
Integrated support for working with guidelines: the
Sherlock guideline management system

D. Grammenos, D. Akoumianakis, C. Stephanidis*

Institute of Computer Science, Foundation for Research and Technology—Hellas
Science and Technology Park of Crete, GR-71110 Heraklion, Crete, Greece

Abstract

For a number of years, the primary medium for propagating human factors input to interactive
system development has been paper-based guideline reference manuals. However, in the recent past,
a number of tools for working with guidelines have emerged to ease the tasks of: (i) accessing and
retrieving guidelines, (ii) applying recommendations to design prototypes, and (iii) facilitating a
more effective human factors input to the early stages of system development. This paper presents a
new way for working with guidelines and discusses the functionality, properties, typical use and
evaluation of a supporting tool environment, theSherlock Guideline Management System.Sher-
lock builds upon and extends the results of previous efforts to address state of the art requirements
and problems, as highlighted by recent practice and experience in the use of the current generation of
guideline management systems. In particular,Sherlock provides an integrated environment for
articulating and depositing guidelines, accessing past experience, propagating guidelines/recom-
mendations to the user interface development life-cycle, and facilitating the automatic usability
inspection of tentative design. Thus,Sherlock fosters persistency of organisational knowledge on
guidelines and evolution of the accumulated design wisdom.q 2000 Elsevier Science B.V. All rights
reserved.

Keywords:Guideline management system (GMS); Tools for working with guidelines; Automatic
usability inspection; User interface design support

1. Introduction and background

Guidelines constitute a popular means for integrating human factors input into the life-
cycle of interactive computer-based products and services. In the mainstream human
computer interaction (HCI) field, guidelines have been in use for a number of years and
have contributed substantially to the development of a human factors culture within

Interacting with Computers 12 (2000) 281–311

0953-5438/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0953-5438(99)00015-6

* Corresponding author. Tel.:1 30-81-391741; fax:1 30-81-391740.
E-mail address:cs@ics.forth.gr (C. Stephanidis)

www.elsevier.com/locate/intcom

commercial organisations and institutions. The term guideline, in the present context,
entails all forms of abstract or concrete recommendations that may be used to design
interactive software. Such guidelines may be expressed: as general and domain indepen-
dent recommendations [1]; as platform-specific style guides [2–5]; or as experience based
usability heuristics [6,7]. Guidelines are typically documented in reference manuals, stan-
dards or may be part of the corporate culture and practice of an organisation (i.e. custo-
mised corporate design wisdom).

The primary use of guidelines is during the early phase of design of an interactive
system and provide a means of utilising the accumulated design experience, as consoli-
dated by the organisation, or as available in the general literature (i.e. software ergo-
nomics, human factors, etc). As such, guidelines offer guidance towards a desired end,
as opposed to a pre-packaged or fixed solution. Typically, a design team will consult the
guideline reference manual several times before reaching the stage of a high fidelity
prototype, which can be subsequently used for further usability analysis through user-
testing, inspections or otherwise.

Despite the sound human factors input propagated into interactive software develop-
ment life-cycle through guidelines, a number of problems have also been encountered. In
what follows, an attempt is made to briefly summarise some of the main shortcomings in
employing guidelines during the user interface design process, and to identify means of
potential improvement.

First, a review of the available guideline reference manuals reveals that in the majority
of cases the consolidated material is expressed as either general or platform specific rules.
In the former case, guidelines are independent of any particular context, while in the latter
case, they relate to a particular library of interaction objects, such as Windows95, and
provide guidance on the physical and in some cases the syntactic aspects of interaction.
Domain-independent guidelines typically raise a compelling need for contextual interpre-
tation; a task which is both interaction and collaboration intensive. Moreover, any inter-
pretation effort is bound by the capability, experience and breadth of the knowledge of the
designer (or the specialist involved).

A second drawback is that guidelines are not always experimentally validated or the
experimental evidence is inconclusive (e.g. research results available on the use of speech
versus keying). In general, the currently available experimental work, though substantial,
does not cover the broad range of alternative and novel design options that become
available by advanced interaction technologies. Moreover, due to radical changes that
occur in the mainstream Information Technology industry, some of the past experimental
results rapidly become invalid or out of context.

Thirdly, guidelines are often difficult to communicate to developers. In particular,
recommendations derived from guidelines are not always comprehensible or easily appro-
priated by the development team. This is not only due to the typically demanding task of
implementing these recommendations, but also due to the doubts that are frequently
expressed regarding the validity of a particular recommendation in a given design case.

Another potential shortcoming is that design recommendations derived through differ-
ent sets of guidelines are often conflicting (sometimes, such conflicts may be encountered
even within the same set of guidelines). In other words, one guideline may invalidate
another guideline. At the same time, guideline documents or reference manuals offer no

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311282

natural way of resolving ambiguities, which typically leads to arbitrary decisions by the
design team.

In certain cases of domain specific guidelines, the special vocabulary used poses addi-
tional problems (e.g. accessibility guidelines for disabled users). This arises from the
language used in these documents, which is not always comprehensible by the designers
or the developers of user interfaces. As a consequence, additional training is usually
required before the development team can effectively and efficiently use a guideline
manual and implement the relevant recommendations.

In addition to the above shortcomings, several studies investigating the use of guidelines
by designers and developers have concluded that guidelines are frequently ignored. This is
partly attributed to the fact that such knowledge is not easily exploitable by user interface
designers [8], and partly due to the view that guidelines and style guide documents are
inefficient ways of communicating human knowledge factors to the designer [9,10]. This is
especially the case when guidelines are not translated into unambiguous design specifica-
tions with explicit content and scope, or when the guidelines reference manual becomes
voluminous.

The appreciation of these shortcomings has led many researchers to consider alternative
media for making guidelines more usable during the early design phases. One recent
approach in this direction is the development of tools for working with guidelines. This
paper falls within this line of work and aims to address the issue of potential improvements
upon the currently available design practice and methodologies for propagating human
factors design input into the user interface development life-cycle. In this context, the
present work reports on a new framework and supporting tools environment for the
consolidation, retrieval and propagation of guidelines into user interface design and devel-
opment activities.

The paper is structured as follows: the following section reviews the results of recent
work related to tools for working with guidelines. The analysis identifies available
systems, their primary scope and purpose, their underpinning assumptions, and provides
the motivation and rationale for the work undertaken which is described in subsequent
sections of this paper. Then, the supporting tool environment is presented, in terms of its
architecture and functionality. Subsequently, the results of a user-based evaluation of the
Sherlock Guideline Management System are presented. The paper concludes with a
summary and discussion of the outcomes of the present work.

2. Related work

In order to address some of the problems identified in the previous section, but also as an
attempt to provide facilities for automated evaluation of interactive components in soft-
ware applications, a number of recent research efforts have investigated the possibility of
providing computer-based support for working with guidelines. The normative perspec-
tive in these efforts has been to facilitate more effective and efficient human factors input
in early design activities. Work in this area has addressed a range of issues related to the
access and retrieval of guidelines, the consolidation of guidelines into rule-based compo-
nents and their subsequent integration within a user interface management system, as well

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 283

as the possibility of critiquing tentative designs based on a selected subset of encoded
guidelines. In the following, we review some of these efforts, with the intention to identify
their underpinning assumptions, scope and type of human factors support provided, as well
as some of their shortcomings.

