all preferred paths in the NoC are straight lines, flit prop-
agation follows strict XY routing. Therefore, every turn is
handled by routing logic and flits cannot enter a circle. This
is the case with original mad-postman networks [2,5].

Flits cannot enter a circle also in the case of preferred
paths having exactly one turn. In this case, circles are
formed by four different preferred paths. Therefore, a flit
would be examined by routing logic four times before com-
pleting a single loop. At these times, the flit will either be
considered dead, or it will be propagated according to XY
routing. Therefore, in two out of the four checkpoints the
flit will be forwarded according to the circle. However, in
at least one of the other two it will be forwarded in the other
axis and leave the circle.

Preferred paths with two turns may form a circle if the
two routing logic checkpoints forward the flit according to
the circle. Therefore, if preferred paths in our network con-
tain up to one turn, no flits will indefinitely propagate in
circle. This restriction does not take into account turns with
switch data ports, as they cannot be part of a circle.

Second, we investigate the consequences of a formed cir-
cle. As already described in subsection 3.4, each switch in
the circle will examine if the preferred path forwarding was
correct and forward a copy as necessary. This guarantees
that a copy of the flit in the circle will be delivered to its
destination. The flit will continue to propagate inside the
circle. Other flits contenting for occupied resources will be
forced to wait. If the flit in the circle propagates such as
the preferred path is not idle at any clock cycle, contenting
flits will face an increased queueing delay. However, as al-
ready described in the beginning of this subsection, content-
ing flits will eventually be served. This poses a performance
issue, but no deadlock will occur. When FIFOs are served,
the flit in the circle will be examined by routing logic and
therefore may be terminated as dead.

3.7 Reconfiguration

Reconfiguration of our network’s preferred paths con-
sists of changing outputs’ preferred inputs in the appropriate
switches. Any PE or other user logic block can request re-
configuration by sending properly formatted single-flit con-
figuration packets. These packets contain the destination
node, the output to be reconfigured, and the new preferred
input. Configuration flits are enqueued in the appropriate
crosspoint FIFO of their destination, even if that flit follows

c©Copyright IEEE 2007 - to appear in Proceedings of NOCS 2007, Princeton, NJ, USA, May 7 - 9, 2007 4

a preferred path. When the configuration flit is selected by
the output’s arbiter, it is stored in the output’s configuration
register which stores the active configuration, instead of be-
ing forwarded to the next hop.

If we were to immediately alter the tri-state enable sig-
nals, we would risk out-of-order delivery of flits belong-
ing to the same packet. Consider the example of Figure 3.
Switch S transmits a packet to destination D. The initial flit
(flit I) is constantly in non-preferred paths (dashed lines),
and therefore is forwarded at every hop by XY routing logic.
If a user block in the network was to reconfigure switch A
to select input 1 as preferred for output port 2, later flits (flit
II) would now reach destination node D via a preferred path
(solid lines). Therefore, if flit I is in transit and switch A is
reconfigured before the last flits of that packet reach it, those
last flits could reach destination D before the first flits.

S A

D

1
2 I

II

Figure 3. Out-of-order delivery scenario.

Because out-of-order delivery of flits belonging to the
same packet can be a nuisance for destinations and also be-
cause address flits must always precede the corresponding
data flits, it must be prevented by our NoC. This can be
accomplished by delaying the application of the new con-
figuration for each output until it is safe. Specifically, once
a new configuration is received at an output, it is only ap-
plied when the old preferred path has been idle for 1 clock
cycle, the new preferred path’s FIFO is empty and no more
flits from a packet are expected in those paths. As explained
in subsection 3.3, flits forming a packet are labelled. There-
fore, after receiving the packet’s address flit and until re-
ceiving the tail flit, the arbitration logic knows that more
flits are expected in this specific path and therefore delays
the application of the new configuration. Blocks requesting
reconfiguration are unsure exactly when it is applied, unless
application demands dictate the implementation of a recon-
figuration acknowledgment or polling mechanism. Due to
this technique, no preferred path will change at each used
switch from the time it receives the first flit of a packet until
it forwards the last. This ensures that all flits of the same
packet follow the same path, and therefore a switch will not
wait indefinitely for tail flits. Thus, all flits belonging to the
same packet will be delivered in-order.

