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Uncertainty: a major challenge in
systems, control, communications

ROBUSTNESS - Critical inference, decision-making, control

* Control and Uncertainty

— Uncertainty: System Model, Performance Model, Sensor

Model, Computation Model, Action Model
Environment

Noises, Disturbances, etc.
Goals and Sub-goals

— Feedback, Adaptive, Robust, Intelligent, Learning

* Control system: A mapping from inputs, outputs to actions
Influenced by objectives

* Representations: factoring of this mapping



Some Approaches to Deal with
Uncertainty

Differential games and uncertainty

— Robust control (Baras, Basar, Bernard, Fleming, Helton, James,
Isidori, Bensoussan, Ball, ...)

— Intelligent control
— Al, planning, performance feedback
— Learning, connectionist systems

— Logic, knowledge-based systems
hybrid control systems

Reinforcement learning: Approximate DP, Temporal
Difference (TD) methods, Adaptive Critics, Q-learning,
Recurrent Network Implementations

— Barto, Sutton, Tsitsiklis, Bertsekas, Werbos, Watkins, ...



Review of some Oldies but Goodies



e Generic Output Feedback
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« Estimation - the information state
* Express problem in terms of information state

e Information state feedback control:

« Solve state feedback problem for information
state

* Coupling - information state feedback
* Plug information state into optimal feedback



The

systems Qur Method and Key Result
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oo HOW? The Circuit Taken
ystems .
in Our Approach

Research

ROBUST OUTPUT AXIMUM ENTROPY
FEEDBACK CONTROL RANDOMIZATION
PO SYSTEM (PO FSM) PO STOCHASTIC

SYSTEM (HMM

SMALL-NOISE LIMIT RISK-SENSITIVE

9
DETERMINISTIC STOCHASTIC CONTROL
DYNAMIC GAM OF PO STOCHASTIC

SYSTEM (HMM)
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Solution of the
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Systems Fundamental Result

* Key analytical methods:

The equivalence of three problems:

- Output feedback robust control

- Partially observed deterministic
dynamic game

- Partially observed risk-sensitive
stochastic control
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Inst:tu[g for

Systems

The

Our General Theory

Nonlinear partially observed
Set valued partially observed
Finite Automata partially observed

. M.R. James, J.S. Baras, R.J. Elliott, “Risk-Sensitive Control and Dyn. Games for PO Discrete-

Time Nonl. Systems”, IEEE TACON, 1994,

M.R. James and J.S. Baras, “Robust Hoo Output Feedback Control for Nonlinear Systems”,
IEEE TACON, 1995.

M.R. James and J.S. Baras, “PO Differential Games, Infinite Dimensional HJI Equations, and
Nonlinear Hoo Control”, SICON 1996.

J.S. Baras and M.R. James, “Robust and Risk-Sensitive Output Feedback Control for FSM and
HMM?”, J. Math. Syst., Est., Control, 1997.

J.S. Baras and N.S. Patel, “Robust Control of Set-Valued Discrete Time Dynamical Systems”,
IEEE TACON, 1998.

J. Baras, M. Rabi, “Maximum Entropy Models, Dynamic Games, and Robust Output Feedback
Control for Automata”, IEEE CDC, 2005.

J. Baras, “Maximum Entropy Models, Dynamic Games and Robust Output Feedback Control
of Nonlinear Systems”, IEEE CDC, 2006.
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From Robust to
Intelligent Control

John S. Baras

Department of Electrical Engineering and
Institute for Systems Research
University of Maryland at College Park

March 5, 1997
LIDS, MIT
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INSTITUTE FOR S§YSTEMS RESEARCH

 When we do not have models (i.e. f, b, etc.)

u
_—

y

Process

yd

Estimate
System (HMM)

N NN

n, b, h

N

|

Risk
sensitive
stochastic

] —

A AAA control
u(n, b, h)

—

Unknown Models -- Learning

Not necessary?

Replace by
“ Approximate DP”
to compute info-state

and value function!

* Control cost and model complexity cost combined

* Trade off: complexity vs. performance
* Uncertainty causes learning

16



Intelligent Control and
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Controlled
System
Performance
Control Strategy
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NN Red with uncertainty
& O F D
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ES

At least “3-dimensions”
Trade-offs must be considered

Examples: speech coding, speech understanding, image understanding,

autonomous navigation
17



ISR

Intelligent Control and
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Combine model learning: intelligent control

Risk sensitive control of HMM with unknown models
0 = set of parameters of HMM,, including order

Metric for model complexity

. . k
MDL(k) = —log P(y" |0) —log n(6) + > logn

k = "length" of data

What is the interpretation of y in this context?

In general solution computationally intractable
- Approximation of info-state evolution
- A dynamic game DP; approximation of value function

Primarily interested in “feature” - based and/or compact
representations/approximations (RNN, basis fncs)
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Risk-Sensitive Control with Unknown
Models: Learning Information State

ISR

INSTITUTE FOR S§YSTEMS RESEARCH

Dynamics

* Information state dynamics not known!
Iterative learning of information state: related to features?
Must run faster than learning W
Is this a “good” way to partition handling the uncertaintly?

Information state does capture the notion of “states relevant”
for control

19



BACK TO PRESENT TIME
From Robust Control to Adversarial
and Robust Machine Learning



Extensions of Robust and
Risk Sensitive Control Theory

Machine Learning
Algorithm

N

Classification/
Decision

Outputs
y

7

- Outputs
u y Feedback
Control PO Dynamical | MSCh.‘:"".*’ v = >
onitoring versaria E
= System —
Disturbances, |—— i Adaptation Perturbations WEITTECE )
Perturbations | W z Other knowledge
Robustness

Other measures
Fig.: Robust Output Feedback Control — General H-oc; “Four Block Problem”

Z
Robustness

Feedback
Scheme:
Monitoring
Adaptation

Other measures

Fig.: Generalized framework to formulate and analyze robustness: Select ML
algorithm, feedback u , to optimize classification/decision performance, while

minimizing effect of perturbations w and w’ on robustness and other measures z

 Solution: two coupled Hamilton-Jacobi-Bellman (HJB) equations (one on-line,
computing the novel information state, and another off-line, for the decision u)

« Complete equivalence of three previously unrelated problems: general nonl.
robust output feedback problem, a dynamic game with two players, a stochastic
control problem with metric the expectation of the exponential of an integral-

type perform. Measure.

» Deeper understanding of some key randomizations employed as max. entropy

modeling.