2.1. Tools for working with guidelines

Tools for working with guidelines can be broadly classified into four main categories,
namely, tools for access and retrieval of guidelines, expert system components for auto-
mated user interface evaluation, computational critics for assessing tentative designs, and
tools for working with experience-based usability heuristics.

The first category aims towards the development of tools for accessing and retrieving
guidelines organised either as a database or hypertext. These tools have emerged recently
as an approach to making designers aware of existing guidelines and style guides as
reported in documents. Representative examples of this class of tools are SIERRA [11],
GuideBook [12], and HyperSAM [13].

Another approach is the development of knowledge based systems for the evaluation of
a user interface and its subsequent refinement by the designer. Indicative systems which
have been developed to pursue this line of work include Reisner’s early work [14] on
assessing simplicity and consistency of commands represented in a BNF grammar, the
work by Blesser and Foley [15], the KRI/AG system [10], IDA [16] and the EXPOSE
system [17].

More recently, there has been work in the area of critiquing tentative designs [18] and
either reporting (the lack of) compliance against guidelines, or actively applying guideline
prescriptions so as to automatically update a design. The primary focus of these systems is
to empower designers of user interfaces when designing low level details of a user inter-
face. In the literature, there have been a few reported efforts illustrating the use of this
technique in particular design domains [19–21].

Finally, there have been efforts aiming to consolidate past experience of an organisation
into a usability cases repository that can be used to recall past design problems and
solutions given, as well as to support human-factors knowledge persistence and evolution,
as the organisation’s expertise in a particular area grows and expands. An example of this
category of systems is the Mimir prototype [6,7]. The objective of this approach builds on
the notion of creating a critical mass of design materials from an existing collection of
guidelines and providing tools for contextualising them into the organisation’s line of
activities, as well as depositing new experience which can be revised and reused in future
design problems.

2.2. Motivation and rationale of the present work

The present work is motivated by the normative perspective that tools for working with
guidelines should provide a collaborative, extensible and evolutionary medium, offering
more than mere access to guideline reference manuals or hypertext retrieval. In this
endeavour, we seek to address the current limits in automated user interface evaluation
[22,23], with the intention to extend the range of functionality and the scope of existing
tools, towards an integrated computer-based platform for working with either general,

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311284

platform-specific or experience-based guidelines. To this effect, the current work builds
upon the relative merits of each category of tools described above and provides a frame-
work and a supporting tool environment which: (i) integrates alternative perspectives (i.e.
guidelines access and retrieval, automated evaluation, expert critiquing and use of experi-
ence-based rules) and (ii) empowers both the design team during the early phases of
prototypical development and the usability analyst when inspecting prototype versions
to assess compliance against an agreed set of rules or a standard.

3. The Sherlock framework for working with guidelines

In order to provide a contextual account of the development ofSherlock, we propose
that before presenting the technical details of the system, we briefly elaborate the specific
objectives and requirements driving the work being presented. The objectives ofSherlock
were four-fold. First, it was considered important to provide facilities for accommodating
a broad range of guidelines, including general-purpose guidelines, standards recommen-
dations, experience-based heuristics and corporate styleguides. To this effect,Sherlock is
totally open as to the source or the range of the guidelines considered relevant to a
particular design problem. However, the system does require that guidelines are consoli-
dated and become embedded into a guideline knowledge server that can be interrogated by
one or more clients. In case of multiple guideline sources or different versions of a
particular reference manual,Sherlock provides mechanisms for identifying ambiguities
resulting from conflicting or duplicate guidelines and offers guidance to the designer so as
to resolve the conflict.

A second objective was to provide a system that would augment the design process by
supporting access and retrieval of guidelines,silent andactivecritiquing, error reporting
and reuse of past experience.Sherlock offers a range of functionalities to facilitate the
above. More specifically, usability problems encountered by the system are linked directly
to an online version of the guideline reference manual in use, thus enabling the designer to
immediately diagnose which guideline was violated by a particular design defect. Criti-
quing is facilitated by assessments of tentative designs and can take the form of either
silent (i.e. identification and reporting of design defects) oractive(i.e. identification and
correction of design defects) critiquing. The responsibility, as to what mode of critiquing is
to be employed lies solely with the designer. Additionally, design problems detected are
linked to past design cases in which the same or similar problem was encountered and the
system informs the designer as to how the design defect had been addressed.

The third technical objective driving the development ofSherlock was the need for
inter-operation of the guideline management system with an existing and popular user
interface development system. This would bring human factors design input, embodied in
guidelines, closer to user interface development and implementation. To facilitate this,
Sherlock was implemented as anadd-in to the Visual Basic Development Environment.
This decision was based on the popularity of Visual Basic amongst academic and indus-
trial practitioners. It should be noted however, thatSherlock follows a client/server
model, which means that the server (containing the guideline knowledge) may be exposed
to a broader usage context than that of the Visual Basic environment.

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 285

Finally, the fourth objective of the present work was to construct a system which would
provide an evolutionary and extensible medium for working with guidelines. This means
that the system should be tailorable and customisable to the changing needs of an
organisation, while providing a powerful mechanism for accumulating organisation-
wide experiences and design wisdom. Such a requirement immediately raises the issue
of extensibility which concerns the hooks offered by a system to allow for the introduction
and depositing of new material. As shown in the following sections,Sherlock implements
an explicit extensibility model with a dedicated set of function calls allowing the content
of the server to be updated and refined.

3.1. System overview

A contextual overview of theSherlock system is depicted in Fig. 1. The shaded area
identifies theSherlock server and highlights typical activities undertaken by the intended
users. The server integrates guidelines (as rules) and inspection routines from various
sources, local or remote to the server. Typical users of the server, are usability
professionals, including design teams introducing corporate style guides. On the other
hand,Sherlock clients can be used by developers, user interface designers or usability
experts. The distinctive characteristic of this context model is that clients send user

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311286

Fig. 1. Sherlock overview.

interface descriptions for inspection to the server, while the server reports back to them the
identified design deficiencies derived through usability inspection.

Sherlock is a client/server guideline management system (GMS). The server and client
modules can reside on the same or different computers that are connected through the
Internet or through a company’s intranet and communicate using the TCP/IP protocol. The
server module runs under Microsoft Windows 95 and the client module is an add-in to the
Visual Basic 5.0 Integrated Development Environment (IDE). Both modules are imple-
mented using ActiveX technologies that enableSherlock to appropriate some of their
important properties such as:

• interoperabilityof components regardless of their creator;
• language independenceso that components written in different languages can work

together;
• component versioningto enable alteration or upgrade of a component without affecting

other components and applications that make use of it;
• transparent use of the networkallowing the distribution of applications.

Sherlock takes advantage of these properties to provide an extensibility model in which
modifications or updates of (i) the rule base, (ii) the inspection routines and (iii) the system
components, are easy to make and are immediately propagated to the client in a way
transparent to the application user.