Different packets from the same source to the same des-
tination may be delivered out-of-order. Since switches have

no information regarding more expected packets in the same
path, they may apply their new configuration if the preferred
path becomes idle for one clock cycle. Even if the source
transmits back-to-back, the preferred path may become idle
for one clock cycle due to broken preferred paths to avoid
starvation effects caused by contention, as explained in sub-
section 3.6. Therefore, this issue must be handled in the
network interface logic as explained in subsection 5.1.

Arbitration logic serves flits stored in FIFOs until all are
empty, as described in section 4. If any flits arrive through
the preferred path during this time, they are enqueued in
their preferred output’s FIFO. Arbitration logic can then
serve them in priority according to the implemented algo-
rithm. This imposes a single clock cycle delay regardless
of contention from other inputs, in this infrequent scenario.
However, attempting to do otherwise would introduce extra
combinational logic and timing hazards. These flits will still
be forwarded according to the preferred path. This serves
the purpose of avoiding out-of-order delivery scenarios and
taking advantage of preset multi-hop preferred paths.

3.8 Backpressure

Our NoC needs to provide a mechanism for not drop-
ping flits due to full FIFOs. This mechanism must inform
each output in a switch whether it can safely transmit a flit
to the next hop. Likewise, the previous switch would also
be informed if it can safely transmit to the current. There-
fore, long packets reaching a congestion point will be stored
in many, possibly consecutive, switches. Since flits of the
same packet are guaranteed to follow the same path and ar-
rive in-order, no recombination care must be taken.

Depending on area constraints and traffic patterns, we
can adopt two different approaches. According to the first,
if any of the next hop’s FIFOs that have the output port in
question as their input is almost full (to cover for backpres-
sure signal propagation delay), the output’s arbiter is alerted
to not transmit any more flits until the signal is de-asserted
and it is safe again. This approach requires only one wire
from each output’s next hop and the simplest logic.

According to the second approach, one wire from each
of the next hop’s FIFOs that have the output in question as
their input alerts the switch exactly which crosspoint FIFO
is almost full. This way, the arbiter needs to process packet
IDs of flits in FIFO heads to determine if it can safely trans-
mit any of them. With this approach, FIFOs that are not full
are able to receive flits, and thus communication and FIFO
utilization is more efficient. However, 6 wires are required
at each output and also the arbiter must be able to process
flit packet IDs in each FIFO head.

Extra care must be taken for flits forwarded in preferred
paths. In our NoC we cannot know the final destination
of flits travelling in preferred paths before they have been

c©Copyright IEEE 2007 - to appear in Proceedings of NOCS 2007, Princeton, NJ, USA, May 7 - 9, 2007 5

eagerly forwarded, nor can we control their transmission.
Therefore, if a backpressure signal to an output port is as-
serted, the preferred path leading to this output is broken.
Thus, all subsequent flits in that path are enqueued in the
appropriate crosspoint FIFO, and later forwarded accord-
ing to the preferred path. Alternatively, the preferred path
could remain intact, but flits in that path are still enqueued
as above. Therefore, as long as a flit travels in a preferred
path, it is not affected by contention or congestion. How-
ever, since preferred path flits take precedence over flits in
FIFOs, congestion is slower to resolve.

4 Switch Architecture

Switch input port components and connections are
shown in Figure 4(b). Output port components are illus-
trated in Figure 4(a). Data wires are illustrated as solid lines
and control wires as dashed lines. Our switch is a compo-
sition of the above figures, featuring 6 input/output ports.
Each input is connected to each other port’s output. Our
switch resembles a buffered crossbar [8] in that it features
one FIFO at each crosspoint and independent configuration
and arbitration logic at each output. A combinational rout-
ing logic block at each input decides at which FIFO, if any,
should the incoming flit be enqueued.

This choice of switch architecture takes into account
mad-postman’s operation, since incoming flits are exam-
ined by the routing combinational logic before being able
to be enqueued into FIFOs. Therefore, dead flits do not oc-
cupy FIFO lines. Moreover, since our current NoC does
not include virtual channels, as addressed in subsection 4.1,
crosspoint queueing removes the nuisance of head-of-line-
blocking. Finally, the use of one arbitration and configu-
ration logic block per output results in simpler logic and
therefore shorter critical paths.