« Extension to other models of risk — relationships with Prospect Theory

e Extension to Robust ML and Robust Al, Robust RL
« Extension to Multi-agent systems
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From Robust Control to
Robust Reinforcement Learning

22



Is there a unified theory?

YES — Extending Robust Output

Feedback Control Theory —
Baras et al [1994-98, 2005-06]

PLUS

Using Risk-Utility rigorous duality
(Rockafellar and earlier works from mathematics of finance)

T. Rockafellar review article: “Risk and Utility in the Duality Framework
of Convex Analysis”, 2018
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Theory Unifies

- Robustness in ML and RL

- Trusted Autonomy — safety and risk
- Trustworthy Al

- Composability

42



Reinforcement Learning (RL)

Standard (risk-neutral) RL algorithms follow from
the Expected Utility Theory (von Neumann-

Morgenstern) — MDP env. (plant)
M = (Slal Po; P; r; V) St+1 = p( | stlat)
|T|—1 (or s, =f(st,at,wt) )

max, J(0) := E[R], where R= Y 7'r(s,a,)
t=0

a, ~ (. |S¢; 0) Str1Mee1(Spay)

:=(Sy, @y, S5, @5, -+ ., A1_1, S7)-

T—1
Pn,P(T) =po [] m(aclse; O)p(Se+1lSe ar) (1)

t=0 agent

Prospect Theory by (Tversky and Kahneman): (controller)

“Nobel Memorial Prize in Economic Sciences for his
groundbreaking work in applying psychological insights to
economic theory, particularly in the areas of judgment and
decision-making under uncertainty.”

Portfolio Optimization and risk:
Modern portfolio theory (MPT), or mean-variance analysis,
Harry Max Markowitz is an American economist who
received the 1989 John von Neumann Theory Prize and the
1990 Nobel Memorial Prize in Economic Sciences.

Known problems with (risk-neutral) RL: brittle. Highly sensitive to noise, etc.

25



Safe Learning for Autonomy:
Robust and Risk Sensitive Control Approach

Regularization

| Robust\ (e.g. KL and Entropy
Learning Distributionally Robust regularization)

Risk-sensitive

Performance Safety
Design autonomous decision systems

with some degree of assurance of
Interplay among learning, = meeting specifications (performance,
performance, and safety safety specifications): (distributionally)

robust, risk sensitive, regularization

E. Noorani, J. S. Baras, “Risk-sensitive REINFORCE: A Monte Carlo Policy Gradient Algorithm for Exponential Performance Criteria,” IEEE CDC 2021
E. Noorani, J. S. Baras, “Risk-sensitive Reinforcement Learning and Robust Learning for Control,” IEEE CDC 2021 45
E. Noorani, J. S. Baras, “A Probabilistic Perspective on Risk-sensitive Reinforcement Learning,” 2021



Risk Measures

J(R) ="
O Standard (risk-neutral) Obj. ~ Expected Value
ET[,P[R}
® Risk-Sensitive Obj
* Mean-Variance
E';'[,P [R] _ )\V [RJ

¢ Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR)

CVaR,(R) =E. p[RIR < VaR, (R)],
VaR, (R) =inf[re R: P(R <1) > pj

* Entropic Risk Measure

Jis (R) = (1/B)log B ple¥]

27



Coherent and Convex Risk Measures

For allR and R/ € R:
@ Monotonicity. For R < R/,
J(R) < J(R')
® Translation Invariance. For m € R,
J(R+m) =](R)+m
© Convexity. For0 < o <1,
J(«R+ (T —o)R") < «J(R) + (1 — «)J(R)

A convex risk measure is called coherent if and only if in addition to the properties
(1), (2), and (3), is positive homogeneous, i.e.,
@ Positive Homogeneity. For « > 0,

J{«R) = o] (R)

28



Dual Representation of
Coherent Risk Measures

Proposition (Coherent)
[FS02, FRO2] A functional ] : R — R is a coherent risk measure if and only if there exists a

subset Q of M ¢ such that

] =supEq(R]
QeQ

Moreover, Q can be chosen as a convex set for which the supremum is attained.
.

The set of all finitely additive set functions Q : T — [0, 1] which are normalized to Q[T] = 1.

29



Dual Representation of
Convex Risk Measures

Proposition (Convex)
[FS02] Any convex risk measure | : R — R is of the form

]:sup{EQ[R} —D(Q)}

QeQ

where D is the minimal penalty function which represents J.
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Coherent or Convex?

e Mean-Variance is neither Coherent nor Convex.
J(R) := Exp[Rl — AV(R)
¢ VaR is not Coherent, but CVaR is Coherent.

CVaR,(R) =Ep[RIR < VaR,(R)],
VaR,(R) = inf{r e R: P(R <1) > p}

e Entropic Risk Measure is Convex (but not Coherent).

Jip (R) := (1/B) log Er pleP"]

31



Risk-Sensitive RL Using

Exponential Criteria
Entropic Risk Measure

]
Ji (1) = E logEp [eBR]
positive and negative risk parameters p result in risk-seeking/optimistic (f > 0) and
risk-averse/pessimistic (f < 0) behavior.
1 p

g logEp [eBR] =Enp [R] + fV[R] +0(p?) (Taylor series)

* |nterpretation of optimizing exponential criteria by examining it through two
theoretical frameworks:

@ Large Deviation Theory [NB22a]

@ Theory of dual representation of convex risk measures [NB21c]
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Risk-Sensitive RL Using

Exponential Criteria

Entropic Risk Measure: Large Deviation Theory and
Asymptotic Interpretation

Theorem

[NB22a] The maximization of the risk-sensitive exponential criterion, i.e.,

I (71) == ]Elog]E[eE’R]

is equivalent to

argmax Jy, (1) = Th_)m argmin P[Ry < ], B < O (risk-averse/pessimistic)
i S T

argmax ][B (mr) = Th_}m argmax P[Rt > ], B > O (risk-seeking/optimistic)
T - T

»

Rate of decay of the left/right tail of the performance metric R. I

33




Risk-Sensitive RL Using

Exponential Criteria

Entropic Risk Measure: Duality and Game Theoretic
Interpretation

[NB21c] The maximization of the risk-sensitive exponential criterion, i.e.,
1
e =% loglE[eE’R}

