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ABSTRACT
Honeypots have been shown to be very useful for accurately
detecting attacks, including zero-day threats, at a reason-
able cost and without false positives. However, there are
two pressing problems with existing approaches. The first
problem is that timely detection requires deployment of hon-
eypots in a large fraction of the network address space, many
organizations cannot afford. The second problem is that at-
tackers are evolving, and it has been shown that it is not
difficult for them to identify honeypots and develop black-
lists to avoid them when launching an attack.

In response to these problems, we propose a new architec-
ture that enables large-scale deployment at low cost, while
making it harder for attackers to maintain accurate black-
lists. The Honey@home architecture relies on communities
of regular users installing a lightweight honeypot that moni-
tors unused addresses and ports. Because it does not require
the static allocation of valuable chunks of network address
space, and considering the success of other community-based
approaches such as seti@home, our approach is well-suited
for creating a large-scale honeypot infrastructure at low cost.
Since participation in the system is dynamic as users come
and go, it becomes harder for attackers to maintain accurate
blacklists.

In this paper we discuss the current design of the Honey@home
architecture, a preliminary implementation and describe the
design issues that we faced especially with respect to infras-
tructure robustness, the challenges we have to deal with and
the effectiveness of our approach.

Categories and Subject Descriptors
C.2.4 Computer-Communication Networks [Distributed Sys-
tems]: Distributed applications
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Security
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1. INTRODUCTION
Due to the increasing level of malicious activity seen on to-

day’s Internet, organizations are beginning to deploy mech-
anisms for detecting and responding to new attacks or sus-
picious activity, called Intrusion Prevention Systems (IPS).
Since current IPS’s use rule-based intrusion detection sys-
tems (IDS) such as Snort [23] to detect attacks, they are lim-
ited to protecting, for the most part, against already known
attacks. As a result, new detection mechanisms are being
developed for use in more powerful reactive-defense systems.
The two primary such mechanisms are honeypots [22, 15,
31, 25, 4, 10] and anomaly detection systems (ADS) [29,
28, 13, 19]. In contrast with IDS’s, honeypots and ADS’s
offer the possibility of detecting (and thus responding to)
previously unknown attacks, also referred to as zero-day at-
tacks. Other approaches, like Dshield [3], try to correlate
logs gathered from multiple points and create a summary
of most attacked ports and most popular attacking sources.
However, such systems are able to detect the source and
destination of attacks, not their content.

Honeypots have been shown to be very useful for accu-
rately detecting attacks, including zero-day threats, at a
reasonable cost and without false positives, unlike IDS’s and
ADS’s. However, there are two pressing problems with exist-
ing approaches. First, the effectiveness of honeypots heavily
depends on the unused IP address space they cover. Unused
IP address space can be found in almost every organization,
institution and public body due to underutilized or even
totally empty subnets. However, the deployment of honey-
pots requires both administrative expertise and dedicated
resources that many organizations cannot afford. The sec-
ond problem is that attackers are evolving, and it has been
shown that it is not difficult for them to identify honey-
pots and develop blacklists to avoid them when launching
an attack. Although there are approaches to harden the
identification of honeypots, recent work has shown that it is
relatively straightforward for attackers to detect the place-
ment of certain types of sensors [12, 24].

In response to these problems, we propose a new architec-
ture that enables large-scale deployment at low cost, while
making it harder for attackers to maintain accurate black-
lists. The Honey@home architecture relies on communities
of regular users installing a lightweight honeypot that mon-



itors unused addresses. Because it does not require the
static allocation of valuable chunks of network address space,
and considering the success of other community-based ap-
proaches such as seti@home, our approach is well-suited for
creating a large-scale honeypot infrastructure at low cost.
Since participation in the system is dynamic as users come
and go, it becomes harder for attackers to maintain accurate
blacklists. Users only need to install a lightweight daemon
that runs in the background and is responsible for grabbing
an unused IP address, forwarding the traffic of that space
to a honeypot core and injecting the responses coming from
that core in order to respond to the attackers.

In this paper we discuss the current design of the Honey@home
architecture, a preliminary implementation, the design is-
sues that we faced especially with respect to infrastructure
robustness, and discuss detectability and effectiveness is-
sues.

2. HONEY@HOME DESIGN
Honey@home is designed simple and lightweight, as it

mainly targets on typical home users or administrators unfa-
miliar with honeypot technologies. In a nutshell, Honey@home
forwards traffic to unused IP addresses or unused ports to
a honeypot farm and sends the answers provided by the
honeypots back to the attacker. It is a software package
that needs no special configuration to run and can run on
both Unix and Windows platforms. It is also non-intrusive
as it runs in the background with minimal CPU, memory
and network overhead. Our measurements have shown that
Honey@home client requires less than 2% CPU utilization
and nearly 10MB of main memory for Windows versions.
Similar requirements apply for the Linux version as well.