Output configuration logic is responsible for storing and
updating preferred path configuration. Arbitration logic is
responsible for serving the FIFOs. Non-empty FIFOs as
well as FIFOs to which a flit is being enqueued are se-
lectable. Arbitration logic starts serving FIFOs once there
is a selectable FIFO and the preferred path has been idle
for one clock cycle. This serves the purpose of prioritizing
preferred path flits without unreasonably preventing FIFOs
from being served. It stops serving them when they are all
empty. Arbitration takes place during the preferred path idle
cycle, for the next cycle. Therefore, our NoC achieves one
clock cycle per-hop latency for non-preferred paths when
there is no contention. Arbitration algorithm details may
depend on exact NoC demands.

Each output is driven by tri-states directly connected
via dedicated wires to each other port’s input. Each out-
put is also driven by a tri-state which connects the output
wire with a multiplexer which forwards the FIFO flit be-

Port 1 Port 2 Port 3

Port 4 Port 5 Port 6

Figure 5. Preferred path bus.

ing served by arbitration logic, if any. Tri-state enable sig-
nals are driven by the output’s configuration and arbitration
logic. Preferred paths are thus formed by pre-enabling tri-
states, therefore connecting an input with any number of
preferred outputs.

Depending on preferred path flexibility and area needs,
an extra optimization may be necessary to further reduce
switch area. Instead of directly connecting each input to
each other output, a preferred path bus could be deployed,
as in Figure 5. This vastly limits the number of preferred
input-output pairs that can be configured to only one input
with any number of outputs. However, intermediate designs
can also be implemented. For instance, one such preferred
bus in the X axis and one in the Y could be deployed, per-
haps even connected to each other with tri-states. Therefore,
depending on exact preferred path communication needs,
NoC area overhead can be reduced.

4.1 Virtual Channels

Virtual channels (VCs) are useful for defining multiple
logical topologies within the network, adaptively routing
around congested or faulty nodes and providing packet pri-
ority and thus guaranteed QoS classes [10]. However, in
our NoC preferred paths already provide a means to prior-
itize packets compared to others as well as form different
low-latency topologies. Moreover, our NoC’s topology is
already tailored to our specific application environment. Fi-
nally, our NoC faces challenges in implementing adaptive
routing algorithms, as explained in subsection 3.4.

For these reasons, our current NoC does not include
VCs. Introducing them would multiply FIFOs, which trans-
lates into a significant area overhead since our switch fea-
tures one FIFO at every crosspoint. However, other NoC ap-
plications may have different design priorities and require-
ments which make VCs more attractive.

5 Network Topology

We tailor a 2D mesh topology to our target application,
which is an array of processors and RAM blocks, aiming to
minimize area overhead in addition to latency. This topol-
ogy is illustrated in Figure 6. We assume a flexible sys-
tem that assigns memory blocks to processors according to

c©Copyright IEEE 2007 - to appear in Proceedings of NOCS 2007, Princeton, NJ, USA, May 7 - 9, 2007 6

Output

Input1

Input2

Input3

Input4

Input5

Config &
Arbitration

Preferred
Path
Tri-states

Input1

Input2

Input3

Input4

Input5

(a) Output port components

Output Port
Components

Output Port
Components

Input

Output Port
Components

Output Port
Components

Output Port
Components

Other port outputs

Routing Logic

(b) Input port components

Figure 4. Switch architecture.

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

a

Figure 6. Rectangular-shaped floorplan.

application needs, and therefore profits from the reconfig-
uration capabilities of our NoC. We used single-port RAM
blocks. In our 130 nm implementation library, RAM blocks
feature data pins on one side of the X axis and address pins
on one side of the Y axis. We therefore place four RAM
blocks to form one larger network block. We rotate and
mirror RAM blocks to place all data pins on the X axis and
all address pins on the Y axis. CPUs and other user blocks
may be placed as part of such a block or as a whole network
block themselves, depending on their size.