8
Is equivalent to
supinf {]E lR(T)] _ %DKL (’n@(-lst ), Wg(-lst)) } B < O (risk-averse/pessimistic)  (7)
sup sup {]E [Rm] + 1Dy (vr@[-lst), vrg[-lst)) } B > O (risk-secking/optimistic)  (8)
T fE B

where D(Q, P) is the KL divergence between the distributions P and Q and is given by
Dxi(P, Q) =Eq [log %] if Q <« P and infinity otherwise.
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Risk-Sensitive RL Using

Exponential Criteria
Policy Robustness: Definition of Robustness

Let 1(0) be a given policy and pg be its associated trajectory distribution given by (1)
with transition probabilities P. In addition, let p be a trajectory distribution generated
by 7t(0) given a perturbed system of transition probabilities P. The policy 7(0) is
(&,0,¢€)-robust if, for 5, ¢ > 0, and under the condition D(p, pg) < ¢, it holds that

Prp [R(T(0)) > &] > 1 —3(E, €), (9)

where D(-,-) represents the KL divergence.
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Risk-Sensitive RL Using

Exponential Criteria
Policy Robustness: Robustness Gurantees

Theorem

[NMB22] Let i(6*) be an optimal policy with respect to ]y, i.e., m(6*) = argmaxg Ji, (6),
and pg- be its associated trajectory distribution given by (1) with transition probabilities P.
In addition, let p be a trajectory distribution generated by m(0) given a perturbed system
of transition probabilities P such that D(p, po-) < €. Then the following inequalities hold:

|
@

Prs [R(T) <& < R:;wx 5[ Rmax ]13 |B|]§max)’ p < O (risk-averse), (10)
P,.s [R(1) > & < l};ﬁ N é B > 0 (risk-seeking), (11)

where J; = L InE. . [exp(ﬁR(T))].
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Robustness, Risk Sensitivity, and
Regularization

(a) Risk-Sensitive (b) Distributionally Robust (c) Regularization
max 1 %Exmn lexp(BR(x]]] max e infpey Exx,c—p R(x, 0)] maxg Et—pg {R(T(QJJ} — %D (pg, ()g)

Figure: TNere is an intricate connection between risk-sensitive, distributionally robust, and
regularized objectives.
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Robustness, Risk Sensitivity, and
Regularization

Ji, (70) = %log Erep, s [eBRT(TJ] (Entropic Risk Measure)

Jor(7) = min B [RT[T)] (Distributionally Robust)
Peu(p) ™

13.(0,00) = By, [Rm — ADyt (ng(-mt),mo(-m))} (Regularization)

Jent(8) 1= Er.gy [RIT)| +ABq s, yisea [iﬂfﬂusa]

t=1

Note that for a choice of uniform distribution as the reference policy, the KL-regularized objective is equivalent to the
maximum entropy objective (up to a constant). Therefore, we only consider the more general case of KL-regularized
objective from hereon.
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Robustness, Risk Sensitivity, and

Regularization
Coherent Entropic Risk Measure [FK11] — A bridge to
distributionally robust

]
][[3 [7-[) = E log ETNPW,P |:e|3RT(T):|

Jo¥(m) == (1) — lln[cx) 0<ax<T

B

Jo (7) := sup J%(m)
<0

(1) = inf E.; [RT[T)] (Entropic Value at Risk [A]12])

C

p
pelp<p:D(pp)<—In«j

* |tis evident that the KL-regularized and KL-constrained algorithms such TRPO and PPO are attempts to iteratively optimize the convex and coherent
risk-sensitive criterion.

39



Robustness, Risk Sensitivity, and

Regularization
Equivalences: Distributionally Robust

Theorem

[NB22a] The coherent risk-sensitive exponential criterion with a positive risk parameter
p<0 (risk-aversion) or 3>0 (risk-seeking) is equivalent to a distributionally robust objective

with the uncertainty set
)= {p:2, o)) < 22}

That is to say,

Ig— = min ]ET««p p [RT[T)], ]g+ = Imax ]ETN [RT[T)]
Peurpy 7 Peu(p)

where |, and J%_ are the coherent risk-sensitive exponential criterion for 3>0 and (<G,
respectively.
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Robustness, Risk Sensitivity, and

Regularization
Equivalences: Regularization

Recall Ji, (71) := § log Brep, [eBRTfT)}. By the dual representation theorem of Convex

risk measures

10061 = sup {Ex g, [R(7)] — D (i) o)) }
0

By noting the definition of the trajectory distribution, we have
Dyt (pg(t)y 06(7) ) = TExpq D (5(-1s1), mal(1se) )|
Thus,

Ji, (0) = supJ¢; (6,6) (12)
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Robustness, Risk Sensitivity, and

Regularization

Developing risk-sensitive RL algorithms using
regularization equivalence

[NB21d] The maximization of the exponential criteria i, (0) with a positive risk parameter

B>0is equivalent to the maximization of the KL-regularized objective Jx; (8, 0) jointly over
the policy parameters O and the reference policy parameters 0, that is,

T
argmax Ji, (6) = argmax Jy; (6, 6)
0 0,0

l AN
where ], (6,0) = Eropg [R(T) — %DKL (ﬂ@[-|st), ’FT@HSJC))] Is the KL-regularized objective

with reference policy parameter 6 and the regularization weight T/ with T being the time
horizon.
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Risk-Sensitive RL Algorithms Using MDP
REINFORCE - A Policy Gradient Algorithm

1(0) i= Erp, [R]

e —

Oir1 = 0t + «V](0y) (Gradient Ascent)
VJ(0) o Erg R Z] Vlogmo(aifsy)] (Policy Gradient Theorem suon e =)
"
VJ(0) x Ery | Y~ RiVlogma(aifst)]
t:OV’f’Te (ailst)

O = O + Ry (REINFORCE witiams))

7o (a/st) '
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Risk-Sensitive RL Algorithms Using MDP

REINFORCE - A Policy Gradient Algorithm (using baseline)

To reduce variance

T|—1
VJ(0) x Eny | Y (Ri=bls))) Viogmolailsi)
t=0

As we will discuss, a particularly convenient property of using exponential criteria is
that it alleviates the need for such approaches [NB21c].
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Risk-Sensitive RL Algorithms Using MDP

Policy Gradient Algorithms (using function approximation)

Let the reward-to-go Ry := 'f,';t] vy~ tr(sy/, air) and the value function
V70 (sy) := En, [R¢/s¢). Then, we have

V7o (s) = En,. [T(st, ay) +yVTr(siq) | s (Bellman's equation)

where a; ~ g« (s ).