As already pointed out, the server’s role is the inspection of user interfaces on the basis
of specific usability guidelines and the reporting of possible guideline violations. Addi-
tionally, the server is also responsible for keeping the clients up-to-date, whenever the rule
base is updated, keeping track of guideline violations encountered, as well as for conso-
lidating knowledge about users’ solutions to usability problems. The client’s role is to send
a textual description of a user interface to the server for inspection and then report the
inspection results to the developer.

3.2. The rules

In the context of theSherlock GMS, a rule is derived through the interpretation of a
relevant guideline and is embedded—in an application-specific format—in theSherlock
rule base. In order to provide easy, intuitive and effective rule handling by the user, the
embedded rules are classified according to two criteria; namely, the rule’sclass and
inspection type.

A rule’s classis an attribute derived from the observation that collections of guidelines
usually have a hierarchical structure that can be represented as a tree. Therefore, this
attribute depicts the full path from the root of a guidelines collection tree to the leaf
containing the specific guideline. For example, the ISO 9241 standard [24] contains 17
parts each of which is further decomposed into sections which, in turn, contain subsections
that are groups of thematically-related guidelines. The root of the tree is ISO 9241, the
branches are the parts, the sections, the subsections and the leaves are the guidelines. Thus,
for example, a rule’s class can be:ISO 9241/Part 12/5. Organisation of Information/5.9
Labels.

The rules are not structured according to any particular guideline. The structure of the

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 287

available rules is dynamically created, every timeSherlock starts, by decomposing the
classproperty of each rule.

Inspection typesfall into three categories, namely ‘Automatic’, ‘ Semi-automatic’ and
‘By the user’. This classification is grounded on the notion that automatic evaluation is
possible for only a subset of the available guidelines [22]. The reasons for this are two-
fold. Firstly, there are guidelines that require task-specific knowledge or end-user infor-
mation which cannot be reliably inferred by the system. Then, a large set of guidelines
examine the interactive behaviour of the application. SinceSherlock is operating on the
user interface design environment, only static characteristics of the interface can be
acquired. Because of these requirements, three inspection types were identified. These
are described in Table 1.

Most—if not all—guideline documents contain guidelines that belong to all of the
above inspection types. This is an additional reason why a tool for working with guidelines
should be capable of integrating any of these categories.

TheSherlock rule base is independent of the physical implementation of the rules. This
practically means that any type of rule can be integrated. In order to achieve this

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311288

Table 1
Rule inspection types

Inspection
type

Description Example

1.
Automatic

This category contains rules that can
be automatically evaluated by the
server.

‘Field labels and labels for other screen elements
including text boxes, list boxes, combination boxes and
icons, are consistently located adjacent to the displayed
field, group or screen element’ (ISO 9241: Part 12/5.
Organisation of Information/5.9 Labels/5.9.5 Label
Position)
In this case the system can decide whether this rule is
violated or not by examining the given interface
description and propose corrective actions.

2. Semi-
automatic

This category contains rules that refer
to a particular interface element e.g.
to a label, but additional external
knowledge is needed in order to
decide whether this rule is violated or
not.

‘Field labels explain the content of the fields’. (ISO
9241: Part 12/5. Organisation of Information/5.9 Labels/
5.9.3 Designation)

In this case,Sherlock acts as a
guideline “reminder” and presents the
situation as a possible rule violation
but it is left to the user to decide
whether this is a problem or not.

The system can deduce that this rule is relevant, since the
interface does contain a label, but there is no way of
deciding whether the label explains the specific field.

3. By the
user

This category contains high-level
rules that the system cannot infer if
they are relevant. These rules are
usually general recommendations and
they refer to the interactive behaviour
of the application or to user
characteristics

‘ Information should be located to meet user
expectations’ (ISO 9241: Part 12/5. Organisation of
information/5.2 Organisation of information/5.2.1
Location of information)

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 289

Table 2
Rule profile

Property Description Examples/set of values

Key A unique string description that identifies a
rule. This feature is to be used only by
application programmers.

“DGRule1.2.3”

Title The rule’s title. Though not imposed by the
application, rules belonging to the same class
should have distinct titles.

“5.9.5 Label Position”

Class A string that contains the full path of the
class this rule belongs to (see Section 3.2
Rules).

“ISO 9241/Part 12/5. Organisation of
Information /5.2 Organisation of
information”

A class can contain other classes and/or
rules. The rules classes are neither fixed, nor
explicitly declared.Sherlock builds
dynamically a class tree by analysing the
class information of each rule’s profile.
Because of this fact there are no empty
classes in the tree.

Description A short textual description of the rule. “Field labels and labels for other screen
elements including text boxes, list boxes,
combination boxes and icons, are
consistently located adjacent to the
displayed field, group or screen element”

Severity
rating

A rating that denotes the severity of a
usability problem detected. Severity ratings
are used to help developers prioritise the
fixing of usability problems but also to get an
overall picture of the interface’s usability.

0—“No Problem”
1—“Cosmetic Problem”
2—“Minor Problem”
3—“Problem”
4—“Major Problem”
5—“Usability Catastrophe”

Inspection
type

(see Section 3.2 Rules)

—“Automatic”
—“Semi-Automatic”
—“Inspection by the User”
http://www.guidelines.com/heuristics/
labels.html

Related
theory page

This attribute is actually a URL of a web
page. Each rule can be associated with a web
page—or even a whole web site- that
contains relevant information, such as,
theoretical background, in-depth description,
violation and correction examples.
These pages are presented in a customised
web browser with specific features that assist
navigation through collections of diverse and
dispersed web pages about rules.

Reference A bibliographic reference to the source of the
rule.

“Microsoft Corporation. The GUI Guide:
International Terminology for the Windows
Interface. Redmond, WA: Microsoft Press,
1993. ISBN 1-55615-538-7, pp. 73”

implementation-independence, a short profile must be completed for every rule by the rule
author. This profile contains the pieces of information depicted in Table 2. The procedure
for identifying ambiguities and conflicts between rules uses this profile, and thus, it is not
fully automated, since it relies on human input; but this is the only way that such semantic
information can be elicited.

3.3.Sherlock server

The server module is the core of theSherlock GMS and has an open and easily
extensible architecture. In the current version,Sherlock uses the TCP/IP protocol for
communicating with clients, but since messages are plain ASCII text, other ways of
network communication can also be used, e.g. e-mail.

The server’s main task is two-fold: the inspection of user interfaces according to specific
usability guidelines, and the subsequent reporting of possible guideline violations. There
are no rules or inspection routines embedded in the server module. These parameters
reside in external modules (Dynamic Link Libraries or DLLs) that can be created by
any programming language that has the ability of creating ActiveX DLLs. Extension
DLLs can reside locally on the server site, or be dispersed over the Internet. The inspection
is performed upon an abstract user interface object hierarchy that is built by the client
module. This means that the data handled by the server are platform-independent. Thus,

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311290

Table 2 (continued)

Property Description Examples/set of values

Permission Sherlock enables users to ask for specific
rules or set of rules to be ignored during the
usability inspection. For a variety of reasons,
as for example lack of expertise, teaching of
a new set of rules, or inappropriateness, the
system administrator might decide that
specific users or user groups should not have
this privilege over specific rules.

—“All”

This attribute contains a list of users that
have the permission to select whether a rule
will be ignored or not during the inspection.