In our current NoC each switch has 6 input/output ports.
Each input is connected to each other port’s output. Two of
these input/output ports are used for inter-switch communi-
cation in the X axis, and other two in the Y axis. The rest
two ports are used for communication with the data inputs
of the 4 adjacent RAM or other user logic blocks. Given
the data pin placement, one port is used for each two RAM
blocks facing each other in the X axis. One data output is

Data input 1 - non-preferred

Data input 2 - preferred

Figure 7. 2x1 switching logic.

wired to both RAM block data input interfaces. The two
RAM blocks’ data outputs are connected to a simple logic
illustrated in Figure 7, resembling a 2x1 switch. It has no
routing logic and only features one FIFO which is used by
the non-preferred input. From the moment a RAM block
receives a read request from the address interface until it is
able to output data, it notifies this 2x1 switch to choose that
RAM block’s data output as preferred. This switch there-
fore imposes minimal latency impact. It may also be recon-
figured as other switches. If area permits, a request FIFO
may be implemented to store the order of requests received
by the RAM blocks. This will enable it to always anticipate
the next generated flit, and thus avoid non-preferred path
delays in case of multiple requests to both RAM blocks.

RAM block address interfaces are wired to the nearest Y
axis output. These connections are illustrated with dashed
lines. Thus, the RAM blocks immediately above a switch
have their address interfaces wired to the Y output leading
upwards. This way, we avoid implementing extra output
ports for address inputs. As data input interfaces, address
interfaces monitor each incoming flit to determine if it is
destined for that RAM block. The potential increased con-
tention for outputs wired to address interfaces is outweighed

c©Copyright IEEE 2007 - to appear in Proceedings of NOCS 2007, Princeton, NJ, USA, May 7 - 9, 2007 7

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

A
d
d
r

A
d
d
r

A
d
d
r

A
d
d
r

Data Data

Data Data

a

b

Figure 8. Cross-shaped floorplan.

by the significantly less area required by our switch. Finally,
for switches that serve exclusively RAM blocks, we can fur-
ther reduce the required switch area since RAM blocks will
never need to communicate to each other directly. There-
fore, each switch data input should not be connected to
the other switch data output, therefore saving two internal
switch connections and all the accompanying logic.

For switch placement, we examined two floorplan al-
ternatives evaluated in section 6. In the first, switches are
placed in the corners of larger network blocks as a cross,
shown in Figure 8. This requires only a small distance be-
tween user blocks in each axis. Moreover, wire length, and
therefore propagation delay, between each switch is mini-
mal, even in the Y axis. The second placement, shown in
Figure 6, has the switch solely in the X axis between two
large blocks in a rectangular shape. User block distance in
the Y axis is truly minimal, and is only used for memory ad-
dress interface logic. Communication with switches in the
Y axis is achieved by wires in higher metal layers routed
above RAM blocks, or possibly in any metal layer routed
above address interface logic. Y axis communication wire
length is equal to twice the RAM block’s height, approxi-
mating to 1 mm in our placement and routing.

5.1 Network Interfaces

PEs, RAM blocks or other user logic blocks need NoC
interface logic. This logic is responsible for enabling com-
munication between the NoC and the block. It is respon-
sible for submitting properly formated packets divided in
flits, as explained in subsection 3.2, as well as receiving
flits destined to the user block. For data network interfaces,
incoming flits must be briefly stored until the whole packet
is complete and thus able to be submitted to the user block
for processing. Address network interfaces only receive one
flit per packet containing the address. In addition, network
interface logic must be able to arbitrate between complete
packets in a desired manner,e.g. submit read and write re-
quests in the order they were transmitted by the source to
satisfy sequential consistency.

Network interface logic must also identify which flits
of a packet it has already received and discard duplicate

copies. There are various implementations of this function-
ality according to design optimization priorities. To sim-
plify this task, the flit control bits could be expanded, or the
packet ID bits lessened, to include sequence number bits.