Bellman's equation is a contraction map. This has led to stochastic approximation
algorithms that try to asymptotically minimize the mean-squared error

méin ]E’Tlfg HT(St, a¢) +yV™(sir) — Vﬂe(st)Hz | St]
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Risk-Sensitive RL Algorithms Using MDP

Temporal-Difference Methods (actor-critic algorithms)

: Vg, (atlst)
{9t+1 =t 4 “(ﬁt = WSt,Wt)) o, (ailst) (Risk-neutral TD)

Wil = Wy — &V]c (st W, 0¢)
Je(sg; Wy, B) == Hﬁt - V(S§Wt)H2

ﬁt i=T1(St, at) +YV(St41, W) = Ry

The ‘actor’ implements a policy gradient algorithm based on a function
approximation of the (risk-neutral) reward-to-go, estimated by the ‘critic’ based on
Bellman'’s equation associated with (risk-neutral) dynamic programming.
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Risk-Sensitive RL Algorithms Using MDP

Risk-Sensitive REINFORCE [NB21a, NMB22]

J(8) i=Er, | pe™®]

IT|—1
]
VIo(0) o ZErp, [Z eBR‘Vlogm[B)]
t=0
0
0, =0, 1 SepreYas ) (Risk-Sensitive REINFORCE woorani & eras)

8 7i(aglst; 0)

® The update rule is not proportional to the reward-to-go Ry = Z'f,';: vt =tr(s,r, aqr), but to the exponential

Tl —1

pePRt =B T exply' ~'Br(s/, as))

L=k

® The risk-sensitive objective can be understood to provide a natural baseline. This has been shown in [NB21b] and
holds for the temporal-difference case as well.
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Risk-Sensitive RL Algorithms Using MDP

Risk-Sensitive Actor-Critic

Define the risk-sensitive value function of a policy 7t as

t

Vi(s)i= B [P X0 Tnalls [y~ y)

We further define;

_ | o It
VE(st) = Evg(st) _E [eﬁzlzt_ v T(81301J|St]

where a; ~ 7t(+[s;) and by definition, Vg(-) > 0. The following relationship holds:

% [

VE(St,Wt) — mc?x ePrisualg [e(VB(S"“’Wt]]Y | St] .
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Risk-Sensitive RL Algorithms Using MDP

Risk-Sensitive (Online) Actor-Critic [NMB22, NMB23]

The following actor-critic learning approach can be constructed [NMB23]:

B+ _ Vr(a|st;0¢)
{9t+1 = 0¢+ ol BI(RY — Valsuwi)) aiiay (Risk-Sensitive TD)

Wi = Wy — &V ] (s wy, B)
Ry = exp{Pr(sy, ai) + v In Va (s wi))
Te(sgwy, 0y) = Heﬁr(st,at.)wln\_/fa(SL+1;WL) _ VB[St;Wt)HZ

The ‘actor’ implements a policy gradient algorithm based on a function
approximation of the exponential of the reward-to-go, estimated by the ‘critic’ based

on the multiplicative Bellman'’s equation associated with risk-sensitive dynamic
programming.
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Risk-Sensitive RL Algorithms Using MDP

Algorithm: REINFORCE

Algorithm REINFORCE

1. Input: a differentiable policy parametrization 7t(als;0).

2: Algorithm parameters: step-size «>0, discount factor y=>0, and the risk parameter f.

3: Initialization: Initialize policy parameters 6 € R¢ (e.g. to 0).

4: while True do

5: Generate an episode following the policy =(-|-;0), i.e., so~po, ai~7(-[s(;0) and s, 1~p(-[s(, ar), generating a
sequence of state-actions so, ap,. .., S|¢—1, Q|1

6 fort =0to |t/ —1do

7 ﬁ “ Z|le|;l1 ,Yl."—LTL

8: Oir1 + 04 +ocyl'ﬁVlog7r(at|st;9]

9: endfor

10: end while
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Risk-Sensitive RL Algorithms Using MDP

Algorithm: REINFORCE with baseline

Algorithm REINFORCE with Baseline

1: Input: a differentiable policy parametrization 7t(als; 0).

2: Algorithm parameters: step-sizes o>0 and a0, discount factor y>0, and the risk parameter j3.

3: Initialization: Initialize policy parameters 6 € R¢ (e.g. to 0) and value parameters w € R4

4: while True do

5: Generate an episode following the policy 7(-|-;0), i.e., so~po, at~7t(-[s¢;0) and s 1~p(-[st, ar), generating a
sequence of state-actions s, ap,...,S;q_1, Q|1

6 fort =0to|t|—1do

7: R Z‘ﬁ':_: yt =ty

8: Oiet — 0+ v (R— V(sewi))V log t(atlse; 0)

O: wi = wi + &yt (R=V(sew))VV(se;wy)

10:  end for

11: end while

51



Risk-Sensitive RL Algorithms Using MDP

Algorithm: Online Actor-Critic

Algorithm Online Actor-Critic

1: Input: a differentiable policy parametrization mt(als;0).
2: Algorithm parameters: step-sizes o0 and &0, discount factor v=>0, and the risk parameter .
3: Initialization: Initialize policy parameters @ € R and value parameters w € R4 (e.g. t0 0) (e.g. to 0).

4: while True do
fort =0to|t|—1do
Starting at an initial state s(, take an action by following the current policy a~7(:|s{;0) and observe
the successor state s ;~p(-|st, at), and the reward r¢
R« Ty +YVisgt, wi)
Opeq — 0¢ + owl'(ﬁ — Visy;wy))Viog m(aglsy; 8)
: Wii] = Wy + @Yl'(ﬁ — Visg;wi ) ) VV(sg;wy)
10: end for
11: end while

WeN ouw
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Risk-Sensitive RL Algorithms Using MDP

Algorithm: Risk-sensitive REINFORCE [NB21a, NMB22]

Algorithm Risk-sensitive REINFORCE

1: Input: a differentiable policy parametrization 7t(als; 0).
2. Algorithm parameters:
step-size o0, discount factor y>0, and the risk parameter p.

3: Initialization: Initialize policy parameters 8 € R¢ (e.g. to 0).
4: while True do
5. Generate an episode following the policy 7(-|-;0),

i.e., so~po, a~mt(-[s¢;0) and s ~p(-|s¢, ag),

generating a sequence of state-actions sy, ao,..., |1, Qj/_
6: fort=0to |r|—ldo
7 Re Y
8: (S (—Bt.‘f—OQ/l%Chﬁv10gﬂfal|8t;9[_]
9: endfor
10: end while
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Risk-Sensitive RL Algorithms Using MDP

Algorithm: Risk-sensitive Online Actor-Critic [NMB22, NMB23]

Algorithm Risk-sensitive Online Actor-Critic

QA

7:
8:

9.