—“None”
—“Administrator, User123”

Enabled The default state of a rule when added to the
rule base. A rule’s state can be altered only
by users who are included in the rule’s
permission list (see above).

—“True”
—“False”

Conflicts with A list of rule keys belonging to rules that are
known to conflict with the current one.

“MyRule1, Heuristic1.2.3, ISO9241-5.4.3”

Author The rule’sauthor. “John Doe”
Source
component

The name of the DLL component in which
this rule resides. This piece of information,
along with the Author, is used for helping
administrators resolve conflicts between
components that have overlapping sets of
rules

“myExtension.dll”

the same server can accommodate clients integrated in different development platforms
without any modifications or reprogramming of the system.

The server is also responsible for: keeping the clients up-to-date whenever the rule base
is updated; keeping track of guideline violations encountered; and, consolidating knowl-
edge about users’ solutions to usability problems.

Typically, users of the server module are expected to be usability experts, that can:

• serve as administrators of the system, upgrading the rule base by using third-party
components, customising the rule base for specific end-users, refining and updating
the rules’ descriptions and help pages;

• act as third-party component providers by building new rule components for extending
the rule base;

• build focused and effective training programmes for customer companies by studying
the database of frequent usability problems and past solutions.1

The Sherlock server comprises five basic components (Fig. 2), which are briefly
discussed below.

3.3.1. The user interface composer
Theuser interface composertakes as input a textual user interface description received

by a client through the communication module and converts it into a hierarchical structure
that is later used by theusability inspector module. The root of this structure is aproject. A
project containsforms(windows) which in turn containcontrols. Some controls, that are
usually referred to ascontainer controls, can contain othercontrols, eitherplain ones or
othercontainers.

A thorough study of a substantial set of guidelines from a variety of different sources,
reveals that a considerable percentage of them refers to specificcontrols, such aslabels,
buttons, etc. For this reason, theuser interface composerprovides to the rules programmer
a set of functions for easy and direct access to collections of related controls, in order to
avoid the time-consuming and error-prone task of browsing through the whole interface
structure.

3.3.2. The client/server communication module
This module is built using Windows Sockets and is responsible for the communication

between the client(s) and the server. Incoming messages are delivered to the recipient
components and their reception is acknowledged to the sender. Outgoing messages are
sent and retransmitted as necessary. We are currently extending the functionality of this
component with additional functions, such as data compression and encryption.

Input to this module are messages sent by clients over the network. Such messages can
be: requests for connection and disconnection, descriptions of hierarchical user interface
elements for inspection, the client’s list of disabled rules and the client’s usability
problems and correction history (with the user’s permission). The output of thecommu-
nication module, are messages sent from the server to a specific client. These messages

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 291

1 In a future version ofSherlock, such tutorials and training sessions will be offered on-line through the client
module.

include: connection acceptance and rejection, a list of inspection results and a list of the
server’s new version of rules.

3.3.3. The clients’ profiles database
This database is a repository of client-related information, which is summarised in

Table 3.

3.3.4. The rules handler module
At the start-up of the server, therules handlerinitialises the server’s rules collection by

using all the available sources of rules. Sources of rules can be local or remote DLLs. Each
DLL contains a list of rules and a set of the respective inspection routines. The rules
handler interrogates the DLL to find out which rules it contains. In case some DLLs
contain overlapping sets of rules (e.g. two different DLLs have a set of rules about ISO
9241-Part17) the rules handler prompts the administrator to prioritise the rules’ sources
and can keep track of user preference for automatic conflict resolution (e.g. when there are
more than one sources for rules about the ISO 9241, always prefer the DLL at the ISO
server).

New sources of rules can be easily added by declaring the name and location of a DLL.
With the help of the rules handler, the administrator can browse through the rules that this
DLL offers, and select a relevant subset for inclusion in the server rules. When the rule
base changes, the rules handler notifies the clients and sends them an updated version of
the rules.

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311292

Fig. 2. Sherlock server architecture.

Extending the rule base is another important functional objective of this module. To this
effect,Sherlock provides an open and extensible environment for accommodating a broad
range of guidelines, that may range from very specific platform-dependent styleguides to
high-level usability standards.

The rule base and the relevant inspection routines can be extended by ActiveX DLL
components. Such components can be developed in any programming language that
supports ActiveX DLL programming and can reside on the same computer as theSherlock
server, or on any other computer connected to the Internet. This feature offers a very
flexible and effective mechanism for updating, since a component author has just to
replace the component at his site without also having to redistribute it to customers.

TheSherlock extensibility model describes the specific programming interface (set of
functions) that extension DLLs must support. The only constraint imposed on the rules’
developer is the existence, and calling conventions, of the routines used for declaring new
rules and for reporting usability inspection results. The actual implementation of the
inspection routines is totally unconstrained.

A typical extension DLL contains a class named ‘Connect’, which is used by the server
for creating and communicating with new extension components. The ‘Connect’ class
should contain (at least) the following two routines:

1. Public Sub Rules_Declare(Server as clsServer): this routine is used to declare to the
server the rules that this component contains. The body of this routine consists of a list
of calls to theRule_Declarefunction (Table 4) of the server, which describes a rule’s
profile, as depicted in Table 2.

2. Public Sub Evaluate(UITree As clsUITree, ruleKeys As String): this routine is invoked
by the server during inspection, to ask the DLL component to execute the routines that
are responsible for evaluating the interface against the rules that are contained in the
ruleKeysargument (this argument contains a list of rule keys). TheUITreeparameter is

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 293

Table 3
Clients’ profiles database content

Table Description

Communication history When and for how long a client was connected to the server, unsuccessful
connection attempts (e.g. due to wrong password), the number of requests for
evaluation made, the size of data exchanged, etc.
This information is mainly used for logistic and security reasons but it can also
be used for more efficient load balancing in case more than oneSherlock
severs exist. For example, clients that are known to produce high payloads can
be distributed across different servers.

User data Data used for user identification. Name, password, etc.
Client’s last version of the
disabled rules list

As mentioned before, every client has a list or disabled (inactive) rules that
should not be taken into account during the inspection process. In order to
minimise the size of the communication data this list is sent to the server only
when it has changed. The server stores this list in the clients’ profiles database
and retrieves it whenever needed.

Past knowledge Information about frequently encountered usability problems and corrections
provided by the user.

a reference to aUser Interface Treestructure that will be used by the inspection
routines (Table 5) to report any rules violations found.

Sherlock does not impose any constraints upon the way the related evaluation routines
will be selected, executed or implemented.Sherlock just informs the DLL about which
rules it expects evaluation results for. This particular design enables the DLL programmer
to optimise the code of the evaluation routines. The implementation allows the program-
mer to evaluate more than one rules using the same routine. Such a property can substan-
tially decrease the inspection time, as well as the lines of code written, through re-
usability; moreover, it supports structured programming and easier and more effective
code management.

Finally, any usability problems found are reported to the server through calling the
UP_Reportroutine (Table 6). If the DLL attempts to report a problem regarding a rule
which was not included in the request made by the server, or a rule that does not exist, the
server simply ignores the report and saves this violation information for administrative use.

As an illustrative example, let us assume that a new rule is to be accommodated. The
description of the rule is “Field labels should be followed by a colon (:)”. The code in
Table 4 would enable the server to detect that the new rule has been introduced and the
code in Table 6 would report a violation of this rule.