Out-of-order delivery of flits belonging to the same
packet is impossible, as explained in subsection 3.7. How-
ever, flits belonging to different packets from the same
source may be delivered in any order. Therefore, interface
logic must submit packets for processing once complete, re-
gardless of other incomplete packets. To implement this
functionality, we deploy multiple small FIFOs in data inter-
faces and registers in address interfaces, and enqueue flits
accordingly. In case we would like packets to be submitted
in the order they were sent by the source, the relative packet
order can be retrieved from the packet header.

Network interface logic must also handle multiple in-
coming packets from various sources. Flits from these
packets may arrive in any order. If all buffer is used up, extra
incoming flits are stored in previous hops through backpres-
sure. Therefore, no excessive buffer space is required.

Since one data interface FIFO is reserved per packet un-
til it is complete and submitted for processing, and packets
may arrive out-of-order, deadlocks may occur. Lets assume
that packet A has partially arrived at the target RAM. Packet
B from the same source arrives at the final hop before A’s
tail flit. However, all of the RAM’s data interface FIFOs are
reserved. Therefore, packet B waits in the switches due to
backpressure, not allowing packet A’s tail flit to arrive.

This scenario requires several packets arriving out-of-
order through the same path with partially complete pack-
ets, since the data interface logic deploys several FIFOs.
Assuming sources do not submit packets interleaved, out-
of-order delivery is only caused by reconfiguration. There-
fore, limiting the number of active reconfigurations that can
occur at any one time to less than the number of data inter-
face FIFOs guarantees that at least one FIFO will be even-
tually freed and no deadlock will occur. Implementation of
this restriction may require software synchronization prim-
itives, defining areas each CPU can reconfigure paths in, or
a reconfiguration acknowledgment mechanism.

6 Layout Results

We performed placement and routing using a 130
nm library available to European universities. Synthesis
was conducted with Synopsys Design Compiler version
2004.06-SP2, placement and routing with Cadence SOC-
Encounter version 3.3 and simulation with Verilog-XL ver-
sion 05.10.002-p. We chose single-port RAM blocks of
4096 lines of 32 bits each (128kbits), with a column mux of
16. Without power rings, they are 715.07µm long on the X
axis, and 551.64µm long on the Y axis. Larger RAM blocks
had a disproportionally larger cycle time, while multi-port

c©Copyright IEEE 2007 - to appear in Proceedings of NOCS 2007, Princeton, NJ, USA, May 7 - 9, 2007 8

Table 1. Switch p&r results (typical).
Impl. lib. 130nm
P. supply 1.2V
Clock freq. 667 typ. - 400 w.c. (MHz)
I/O ports 6
FIFOs 30
FIFO lines 2
Flit width 39 bits

Full switch Pref. bus Change
Gates 44874 38865 -13%
Cells 15001 13369 -11%
Cell area 195228µm2 183056µm2 -6%
Int. nets 13595 12703 -6.5%
Comb. area 84424µm2 72420µm2 -14%
Non-comb. 110798µm2 110632µm2 -0.1%
Leakage p. 91µW 85µW -7%
Dynamic p. 80mW 77mW -3%

RAMs were larger and more power consuming.
Switch p&r details are shown in Table 1. Results pre-

sented are under typical case conditions. Power consump-
tion results are under heavy switching activity. Preferred
path latency per switch ranged from 300 to 420 ps. If we
also include a 1 mm long wire at the output, approximately
twice a RAM block’s height, latency increases to 450-550
ps, as compared to 135 ps for straight buffered wires of a
similar length without any configuration or routing capabil-
ity. When there is no contention, non-preferred path latency
is one clock cycle. Contention without starvation effects
increases non-preferred path latency depending on various
factors, but does not affect preferred path latency. Our de-
sign functions at 667 MHz under our library’s typical case
conditions, and at 400 MHz under worst case conditions.

At 667 MHz, RAM blocks require a 25µm wide power
ring. Therefore, RAM block effective size is 740.07µm ×
576.64µm. In an orthogonal shape, one switch occupies
a minimum area of 637µm × 310µm. In the rectangular
placement option as explained in section 5 and illustrated in
Figure 6, switch height (a) is 170µm at minimum. Since
we require one switch every 4 RAM blocks (or user blocks
of roughly the same size), NoC area overhead is 13%. In
the cross placement option as depicted in Figure 8, switch
height in the X axis (a) is 130µm, while switch length in
the Y axis (b) is 140µm. In this case, NoC area overhead
is 18%. This shows that area efficiency drops in the second
case. However, cross-shaped switches have the least possi-
ble distance between each other even in the Y axis, therefore
minimizing propagation delay between them.