16:
11:

. Input: a differentiable policy parametrization 7t(als; 0).
. Algorithm parameters:

step-sizes o>0 and &>0, discount factor y>0,and the risk parameter .

. Initialization: Initialize policy parameters 6 € R¢

and value parameters w € R4’ (e.g. to 0).

. while True do

fort=0to|t|—1do
Starting at an initial state s,
take an action by following the current policy a~7(-|s;0)
and observe the successor state s, ;~p(-|s¢, a;), and the reward r,
ﬁ,-;, — Bre+yInVp(sii;wi)
R

Orp1 ¢ Op + oyt - (e"B — Vj (s, wi))V log mt(ast; 0)

1B

w1 — wi + ayt(e®r — Vp(si;w ) )V Vg (s wy)
end for
end while
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Risk-Sensitive RL Algorithms Using MDP

Simulation results (Training and Testing behavior):
Risk-Sensitive REINFORCE (Double Pendulum)
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Figure: Training and testing behavior of the risk-neutral REINFORCE (Alg. 1) and risk-neutral REINFORCE with baseline (Alg. 2) algorithms against the
proposed risk-sensitive R-REINFORCE algorithm (Alg. 4) for B = —0.1 and B = +0.1 in the Acrobot problem. Average reward, CVaRo 1.and CVaRg o
values (for L = 1.0) are computed over 10 independent training and testing runs with different random seeds.
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Risk-Sensitive RL Algorithms Using MDP

Simulation results (Robustness):
Risk-Sensitive REINFORCE (Double Pendulum)
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Figure: Robustness of risk-neutral REINFORCE (Alg. 1), risk-neutral REINFORCE with baseline (Alg. 2), and risk-sensitive R-REINFORCE (Alg. 4) algorithms in
the Acrobot environment with respect to varying pole length. The training environment is modeled with pole length 1 = 1.0. The testing environments
have perturbed pole length values of L € [0.7, 1.3]. Average reward, CVaRgy 7, and CVaRy ¢ values are computed over 10 independent training and

testing runs with different random seeds.
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Risk-Sensitive RL Algorithms Using MDP

Simulation results (Training and Testing behavior):
Risk-Sensitive Actor-Critic (Double Pendulum)

F
-125
3
[
o _150
and| F B=0 Qs e A0 Q75| = £g=-001
—— CVaRp1= — 148.57 —— (VaRp1= —148.78 —— CVaRp1= —125.83
—200 ~—— CVaRpg= —92.82 -200 —— CVaRpg= —92.13 —200 1 #—— CVaRpg= —85.53
Training Phase  Testing Phase Training Phase Testing Phase Traning Phase Testing Phase
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 a 500 1000 1500 2000 2500 3000
# Episodes # Episodes # Episodes
(a) Risk-neutral (b) Risk-seeking (c) Risk-averse

Figure: Training and testing behavior of the risk-neutral Online Actor-Critic (OAC) (Alg. 3) algorithm against the proposed risk-sensitive R-AC algorithm (Alg.
5)for p = —0.01 and = +0.1 in the Acrobot problem. Average reward, CVaR 1, and CVaRg ¢ values (for 1 = 1.0) are computed over 10 independent
training and testing runs with different random seeds.
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Risk-Sensitive RL Algorithms Using MDP

Simulation results (Robustness):
Risk-Sensitive Actor-Critic (Double Pendulum)
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Figure: Sensitivity analysis of the risk-sensitive R-AC algorithm (Alg. 5) with respect to the risk-sensitive parameter § € [—0.01,0.01] in the Cart-Pole
problem. 3 = 0 corresponds to the risk-neutral Online Actor-Critic (OAC) (Alg. 3). The training environment is modeled with pole length 1 = 0.5. Average
reward, CVaRy 1, and CVaRy o values for testing environments with | € {0.3, 0.5, 0.7} are computed over 10 independent training and testing runs with
different random seeds.

58



Risk-Sensitive Safety Filters

e The idea is to decouple optimality and safety by independently determining safe
and optimal control laws. Before applying an optimal, but potentially unsafe

control input to the real system, its safety is checked, such that a safe control
input can be chosen instead.

i1 = [l ug, wy), (23)

o s (@) =argmin |[7* (x) — u| (24)
uclU

such that u is safe. (25)

e When the dynamics of the systems are known to exhibit a control-affine

structure, control barrier functions (CBF) can be effectively employed to address
this challenge.
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Risk-Sensitive Safety Filters

@ Risk-sensitive safety conditions: in order to ensure the probabilistic satisfaction of state
constraints, we introduce cost functions that allow us to express safety through risk-sensitive conditions on the
cumulative cost along system trajectories. These conditions reveal an intuitive relationship between the

risk-aversion and safety probability.

® Safe policies and value functions through RL: Based on these results, we develop an
approach for determining safe policies and corresponding safety value functions using common techniques
from RL. The success of the proposed approach is shown to be guaranteed under weak assumptions relating

to the controllability properties of the system dynamics.

© Inhibitory control through safety filters: By enforcing the satisfaction
of the derived safety conditions with the learned value function online, we obtain a risk-sensitive safety

filter. Moreover, we prove it to inherit probabilistic safety guarantees from the safe policy obtained through RL.
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Risk-Sensitive Safety Filters

Risk-sensitive safety conditions

Proposition
[LNHBZ23]consider a cost function c(-) satisfying the conditions that

c(e) > ¢ Ve € Xynsafe- (26)

If there exist constants &, B € R with & <& such that

RB[VW(:BJF]] <é, Va € V:‘:"r, Rg[C] == %log (E[exp (BC)]) (27)

holds for x* = f(x,w(x),w), then, =(-) is 5-safe, i.e, P(f(x,m(x),w) € V) >1-17,0n V& with

d=exp(B(&—-E)). (28)

.