3.3.5. The usability inspector module
As mentioned earlier, there are no inspection routines embedded in the server module.

Sherlock relies on external routines that are provided with the extension modules. The
usability inspector moduleselects the routines that should be executed depending on (a)
which rules are active and (b) the partial user preferences—in case more than one modules

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311294

Table 4
Declaring a rule

Function Rule_Declare (Key, Title, Description, Class, Severity,
InspectionType, Optional Enabled, Optional
RelatedTheoryPage � “ kNonel”, Optional Reference �
“ kNonel”, Optional Permission � “All”, Optional
ConflictsWith � “ kNonel”, Optional Author � “ kUnknownl”,
Optional SourceComponent � “ kUnknownl”) As Long

Note: To simplify the function’s parameters the arguments’ data types have been ommited as well as whether
they are passed ‘by reference’ or ‘by value’.
Example:
Public Sub Rules_Declare(Server As clsServer)

Call Server. Rule_Declare (“Sheur1.1.2”, “1.1.2
Missing colon ‘:’ ”, “Field labels should be followed by
a colon (:)”, “Sherlock Heuristics/1.Layout/1.1
Labels”, SRProblem, IT Automatic, True,”
http://www.server.com/HelpPages/Heuristics/Layout/
MissingColon.html”, “Sherlock Style Guide, pp. 67”,
“All”, “ kNonel”, “Me”, “SherlockHeuristics”)

End Sub

offer inspection routines for the same rule. Then, it activates the relevant DLLs and asks
them to inspect the given user interface for specific rules violations. Each DLL, reports
rule violations directly to the inspector module. At the end of this stage, a report is
compiled and is sent to the client.

3.4.Sherlock client

The main characteristic of the client’s design (Fig. 3) is simplicity. Users should not be
overwhelmed by a highly complicated application.Sherlock was intended to be as easy to
use as a spell checker, a goal that, arguably, has been accomplished; in the simplest
scenario of use, all the user has to do is press the ‘Evaluate’ button and then review the
evaluation report.

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 295

Table 5
Calling the evaluation routines

In the simplest case, the evaluation routine can be a big ‘Case’ clause, for example:
Public Sub Evaluate (UITree As clsUITree, ruleKeys As String)
Dim colRuleKeys As New Collection, ruleKey As Variant
‘First create a list containing the ruleKeys

ruleKeysList_Create(colRuleKeys, ruleKeys)
‘For each ruleKey call the related routine

For Each ruleKey In colRuleKeys
Select Case ruleKey

Case “SHeur1.1.1”
Call LabelTextAllInCaps (UITree)

…
Case “SHeur1.2.1”

Call OKCancelPosition (UITree)
…
Case “SHeur4.1”

Call FeedbackProvision (UITree)
End Select

Next
End Sub
In other cases, the same routine may be used to evaluate more than one rules, e.g.:
Public Sub Evaluate (UITree As clsUITree, ruleKeys As String)
Dim colRuleKeys As New Collection, RelatedRuleKeys As Variant,

colRelatedRules as New Collection
‘First create a list containg the ruleKeys

ruleKeysList_Create (colRuleKeys, ruleKeys)
‘then collect ruleKeys for rules evaluated by the Routinel in a list
RelatedRulesList_Create (colRuleKeys, colRelatedRules, Routinel)

‘and call the routine
Call Routinel (UITree, colRelatedRules)

‘then collect ruleKeys for rules evaluated by the Routine2 in a list
RelatedRulesList_Create (colRuleKeys, colRelatedRules, Routine2)
‘and finally call the routine

Call Routine2 (UITree, colRelatedRules)
‘etc.
End Sub

The client’s main role is to compile a textual description of a user interface created in
the Visual Basic 5.0 Integrated Development Environment (VB 5.0 IDE), send it to the
server for inspection and then report the inspection results to the user. A synopsis of the
results is presented in the form of a list. The user can browse through this list and get
detailed information about each violation found, such as the cause and the severity of the
problem, recommended actions, theoretical background and examples, as well as past
solutions. Finally, the client enables the user to disable subsets of inspection criteria
from the server’s rule base.

Typical users of the client module include developers/programmers who want to have a
“ just-in-time” evaluation of the interface they are working on, user interface designers who
wish to obtain on-line and relevant reference of guidelines related to the interface being
designed, as well as usability analysts that can useSherlock as a support tool for expert
usability evaluation.

The Sherlock client comprises six basic components (Fig. 4), which are briefly
discussed below.

3.4.1. The client/server communication module
This module is practically identical to the server’scommunication module. Input to this

module are messages sent from the server, such as connection acceptance and rejection,
inspection results and a list of the server’s new version of rules. The module’s output

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311296

Table 6
Reporting usability problems

Public Sub UP_Report (RuleKey, UIComponent, ShortDescription, Solution,
Optional LongDescription � “ kNonel”, Optional pPossibleSideEffects �
“ kNonel”)
e.g.
Call Uitree.UP_Report (“SHeur1.1.2”, tFormNode.frmName & “.” &
tControlNode.ct1Name, “The label should be followed by a colon ‘:’ ”, “Convert
it to: “& tCaption & “:”, “The label” & tFormNode.frmName & “.” &
tControlNode.ctlName & “should be followed by a colon (“& tCaption &”)”,
“ kNonel”)

Fig. 3. TheSherlock client.

consists of requests for connection and disconnection, descriptions of hierarchical user
interface elements for inspection, the client’s list of disabled rules and the client’s usability
problems and correction history.

3.4.2. The client’s profile database
This database is used to store:

• Client’s last version of the disabled rules list: this data enables the restoration of the
user’s last selection of disabled rules when the client is invoked.

• Client’s last version of the server’s rules list: in order to minimise network commu-
nication, the client keeps a local version of the server’s rules. Whenever these rules
change, the server informs the client, and the client updates its database.

• Past knowledge: information about frequently encountered usability problems and
corrections provided by the user.

3.4.3. The rules handler
The client’srules handleris the part of the system that is responsible for the visualisa-

tion and handling of the rule tree. The rules are presented in two forms:

3.4.3.1. Tree view
The rules are presented in a tree structure (Fig. 5), resembling the standard view of

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 297

Fig. 4. Sherlock client architecture.

Windows Explorer. Rule classes are presented as tree branches, while rules as tree leaves.
Active rules and classes are preceded by a green tick mark (U), while the disabled ones
are preceded by a red diagonal cross mark (×). If the current user does not have permis-
sion to modify a rule’s state, then the rule’s preceding symbol is enclosed in a red circle
(, ^). The user can toggle the state of a rule (provided that permission is granted)
simply by clicking on it.