P&r details of the area-efficient single-preferred path
switch explained in section 4 are shown in Table 1. In
the rectangular placement option, switch height (a) is 133
µm (22% decrease). In the cross placement option, switch

height in the X axis (a) is 118µm (9% decrease), while
switch length in the Y axis (b) is 114µm (18.5% decrease).
This imposes a NoC area overhead of 10% in the first case
and 16% in the second. These results show that the area
gain is small, but in some applications it could outweigh the
loss in preferred path flexibility.

7 Future Work

A number of issues should be addressed in the future.
Firstly, while our current NoC utilizes a deterministic rout-
ing algorithm as explained in subsection 3.4, adaptive rout-
ing has significant benefits to offer. For instance, congestion
can be avoided by later flits. Therefore, a customized ver-
sion of an adaptive routing algorithm should be investigated
to provide our NoC with more flexibility.

Secondly, our NoC needs to be made fault-tolerant since
faults may appear in a chip’s lifetime, especially in tech-
nologies narrower than 130 nm. This will impose an un-
avoidably increased area overhead. However, technology
trends dictate that designs must be fault-tolerant in some
way in order to be trusted for future designs.

Thirdly, our NoC needs to be evaluated in a complete
system under various workloads and demands. This will
enable us to accurately analyze our contribution’s impact,
as well as the effect of dead flits in our NoC’s performance.
Moreover, we can investigate the optimal method for choos-
ing preferred paths in a given application environment, as
well as the impact of this choice.

Finally, our NoC can face synchronization issues which
may result in design limitations. Since preferred paths are
purely combinational, flits traversing them can arrive at
their destinations and other switches at any point during the
clock cycle. Thus, flits may violate flip-flop setup or hold
time upon arrival.

There are several approaches to combat this issue.
Firstly, we could impose a constraint on our preferred paths
so that this problem will never occur. For example, we
could limit the number of continuous preferred path hops
such that flits will enter a non-preferred path before the end
of the clock cycle that they entered their current preferred
path in. For example, assuming that flits are submitted from
non-preferred paths in the very beginning of the clock cycle,
that number is[Pre f PathHop+WireLatency

ClockPeriod].
Furthermore, we could deploy synchronizers at every

switch and PE interface logic. While they will not affect
preferred paths until flits exit them, their imposed latencyin
non-preferred paths is excessive. Finally, our switch com-
ponents can easily be implemented asynchronously with
known design methodologies. The problem in this approach
lies in the necessary handshake between switches and PEs
to guarantee that no flit fragments will be routed through
the network. This handshake’s imposed delay will prevent

c©Copyright IEEE 2007 - to appear in Proceedings of NOCS 2007, Princeton, NJ, USA, May 7 - 9, 2007 9

us from offering our current low per-hop latency, both in
preferred and non-preferred paths.

8 Conclusion

We presented a NoC design that offers low latency
in pre-configured paths. This latency is close to that of
long buffered wires. To achieve our goal, we have resur-
rected and tailored mad-postman, a technique proposed two
decades ago. According to our implementation, an incom-
ing flit is eagerly forwarded to the input’s preferred out-
puts, if any. This is achieved solely by pre-enabled tri-state
drivers, and therefore with the least delay possible. Flitsare
then checked by routing logic to determine if they were cor-
rectly eagerly forwarded. If not, flits are forwarded to the
correct output. Incorrectly forwarded flits are terminated
in later hops as dead. When there is no contention, non-
preferred paths impose a single clock cycle per-hop delay.

For routing, we implement XY routing. However, we
make the modification that a flit is considered to have been
correctly forwarded if it approaches the destination in any
of the two axes, even if it does not follow strict XY routing.
This way, flits may take different paths and gain from in-
creased preferred path flexibility. A flit is considered dead
if its distance from the destination increases in any of the
two axes. Path reconfiguration occurs at run-time. Any user
block can transmit configuration packets to any switch in
the NoC. Switch architecture resembles that of a buffered
crossbar [8]. FIFOs are placed at crosspoints, and each out-
put port has independent arbitration and configuration logic.