This result provides a straightforward condition, which merely requires the evaluation of the risk operator and the

computation of the cumulative cost. Moreover, it offers a simple expression for the probability of safety.
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Risk-Sensitive Safety Filters
Safe backup policies via RL (7. =argminE,[V, (x)])

mell

[LNHB23] Consider a cost function c(-) satisfying (26) and assume that there exist a policy 7(-) and constants 6,6, € R
with 0, < 1/(1—v) such that

Ve(z) < 0rc(z) +0;, VaeX (29)

is satisfied. Moreover, assume there exist constants 63,04 € Ry . such that
Velx) > 03¢c(x)+04, VeeX (30)

holds for all policies = (-). If

S _ 9 (31)
0301 (y—-1)+1) 03

holds, then, the policy (22) is §*-safe on Ve« with 8* = exp (B* (£* —£)), where

p*,&* = argmin exp (B (£§—E)) St E&<E (27) holds. (32a)
BER—H‘EER—F
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Risk-Sensitive Safety Filters
Risk-Sensitive Inhibitory Control for Safe RL

we employ the risk-sensitive filter

o) :argni’lljin |7m* () — u| (33a)
uc
S.L. Rﬁ[vﬂ'safe[f[m)u)w)ﬂ S E-* (33b)

Theorem

[LNHBZ23] Consider a cost function c(-) satisfying (26) and a threshold ¢, for which (31)

holds. Moreover, assume that there exists a policy 7 (-) satisfying (29) with 6, < 1/(1—) for
all x € Xqyre. Then, the safety filtered policy (33) is 8*-safe on V5 with
0* =exp (B* (&* —&)), where p* and &* are defined in (32).
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Risk-Sensitive Safety Filters

Simulation results

]OO — _B:0.0]--- B:O.OSIIIIIIBZO.]_‘T\'*

avg. reward # constraintviol.

) ' | | | | | | | | |
0 0.5 ] 1.5 2 2.5 3 3.5 4 4.5

A&

Figure: Number of constraint violations and average rewards in dependency on the safety constraint threshold & = 521 + A& and the risk-sensitivity /3.

Reducing p and increasing & have a similar effect of admitting more risky behavior in the response inhibition, such that the number of constraint violations
and the average reward increase.

o
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Risk-Sensitive Safety Filters

Summary of results

Inspired by the psychological concept of inhibitory control, this paper proposes a
risk-sensitive method for rendering arbitrary policies safe.

This method is based on the introduction of cost functions, such that state
constraints can be expressed in terms of value functions.

We show that this formulation allows us to employ standard RL techniques for
obtaining policies that their only goal is to ensure safety.

Based on the determined safe policies and corresponding value functions, a
risk-sensitive safety constraint is employed to enforce the satisfaction of state
constraints online. Thereby, risk-sensitive inhibitory control is realized and its
effectiveness is demonstrated in simulations.
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Exponential Loss for Deep Neural
Networks (T. Poggio et al, PNAS 2020)

Theoretical issues in deep networks

Tomaso Poggio®', Andrzej Banburski®, and Qianli Liao®
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Exponential Loss Function

The standard approach to training deep networks is to use
stochastic gradient descent to find the weights W, that minimize

the empirical exponential loss L = % > e~ Ynf (@) by computing

: Of (Wi 2n) —ynf(Wsan)
Wi = e Yn n 1
* de N Z Wi, =
on a given dataset {z,,y,} Vn=1,..., N with y binary. Since
Instead

B.1. Constrained minimization. Constrained optimization of the
exponential loss, using Lagrange multipliers, minimizes L =

% 3o e—Punf (Vi) ynder the constraint || Vi|| =1 which leads
us to minimize

1 I " .
=NZ"’ pynf(V; n)+z,\k“pk||2 [2]
n k

with A such that the constraint || Vi||=1 is satisfied. We
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Exponential Loss Function

B.2. Fixed p: minima. Gradient descent on £ for fixed p wrt Vy
yields then the dynamical system

: 1 » 3 ar(Vv;=,)
— Pynf(vrfnf s
because A\x = %p% 5l e~ Pynf(Vizn)y £(V; ), since V,F Vi =
0, which in turn follows from || V3 ||* = 1.

THEN

C.2. Summary theorem. The following theorem (informal state-
ment) summarizes the main results on minimization of the
exponential loss in deep ReLU networks:

Theorem 4. Assume that separability is reached at time To dur-
ing gradient descent on the exponential loss; that is, y,f (W xz,) >
0, ¥n. Then unconstrained gradient descent converges in terms of
the normalized weights to a solution that is under complexity control
for any finite time. In addition, the following properties hold:
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Exponential Loss Function

In summary, there is an implicit regularization in deep net-
works trained on exponential-type loss functions, originating
in the gradient descent technique used for optimization. The
solutions are in fact the same as those that are obtained by reg-
ularized optimization. Convergence to a specific solution instead
of another of course depends on the trajectory of gradient flow
and corresponds to one of multiple infima of the loss (linear net-
works will have a unique minimum), each one being a margin
maximizer. In general, each solution will show a different test
performance. Characterizing the conditions that lead to the best
among the margin maximizers is an open problem.
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Advancing ML and Al and Applications



Foundations of Al and ML

Rigorous Mathematics for Deep Networks — Universal
Architecture emerging (“One Learning Algorithm Hypothesis”)

Non von-Neumann computing — do not separate CPU from
Memory — Synaptic NN, in-memory processing -- HTM

Universal ML -- Integrate Deep NN and Synaptic NN

Knowledge Representation and Reasoning: Integrate
Knowledge Graphs and Semantic Vector Spaces

Progressive Learning, Knowledge Compacting

Link Machine Learning with Knowledge Representation and
Reasoning

Inspirations from neuroscience: attention, memory, time
scales
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Advancing Al and ML for
Autonomy: our Approach

* Rigorous Mathematics for Deep Networks — Universal Architecture emerging

Feedback Classification
Input y A 4 /Decision
data . . . . .
Multiresolution| ,| Nonlinear . Learning/Clustering| output
Preprocessor Features Postprocessor

Fig.: Universal model and architecture abstraction of ML and DL algorithms

* Inspired by the “One Algorithm Hypothesis” — Andrew Ng *

* Non von-Neumann computing — do not separate CPU from Memory — Synaptic
NN, in-memory processing -- HTM

* Universal ML -- Integrate Deep NN and Synaptic NN

* Knowledge Representation and Reasoning: Integrate Knowledge Graphs and
Semantic Vector Spaces

* Progressive Learning, Knowledge Compacting
* Link Machine Learning with Knowledge Representation and Reasoning

* Inspirations from neuroscience

* A. Ng --https://www.microsoft.com/en-us/research/wp-content/uploads/2013/01/andrew-ng_machinelearning.pdf
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Progressive Learning with
Deterministic Annealing Optimization

® Iterative machine learning algorithms:
What about model complexity and hyper-parameter tuning?
Novel dissimilarity measures — Bregman divergences

D Progressively growing neural networks ; |
* Online deterministic annealing learning algorithm* '
* Online, gradient-free training (a) Concentric circles.