When a rule is selected, its profile is presented in the text box underneath the tree. If the
selected rule is known to conflict with one or more already active rules, the system informs
the end-user accordingly. Then, the end-user has three options: (a) disable all the rules that
are in conflict with the new one; (b) do not activate the new rule and; (c) activate the new
rule as well. In the latter case, when the inspection results are presented in the Inspection
Results Window (Section 3.4.5), an extra heading named ‘Conflicts With’ is added; under

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311298

Fig. 5. Tree view of the rules.

this heading, the conflicting recommendations appear. When a rule class is selected, this
text box contains the full path of the class and the number of rules it contains. Below the
description box, there is a frame containing three check buttons. Each of these buttons
represents one inspection type. When a button is checked, rules belonging to the relevant
inspection type are enabled (and presented), otherwise the rules are disabled (and hidden).
After configuring the rule tree, the user can either append preferences to the client’s
profile, or just cancel the changes made and reset the rule tree to the last saved one.

3.4.3.2. List view
The rules are presented as a list (Fig. 6). Root classes do not have a prefix. Child classes

have as prefix a number of minus signs ‘2 ’. The number of minus signs equals the depth
of the class in the rule tree multiplied by three. The list has two columns. On the left one,

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 299

Fig. 6. List view of the rules.

classes and rules are listed. On the right one, there is a ‘Yes’ or a ‘No’ clause, describing
whether the rule or class is active. In case that the user does not have permission to modify
the state of specific rules or classes of rules, the clause is preceded by an equal sign (‘�
Yes’, ‘ � No’). The rest of the controls are shared between both presentation styles.

3.4.4. The user interface analyser
Theuser interface analyseris a non-interactive module of the client. Its function is to

parse a Visual Basic project and create a textual description of the user interface (Table 7).

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311300

Table 7
Sample textual description of a VB project

Sample project Textual description

In order to minimise the data sent over the network, default property values are used. The
client keeps a table of default values for a range of properties of a form or a control. When
the textual description is created, a property is appended to it, only if it differs from the
default value. This technique has been shown in practice to reduce the description’s size up
to 80%.

3.4.5. The inspection results report module
As Jeffries states in Ref. [25], the most critical aspect of usability inspection, is commu-

nicating the results to the developer. It is quite often the case that problems are overlooked
because of lack of understanding, or sometimes, false alarms occurring that lead to
changes that will have no positive impact on usability and might even make the applica-
tion less usable. In this respect,Sherlock provides an in-depth analysis of each rule
violation detected (Table 8), that helps the developer acquire an accurate understanding
of the area and facilitates a more informed judgement on the usability issues involved.

The inspection results reportwindow comprises three parts (Fig. 7). In the upper part, a
single problem is presented using all the available information. In the middle of the
window, a set of push buttons allows the user to (a) move to the next/previous problem,
(b) access background information about the problem (such as related theory and
examples), (c) view a history of previous solutions to the same problem (Fig. 8) and (d)
classify the current problem as ‘Fixed’ or ‘ Not Applicable’.

When a rule violation is detected, a usability problem is reported that is automatically
classified as ‘Active’. Browsing through the inspection report, the user can explicitly declare a
problem as ‘Fixed’ and optionally provide information on the actual steps taken to tackle the
problem (Fig. 9); alternatively the user may decide that the violation reported was ‘Not
Applicable’ to the specific interface. This classification data is stored in the user’s profile as
part of the inspection history. All the classification actions are reversible. The user can easily
move a ‘Fixed’ or a ‘Not Applicable’ problem back into ‘Active’ state. In this case, all the
related modifications made to the user’s profile are automatically undone. The above
approach to problem classification was selected in order to assist the developer in

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 301

Table 8
Description of a rule violation

Attribute Description

Problem area The component(s) of the interface related to the rule violation.
Usability problem A short description of the usability problem.
Severity rating See Table 2.
Class See Table 2.
Inspection type See Table 2.
Solution A suggested corrective action.
Long description A more detailed description of the problem.
Possible conflicts A list of detected problems, that might conflict with the current one.
Status The status of a problem can be:

1. Active
2. Not applicable
3. Fixed—in this case, if information about how it was fixed is provided by the user, it is
presented as well

organising the task at hand, by providing a quick overview of the problems found, the ones
which have been taken care of, those ignored, as well as those still pending.

The lower part of theinspection results reportwindow is a list that contains one of the
following, depending on the user’s choice: (a) all the problems found, (b) the ‘Active’
problems, (c) the ‘Fixed’ problems, (d) the ‘Not Applicable’ problems. Each list entry
represents a single problem detected, and contains a short description of the problem, its
status, diagnosis type and severity, the user interface component(s) related to the violation
and, finally, a numerical identifier which correlates a list entry with the (sequence number

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311302

Fig. 7. Inspection results report.

of the) rule presented in the main part of the window. The list can be sorted by any one of
these attributes. The user can retrieve more details about a specific usability problem
simply by clicking on it.

3.4.6. The rules help module
The rules help moduleis a customised web browser (Fig. 10) that presents rule-related

information to the user. The main problem with this type of information is that, since it
comes from different sources, it does not have a specific structure or format. The format
can be “homogenised” through the use of common web page design guidelines, but there is
no way for creating an explicit structure, since the related data is changing dynamically
and may be distributed over the Internet. This is why, this module creates on-the-fly a
“ table of contents page”, based upon theClassinformation in the rules’ profiles, which
presents the underlying (implicit) structure of the information. This “table of contents
page” is always accessible to the user, through a dedicated browser button. In addition to

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 303

Fig. 8. Reviewing deposited information.

the traditional ‘Back’ and ‘Forward’ buttons, this browser provides ‘Previous Rule’ and
‘Next Rule’ buttons, that are used for navigating the information structure.

4. Evaluation

Sherlock was evaluated by eight expert users with substantial experience in user
interface design. All users have a Bachelor’s, a Master’s or PhD degree in Computer
Science, and three to eight years experience in the field of human–computer interaction.
The user group consisted of five males and three females whose age ranged from twenty-
five to forty years.

Since there are no existing systems depicting equivalent functionality withSherlock,
the focus of the evaluation was: (a) to verify that the implemented tool was actually
functioning as intended, (b) to identify and to correct usability problems of its user inter-
face, (c) to assess its usability and usefulness, as perceived by potential end-users, and (d)
to elicit user comments for improving the current design and extending the system’s
functionality. In order to focus on the tool, rather than the rules, only a small sample
was used. The rules were selected in such a way that every aspect of the system’s func-
tionality could be explored during the evaluation.

The evaluation was an assessment of the subjective opinion of the eight users regarding
the tool. A number of instruments were investigated, including the QUIS questionnaire
[26], the SUMI questionnaire [27] and the IBM Usability Satisfaction Questionnaires [28].
The selected technique was the IBM Usability Satisfaction Questionnaires. These

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311304

Fig. 9. Depositing information about fixing a problem.

questionnaires constitute an instrument for measuring the user’s subjective opinion in a
scenario-based situation. Two types of questionnaires are typically used; firstly, After-
Scenario Questionnaire (ASQ), is filled in by each participant at the end of each scenario
(so it may be used several times during an evaluation session), while the other one, namely
Computer System Usability Questionnaire (CSUQ) is filled in at the end of the evaluation
(one questionnaire per participant).