P&r results show that preferred path latency varies from
300 ps to 550 ps, depending on placement and wire length.
Our NoC imposes a 13% area overhead for the whole chip.

We believe that our work provides a different approach
in some areas and can form the basis for future NoC im-
plementations which focus on low latency. While there are
open issues left for future work, a substantial number of
past NoC research can be applied and therefore provide so-
lutions. Depending on exact application needs, further la-
tency, area or energy optimizations may be made.

Acknowledgments

We wish to thank our colleagues, both locally and
throughout HiPEAC and SARC, for their assistance: Chris-
tos Sotiriou, Spyros Lyberis, Pavlos Mattheakis, Stamatis
Kavvadias, Vasilis Papaefstathiou, Michalis Papamichail,
Kees Goossens, Giuseppe Desoli, Krisztian Flautner, Chris
Jesshope, Jose Duato, and Georgi Gaydadjiev. This work
was supported by the European Commission in the context
of the SARC (Scalable Computer Architecture) integrated
project #27648 (FP6), and the HiPEAC network of excel-
lence.

References

[1] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Re-
naudin. An asynchronous noc architecture providing low
latency service and its multi-level design framework. In
ASYNC ’05: Proceedings of the 11th IEEE International
Symposium on Asynchronous Circuits and Systems, pages
54–63, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[2] R. B. C. Izu and C. Jesshope. Mad-postman: a look-
ahead message propagation method for static bidimensional
meshes. InProceedings of the 2nd Euromicro Workshop on
Parallel and Distributed Processing, pages 117–124. IEEE
Computer Society Press, 1994.

[3] W. J. Dally and B. Towles. Route packets, not wires: On-
chip interconnection networks. InProceedings of the 38th
Design Automation Conference (DAC), pages 684–689, Las
Vegas, NV, June 2001.

[4] J. Hu and R. Marculescu. Dyad: smart routing for networks-
on-chip. InDAC ’04: Proceedings of the 41st annual con-
ference on Design automation, pages 260–263, New York,
NY, USA, 2004. ACM Press.

[5] C. R. Jesshope, P. R. Miller, and J. T. Yantchev. High per-
formance communications in processor networks. InISCA
’89: Proceedings of the 16th annual international sympo-
sium on Computer architecture, pages 150–157, New York,
NY, USA, 1989. ACM Press.

[6] J. Kim, C. Nicopoulos, and D. Park. A gracefully degrad-
ing and energy-efficient modular router architecture for on-
chip networks.SIGARCH Comput. Archit. News, 34(2):4–
15, 2006.

[7] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and
C. R. Das. A low latency router supporting adaptivity for
on-chip interconnects. InDAC ’05: Proceedings of the 42nd
annual conference on Design automation, pages 559–564,
New York, NY, USA, 2005. ACM Press.

[8] D. S. M. Katevenis, G. Passas et al. Variable packet size
buffered crossbar (cicq) switches. InProceedings of the
IEEE International Conference on Communications (ICC),
pages 1090–1096, Paris, France, June 2004.

[9] R. Mullins, A. West, and S. Moore. Low-latency virtual-
channel routers for on-chip networks.SIGARCH Comput.
Archit. News, 32(2):188, 2004.

[10] L. M. Ni and P. K. McKinley. A survey of wormhole routing
techniques in direct networks. pages 492–506, 2000.

[11] L.-S. Peh and W. J. Dally. Flit-reservation flow control. In In
Proc. of the 6th Int. Symp. on High-Performance Computer
Architecture (HPCA), pages 73–84, Jan. 2000.

[12] L. Shang, L.-S. Peh, A. Kumar, and N. K. Jha. Thermal
modeling, characterization and management of on-chip net-
works. In MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture,
pages 67–78, Washington, DC, USA, 2004. IEEE Computer
Society.

c©Copyright IEEE 2007 - to appear in Proceedings of NOCS 2007, Princeton, NJ, USA, May 7 - 9, 2007 10