* Progressively growing number of neurons Fon N N N
* Interpretable, avoids poor local minima, robust = % - 0 00w g
wrt the initial conditions (b) Half moons.
 Memory efficiency, reduced computational & & & .. .
complexity R i % . B R
* Control over the complexity-accuracy trade-off fze o
(¢) Gaussians.
» 1.0 A it | 10 /—J—HJB
go,a f - 08 /
Sos 5 xa Most recent: Self-Organizing
I — SVM 04 — SVM .
%04 — NN —w | Maps w Bregman Divergence
& — RAF 02| — RF ..
02l —— DA | —ooa  [Mavridis, Raghavan, Baras, 2021
0 200 400 600 800 1000 00773 20 40 60 80 '
#0bserved samples #0Observed samples
(a) Gaussians. (d) Credit Card (F1 score).
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C. N. Mavridis and J. S. Baras, “Online Deterministic Annealing for Classification and Clustering,” ArXiv (submitted to IEEE TNNLS)
*C. N. Mavridis and J. S. Baras, “Annealing Optimization for Progressive Learning with Stochastic Approximation,” submitted to IEEE TACON



ODA — Supervised and Unsupervised Learning

N
- Observations: XN 1= {xi}izl, xi €S realizationsofarv. X € S

* Codevectors: |l — {,U,Z}i\il, Mg c S

Clustering Not Enough: ~ min D(X, Q) :=E[d(X, Q)] = /p(x) > p(uilz)d(w, i) da

Online Deterministic Annealing Adaptive

min FT := D — T'H for decreasing values of T.

n

Robust
Progressive

nere H(X,Q) i= E [~ log P(X,Q)) = H(X) ~ [ p(x) 3 plule) logp(yulo) do

=  Lagrange (Temperature) Coefficient T

>
>
>

Controls Performance/Complexity Tradeoff
Simulates Annealing Optimization (Temperature)
Stochastic Approximation
* Simultaneous local system identification/reinforcement learning
Triggers Bifurcation
*  Progressively adjust number of regions/codevectors
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ODA — Supervised and Unsupervised Learning

Bifurcation and the number of codevectors

» Sequentially solve: minFr_:=D T H
min Fr, := D —ToH , 1; <111 : Decreasing Temperature

» Remark. AsT — oo, we get u; = E[f(X)], Vi, i.e., one unique pseudo-input.

» Remark. As T is lowered below a critical value, a bifurcation phenomenon
occurs, and the number of pseudo-inputs increases.

Err.: 0.085 Err.: 0.008
i
o e .l 1.
N e 4 S
LI Fa \ * . [
E Fe. ‘io i *e3
. * y
» * 1 ;-' " .Z.::n- * * '-‘
- = A L AR~ —{ w1
*’5 T uf. g *ele,
B 13 5 12 . F e e
o p o 1 ,?‘ .
) & . e
[obs.: 0040, T =.0900, K = 001] [Obs.: 0614, T =.0094, K = 005) [Obs.: 1248, T = .0030, K = 010) [obs.: 3201, T =.0012, K = 041

[
»

> Performance-Complexity Trade-off

Mavridis, Baras, Online Deterministic Annealing for Classification and Clustering, IEEE TNNLS 2022.
Mauvridis, Baras, Annealing Optimization for Progressive Learning with Stochastic Approximation, IEEE TAC 2022.
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Online Deterministic Annealing (VII)

Multi-Resolution Hierarchical Learning

Low
Resolution

>
R >
firin(X, 0 1)
>
Hi
igh >
Resolution
>

_L*®)

Vi-1=V;&W;.

Constructive (Structured Representation)
Provably Consistent

Localization
o Emphasis on regions with high error

Asynchronous/Parallel Computation

Reduced Complexity

Mavridis, Baras, Multi-Resolution Online Deterministic Annealing: A Hierarchical and Progressive Learning Architecture [under review].
Mavridis, Baras, Towards the One Learning Algorithm Hypothesis: A System-theoretic Approach [under review].

Example: Group-convolution Wavelets g
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ODA — Connection to Risk-Sensitive Optimization

» Jayne’s Maximum Entropy Principle

* Most “Unbiased” estimator: each sub-problem induces “good” initial conditions for the next

* Duality (Legendre-type) and Regularization:

1 : 1
—logEp, [eﬁz] = Pyé%f(m {Epu [Z] — EDKL(Plla-P[L)} , B<0

5
&’ . 1 8D
min Fpr ~ mlnglogE[e }7 f=-
Risk-Sensitivity L’ 1

B

* Robustness w.r.t. initial conditions, input perturbations.

1
T

logE [¢?/] = E[J] + gVar [J] + O(8?)

Mavridis et al., Risk Sensitivity and Entropy Regularization in Prototype-based Learning, IEEE MED 2022.
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Reinforcement Learning Robot Control with
Progressive State-Action Aggregation

® Q-learning in infinite state/action spaces?

D Adaptive State Aggregation® @
- Ad-hecdiseretization —
Adaptive State Aggregation e > . *@
* Towards progressively

growing/changing models**
* Memory efficiency, reduced
computational complexity

® Inverted Pendulum Optimal Control 1000
a «m= None *
& = SOM 4
3 800 /
£ =¢= ODA /
5 600 /
4 a
400 *

2 / 7
W »*

1 & 200 o———l et b
— am"

0 _lﬂlmiw

625 aggregate states — 5 bins/dimension ! 1.25 150 175 2.00 225 250 275
Number of aggregate states (/logig)

*C. N. Mavridis and J. S. Baras, “Vector Quantization for Adaptive State Aggregation in Reinforcement Learning,” ACC 2021
***C. N. Mavridis, N. Suriyarachchi and J. S. Baras, “Maximum-Entropy Progressive State Aggregation for Reinforcement Learning,” CDC 2021
C. N. Mavridis and J. S. Baras, “Online Deterministic Annealing for Classification and Clustering,” ArXiv (submitted to TNNLS)



References

* Mavridis, Christos N., and John S. Baras. "Annealing optimization for progressive
learning with stochastic approximation.” IEEE Transactions on Automatic Control
(2022).