The primary criteria used to select the IBM Computer Usability Satisfaction Question-
naires as opposed to other questionnaires, include the following. Firstly, these question-
naires are available for public use, whereas the alternatives require the acquisition of a
license from their vendors. Secondly, and perhaps most importantly, the IBM Computer
Usability Satisfaction Questionnaires have shown to be extremely reliable (0.94). With
respect to SUMI, it should be mentioned that it is equally reliable, but this reliability is
derived from an increased number of questionnaire items. Thirdly, the IBM Computer
Usability Satisfaction Questionnaires do not require any special software since they are

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 305

Fig. 10. Rules help module.

not computationally demanding. Fourthly, the time required to analyse the results is
substantially less in the case of the IBM Computer Usability Satisfaction Questionnaires.
Finally, another important determinant was the fact that the IBM Computer Usability
Satisfaction Questionnaires have been in use for several years now at various industrial
cites and research centres.

The result of the subjective evaluation with the IBM Computer Usability Satisfac-
tion Questionnaires is a set of psychometric metrics which can be summarised as
follows:

• ASQ metric provides an indication of a participant’s satisfaction with the system for a
given scenario;

• OVERALL metric provides an indication of the overall satisfaction score;
• SYSUSE metric provides an indication of the system’s usefulness;
• INFOQUAL metric is the score for information quality;
• INTERQUAL metric is the score for interface quality.

The design of the evaluation followed a two phase process. The first phase
involved the selection of a suitable technique (see above), the preparation of suitable
scenarios and instruction materials, and the identification of the subjects. The second
phase involved the collection and analysis of data, the identification of usability
problems and the compilation of a set of recommendations. A small post-evaluation
questionnaire was also used to provide information on the background of the
subjects.

4.1. Evaluation procedure

All subjects were provided with the same software and accompanying material and each
of them filled in the post-evaluation questionnaire. Two different simple interfaces were
constructed in the VB 5.0 IDE. The first one, was alogin form (Fig. 11). The second one
was a data entry form, from aphone directoryapplication (Fig. 12).

Sherlock was equipped with a set of nine rules, belonging to four different classes,

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311306

Fig. 11. Sample login interface used during evaluation.

namely, Layout, Colour, Wording and Feedback. All these rules were applicable to the
interfaces built. The rules are presented in Table 9. At first, a five minute demonstration of
theSherlock GMS was given to each subject separately. Then, each subject had to execute
the two scenarios described below.

Scenario 1: Minimal interaction with the system
The subject was presented with a VB 5.0 IDE in which thelogin formuser interface was
already loaded. Before activatingSherlock, each subject was asked to inspect the user
interface using their own experience and write down on paper any usability problems
identified. Then, each subject had to activateSherlock, connect to the server and ask for
evaluation. When the evaluation data was received, the subject had to try to fix the
problems reported, without having to report how this was done. Finally, when the subjects
considered that they had successfully corrected the problems reported, they had to re-
submit the interface to evaluation and interpret the report received.
Scenario 2: Interaction with various parts of the system
The subject was presented with the second user interface, and once again was asked to
evaluate it, withoutSherlock’s assistance, and write down their assessment. Then, after
activatingSherlock, each subject had to use therules handlerto deactivate any rules
considered irrelevant, as well as the rules having a ‘Semi-automatic’ or ‘ By the user’
inspection type. After that, each subject would issue an evaluation request.

When the evaluation data was received, the subject had to try to fix the problems
reported, but also provide information to the system about how this was accomplished,
following Sherlock’s functionality as described in Section 3.4.5. The subject also had to
review history and background information about at least two of the problems reported.
During the execution of the scenario, the subject had to classify a problem as ‘Not
Applicable’, but later move it back to the list of ‘Active’ problems. Finally, when the
subject considered that all problems reported were corrected, the subject had to re-submit
the interface to evaluation and interpret the report received. In case that the same or new
problems appeared in the list, the subject was allowed to iterate through the same process,
for one more time.

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 307

Fig. 12. Sample phone directory interface used during evaluation.

D
.

G
ra

m
m

e
n

os
e

t
a

l.
/

In
te

ra
ctin

g
w

ith
C

o
m

p
u

te
rs

1
2

(2
0

0
0

)
2

8
1

–
3

1
1

308

Table 9
Rules used for evaluation

Title Description Class Inspection type

1.1.1 Text in all capital letters Do not use text in all capital
letters

Sherlock Heuristics/ 1.
Layout/ 1.1 Labels

Automatic

1.1.2 Missing colon ‘:’ Field labels should be followed
by a colon (:)

Sherlock Heuristics/ 1.
Layout/ 1.1 Labels

Automatic

1.1.3 Alignment of labels Labels should be left aligned Sherlock Heuristics/ 1.
Layout/ 1.1 Labels

Automatic

1.2.1 Location of OK and Cancel ‘OK’ should always be either to
the left or over ‘Cancel’

Sherlock Heuristics/ 1.
Layout/ 1.2 Buttons

Automatic

1.2.2 Button size Buttons that are at the same
level should have the same size

Sherlock Heuristics/ 1.
Layout/.1.2 Buttons

Automatic

2.1 Avoid red & blue
combination

Do not show pure red and blue
together

Sherlock Heuristics/ 2. Color Automatic

2.2 Avoid white & yellow
combination

Do not show yellow on white Sherlock Heuristics/ 2. Color Automatic

3.1.1 Avoid long sentences Avoid using too long sentences Sherlock Heuristics/ 3.
Wording/ 3.1 Labels

Semi automatic

4.1 Feedback provision Always provide feedback to the
user

Sherlock Heuristics/ 4.
Feedback

By the user

4.2. Evaluation results

The evaluation results are summarised in Tables 10 and 11. The slight increase in the
scores observed between the two scenarios in Table 10, reflects their difference in required
user interaction load.

The overall attitude of the users towards the system was positive, as can be seen in Table
11. Since none of them had used any similar tool in the past, their main comment was that
this type of tool is very useful for their task and that they would undoubtedly use one, if it
was to become available.

The strong points of the system were found to be its ease of learning, ease of use and
overall efficiency and effectiveness in completing the evaluation scenarios. Although the
users found the system’s interface to be pleasant and intuitive, they also offered helpful
comments towards further simplifying and enhancing it, which will be used in upgrading
the system.

The identified weak points of the system mainly concerned the limited documentation
and on-line help facilities provided. This was a known shortcoming of the prototype
system, attributed to restricted resources at development time, which dictated very limited
and focused help facilities. Another identified weakness, was the need for a comprehensive
undo facility. Furthermore, some of the users had specific requests for additional function-
ality and system capabilities they would have liked to see supported in future versions of
the system.

In general, the evaluation offered valuable insight into the functional and the interaction
characteristics of the system and reinforced the belief that there is an actual need and
demand for computerised tools for working with guidelines to support the tasks of user
interface design and evaluation.

5. Discussion and concluding remarks

TheSherlock GMS is an attempt to integrate several concepts and approaches into an

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 309

Table 10
After-scenario questionnaire (ASQ) results (range from 1—highest—to 7)

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8

Scenario 1 2 3 3.33 1.33 2.33 3 3.67 2.67
Scenario 2 2 3.33 3.67 2 3 3 4 3.33

Table 11
Computer system usability questionnaire (CSUQ) results (range from 1—highest—to 7)

User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8

SYSUSE 2 2.75 2.63 1.38 1.63 2.13 2.63 2.25
INFOQUAL 2.86 4 4.43 1.86 3.14 3.57 4 3.23
INTERQUAL 2 3 2 2.33 2 4 3 2.67
OVERALL 2.3 3.21 3.16 1.74 2.26 3 3.05 2.58

environment for working with guidelines. The work was motivated from a pragmatic
inquiry into the content and scope of a wide range of guideline reference manuals, style-
guides and design heuristics, as well as previous efforts, reporting shortcomings and
obstacles in the use of guidelines.

There is common ground shared betweenSherlock and other available tools for work-
ing with guidelines, but there are also distinctive differences. The most prominent char-
acteristics ofSherlock in this respect, relate to its orientation towards user-centred design
and include: (i) the facilities offered for the support of iterative development life-cycle; (ii)
the provision of early and direct evaluation feedback; (iii) the provision of an integrated
tool environment allowing designers, developers and usability experts to collaboratively
address the demanding issue of usability in modern software engineering.

Most importantly, however,Sherlock extends the scope of previous attempts to provide
tools for working with guidelines by offering explicit support for contextualising guide-
lines, developing corporate styleguides, facilitating design memories and traces of past
experience. In summary,Sherlock is a tool fostering knowledge persistence and evolution
in the area of human factors and guidelines.

The evaluation of the system confirmed the above claims and revealed the added value
resulting from the integration of such tools in the organisational structure and their effec-
tive use to serve real design problems. It is believed that such tools are highly useful for the
early phases of user-centred design and hold the promise of substantially improving upon
current practice. Moreover, such benefits need not necessarily be appropriated by a parti-
cular type of tool, but from a collection of instruments aiming to provide comprehensive
support for exploratory design activities and tight design–evaluation–(re)design feedback
loops. On-going work aims towards facilitating such an objective by integratingSherlock
with other design augmentation tools, currently under development, to offer more compre-
hensive support for design rationale, evaluation and usability assessment.

References

[1] S.L. Smith, J.N. Mosier, Guidelines for designing user interface software, Report No. MTR-10090, ESD-
TR-86-278, Bedford, MA:MITRE Corp., 1986.

[2] Open Software Foundation, OSF/Motif Style Guide, Prentice-Hall, London, 1993 Revision 1.2.
[3] Microsoft, The Windowse Interface Guidelines for Software Design, Microsoft Press, Redmond, WA,

1995.
[4] Apple Computers, Macintosh Human Interface Guidelines, Addison Wesley, Reading, MA, 1992.
[5] IBM, Object-Oriented Interface Design: IBM’s Common User Access Guidelines, QUE, 1992.
[6] S. Henninger, K. Heynes, M. Reith, A framework for developing experience-based usability guidelines, in:

Conference Proceedings of DIS’95, University of Michigan, August 23–25, ACM, 1995, pp. 43–53.
[7] S. Henninger, C. Lu, C. Faith, Using organisational learning techniques to develop context-specific usability

guidelines, in: G. Van der Veer, A. Henderson, S. Coles (Eds.), Conference Proceedings of Designing
Interactive Systems: Processes, Practices, Methods and Techniques (DIS’97), Amsterdam, August 18–20,
ACM Press, New York, NY, 1997, pp. 129–136.

[8] L. Tetzlaff, D. Schwartz, The use of guidelines in interface design, in: CHI’91 Conference Proceedings
Human Factors in computing Systems, New Orleans, Louisiana, April 27–May 2, 1991, pp. 329–333.

[9] N. Bevan, N. Macleod, Usability measurement in context, Behaviour and Information Technology 13 (1/2)
(1994) 132–145.

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311310

[10] J. Lowgren, T. Nordqvist, Knowledge-based evaluation as design support for graphical user interfaces, in:
ACM CHI’92 Conference Proceedings, 1992, pp. 181–187.

[11] J. Vanderdonckt, Accessing guidelines information with SIERRA, in: INTERACT’95, 1995, pp. 311–316.
[12] K. Ogawa, K. Useno, GuideBook: design guidelines database for assisting the interface design task,

SIGCHI 27 (2) (1995) 38–39.
[13] R. Iannella, HyperSAM: a management tool for large user interface guideline sets, SIGCHI 27 (2) (1995)

42–43.
[14] P. Reisner, Formal grammar and human factors design of an interactive graphics system, IEEE Transactions

on Software Engineering SE-7 (2) (1981) 229–240.
[15] T. Blesser, J. Foley, Towards specifying and evaluating the human factors of user-centered interfaces,

Proceedings of ACM Conference on Human Factors in Computing Systems (CHI’82), ACM Press, New
York, NY, 1982 pp. 309–314.

[16] H. Reiterer, IDA: a design environment for ergonomic user interfaces, in: INTERACT’95, 1995, pp. 305–
310.

[17] P. Gorny, EXPOSE: An HCI-counselling tool for user interface design, INTERACT’95, 1995, pp. 297–304.
[18] G.B. Silverman, Building a better critic: recent empirical results, IEEE Expert April (1992) 18–25.
[19] D. Nitsche-Ruhland, D. Zimmermann, CritiGUI—knowledge based support for the user interface design

process in Smalltalk, in: B. Blumenthal, J. Gornostaev, C. Unger (Eds.), Human–Computer Interaction,
Proceedings of the 5th International Conference, EWHCI95, Moscow, Russia, July 3–7, Springer, Berlin,
1995, pp. 179–188.

[20] G. Fisher, A. Lemke, T. Mastaglio, A. Morch, Using critics to empower users, in: CHI’90 Conference
Proceedings, 1990, pp. 337–347.

[21] U. Malinowski, K. Nakakoji, Using computational critics to facilitate long-term collaboration in user
interface design, in: CHI’95, 1995, pp. 385–392.

[22] C. Farenc, V. Liberati, M.-F. Barthet, Automatic ergonomic evaluation: what are the limits?, in: J. Vander-
donckt (Ed.), Proceedings of the 2nd International Workshop on Computer-Aided Design of User Interfaces
CADUI’96, Namur 5–7 June 1996, Presses Universitaires de Namur, Namur, Belgium, 1996, pp. 159–170.

[23] A. Cohen, D. Crow, I. Dilli, P. Gorny, H.-J. Hoffman, R. Iannella, K. Ogawa, H. Reiterer, K. Ueno, J.
Vanderdonckt, Tools for working with guidelines, SIGCHI 27 (2) (1995) 30–32.

[24] ISO 9241, Ergonomic requirements for office work with visual display terminals, International Standards
Organisation, 1994.

[25] R. Jeffries, Usability problem reports: helping evaluators communicate effectively with developers Chapter
11, in: J. Nielsen, R.L. Mack (Eds.), Usability Inspection Methods, Wiley, New York, NY, 1994, pp. 273–
294.

[26] B. Schneiderman, Designing the User Interface: Strategies for effective Human–Computer Interaction, 2,
Addisson Wesley, Reading, MA, 1992.

[27] J. Kirakowski, M. Corbett, SUMI: the software measurement inventory, British Journal of Educational
Technology 24 (1993) 210–212.

[28] R.J. Lewis, IBM computer usability satisfaction questionaires: psychometric evaluation and instructions for
use, International Journal of Human–Computer Interaction 7 (1) (1995) 57–78.

D. Grammenos et al. / Interacting with Computers 12 (2000) 281–311 311