* Mavridis, Christos N., and John S. Baras. "Online deterministic annealing for
classification and clustering." IEEE Transactions on Neural Networks and Learning
Systems (2022).

* Mavridis, Christos, and John Baras. "Multi-Resolution Online Deterministic
Annealing: A Hierarchical and Progressive Learning Architecture.” arXiv preprint
arXiv:2212.08189 (2022) [submitted to IEEE Transaction on Signal Processing].

* Mavridis, Christos, and John Baras. "Towards the one learning algorithm hypothesis:
A system-theoretic approach." arXiv preprint arXiv:2112.02256 (2021).

e Mavridis, Christos N., and John S. Baras. "Convergence of stochastic vector
guantization and learning vector quantization with bregman divergences." IFAC-
PapersOnLine 53.2 (2020): 2214-22109.

e Mavridis, Christos, Erfaun Noorani, and John S. Baras. "Risk sensitivity and entropy
regularization in prototype-based learning." 2022 30th Mediterranean Conference

o, ON Control and Automation (MED). IEEE, 2022.

X % The

L] SERE

N /
TRy ¥ Research



Trustworthy Autonomy in Multi-agent Systems
with Safe Learning: Approach/Results

— -—

Exploration |

Safety and Time-Critical Multi-robot missions

Modeling + Decomposition

Formal Methods
Self-

Sl Control Theory Monit

Temporal Logic

and Hvbrid Optimal Control

or , y .- ——
. Self- oo o b0 mam FL
A Mixed-Integer Corre ) il
o : Linear ct \ ( -
< Piibjectto  dx+s—b, GUARANTEED! ‘
e safety and finite-time
— and x e Z",
]

mission completion

Composable, real-time mission planning Safe learning Real-time, fast algorithms

[1] Fiaz and Baras, 2020. Fast, Composable Rescue Mission Planning for UAVs using Metric Temporal Logic, IFAC World Congress, 2020
[2] Fiaz et al., 2021. Composable, Safe Mission Planning for UAV-Based Inspection tasks, for IEEE CS-L
[3] Fiaz et al., 2021. Safe, Hybrid, Real-time Trajectory Planning for Quadrotors with Finite-Time Guarantees, for IEEE RA-L 84



Assured Autonomy in Multi-agent Systems
with Safe Learning: Our Approach

 Composable, hybrid mission planning for multlagent systems
* MTL specifications to represent complex mis: { 2
e Systematic decomposition into sub-tasks
* Fast, optimization-based planning method

* Assurances or guarantees
» Safety of all agents
* Finite-time mission completion
e Real-time performance (almost)

* Dealing with uncertainty
* Self-monitoring for MTL sub-tasks
 Self-correction using Event-triggered MP(
» Safe learning
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Simulation and results: Performance

* Example: Execution times for sub-ta<7it ():

Table 5.3: Timing analysis for the sub-tasks ¢F for the whole mission

Sub — task of Execution time without safe Execution time with safe
learning (steps) learning (steps)
o1y (A—H) 21 < 30 24 < 30
1 S = = :
-~ 08
S
o 06
=}
°
o
£ 04
O
o
= 02
0 L -

l 1 1 L 1 1 1

0 5 10 15 20 25 30 35 40 45 50

Time (steps)




Several Contributions

* Composable, realtime, hybrid mission planning with
safety and finite-time guarantees
e UAV-based search and rescue scenario with evacuation

* Search and rescue scenario with a team of ground robots in
a leader-follower setting

* UAV-based inspection tasks in a smart factory

 Safe learning mechanism for multiagent systems with
MTL specifications
* Self-monitoring for MTL sub-tasks
 Self-correction with event-triggered MPC
* UAV-based surveillance missions



Safe Navigation

Interaction & Risk Aware Approach (RMOP)
Which lane and at what speed to drive?
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Major Challenges:
 Quantification of risk associated with each on-road agent
* Interaction and feasibility considerations for high-risk situations

St
:.»*‘E r“ba Tariq, Faizan M., et al. "RMOP: Risk-Aware Mixed-Integer Optimization-based Planning for Highway Navigation." IEEE Inthtlllﬁe for

) Transactions on Intelligent Transportation Systems (2023). In Review. bVS el’n‘s
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Approach - Risk Evaluation 89

Risk: “Likelihood and severity of the damage that the ego vehicle
may suffer in the future”

p: X - R
Vehicle-specific Risk: pf=3.CvaR, (4%) + (1 — B) - CVaRa, (WF)
Acceleration Ang. Velocity
. . . (X —w]”
Conditional Value-at-Risk:  CVaRa(X) = ;}gg{E{w+ ﬁ}
gA
£ | . 1—-«a
|< Probability »‘
| Wﬂﬂmdmm _
| | Cost

Expected cost VaR CVaR Worst case

Tarig, Faizan M., et al. "RMOP: Risk-Aware Mixed-Integer Optimization-based Planning for Highway Navigation." IEEE

S Transactions on Intelligent Transportation Systems (2023). In Review. I The
~ ® nstitute for
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Approach - Risk Evaluation 90

Risk-Aware safety margin _—— = =) _}

Relative Risk-Agnostic Risk-Aware

Speed Trajector i
Risk-Agnostic safety margin P J 4 Trajectory

Tarig, Faizan M., et al. "RMOP: Risk-Aware Mixed-Integer Optimization-based Planning for Highway Navigation." IEEE
Transactions on Intelligent Transportation Systems (2023). In Review.
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Comparative Analysis (Single Scenario) - Qualitative 91

RMOP (Ours — Risk & Interaction Aware)

Eile Ponels Help
Eamteact 9 Move Camens Iselect Focus Camera Mexure 0 PoseEstimate /20N Cosl @ Publish Point

* @ Global Options
Fixed Frame
Background Color
Frame Rate
Default Light

¥ Global Status: Ok

+ @ Grid

+ & Unattached Camera

bje:

wall Time: 1677826626.07 Wall Elapsed: 84.94

Tariq, Faizan M., et al. "RMOP: Risk-Aware Mixed-Integer Optimization-based Planning for Highway Navigation." IEEE
Transactions on Intelligent Transportation Systems (2023). In Review.
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Future Directions

Tighten this theory

Develop further general duality between performance
measures and coherent risk measures

Extend to multi-agent systems
“Mathematize” Prospect Theory

Design specialized hardware
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Thank you!

baras@umd.edu
301-405-6606
https://johnbaras.com/

Questions?
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https://johnbaras.com/