2.1 Design requirements
Honey@home is a software client that is accessible by ev-

eryone, including malicious users. With that in mind, we
need to fulfill three major requirements:

• The location of honeypots must remain hidden. If
honeypots become known, attacker can try to man-
ually compromise them, evade their detection mecha-
nisms or flood them with junk traffic, forcing them to
waste their time on useless traffic instead of serving
Honey@home clients.

• The identity of Honey@home clients must also remain
hidden. Once it is known, the attacker may blacklist
them and make them “blind” during the time of a real
attack outbreak. Honey@home should be undetectable
– or at least very hard to detect – by attackers. We
discuss about detectability issues in Section 4.

• Attackers must be prevented from automatically in-
stalling Honey@home in the machines they own. In
case that the attackers own a botnet, they must be
forced to setup Honey@home manually to each one of
the bots.

These challenges make Honey@home a more complex ar-
chitecture than a simple packet forwarder. We address all
of the above issues in Sections 3 and 4. Before we proceed
to the challenges, we describe the architecture thoroughly
at Section 2.2. Apart from the three main requirements, we
also need to address the issue that malicious traffic must

not be able to infect any part of the architecture, namely
Honey@home clients, honeypots and intermediate compo-
nents.

2.2 Core architecture
Every Honey@home client is responsible for a single un-

used IP address (unused IP addresses are also referred as
dark) or the unused port space of the machine it is installed
on. All the traffic received by the client is tunneled to the
centralized honeypots of Honey@home core through the Tor
anonymization network[16]. The Tor network provides all
the desired anonymity for both Honey@home users and hon-
eypots. Details about Tor are provided in Section 3. Re-
sponses coming from the core are injected by Honey@home
to the network so as to reach the originators of the traffic.
The architecture of Honey@home is represented at Figure
1. Honey@home clients are connected through an SSL con-
nection to the SSL server component. The SSL connection
is passing through the TOR anonymization network. The
server component handles the client connections and it is
responsible for validating users and forwarding their pack-
ets to honeypots. Users are validated by supplying a key to
the SSL server. They key is obtained after the user regis-
ters at the official website of Honey@home. All registration
information and user keys are stored in a MySQL database.
After the user is validated, her packets are sent to honeypots
and responses from honeypots are sent back to the user.

We run both low- and high-interaction honeypots to han-
dle user’s packets. Honeyd[22] is used as low-interaction
honeypot. Honeyd is a very popular and lightweight sys-
tem with many interesting properties, such as network stack
emulation. We use honeyd as a mechanism to filter out
uninteresting traffic, such as TCP connections that do not
complete the three-way handshake or attacks that can be
easily emulated, for example SSH brute-force attacks. All
the other traffic is forwarded to high-interaction honeypots.
The forwarding is performed by a hand-off mechanism[11]
we implemented inside honeyd. Honeyd creates a new con-
nection with the high-interaction honeypot and sends all
the application content it receives. The handoff is based on
the destination port. For example, if an attacker wants to
connect to port 445 or 139, the connection is forwarded to a
high-interaction honeypot emulating the Windows XP oper-
ating system. As the choice of high-interaction honeypot is
static, this means we may loose attacks for services that can
run on multiple platforms. Examples of such services are
web servers (Linux Apache or Windows IIS?), SMB shar-
ing (Linux SAMBA or Windows sharing?) and many more.
However, our choice is currently made based on popularity of
applications in terms of users and attack instances. For our
prototype system, we emulate a limited number of services
and applications and more specific Linux telnet daemon, Mi-
crosoft Internet Information Server, MS-SQL server and the
default Windows services. We intentionally run unpatched
versions of applications and services so we can observe at-
tacks taking place. 1

We chose Argos emulator[21] for high-interaction honey-
pot. Argos is using memory-tainting techniques and is able
to track both known and unknown exploits. Argos is based
on the idea that code coming from the network should never
be executed. Once data from the network are treated as ex-

1We plan to run fully patched versions in our production
system so as to capture only fresh attacks.



Figure 1: The Honey@home architecture

ecutable code, Argos raises an alert containing all relevant
information about the attack and vulnerable application is
restarted. As only the vulnerable application is restarted
and not the whole virtual machine, the downtime of the vul-
nerable application is minimal. As Argos detects the attack
before its code is executed, we have a core that is hard to
infect. The only way to infect an Argos honeypot is to trig-
ger an exploit on the underlying Qemu emulator [5] but this
issue is beyond the scope of our work. In contrast with other
approaches, like Honeynets[4], that use bandwidth control
and extrusion detection to mitigate effects of infection, our
core is able to run with minor administration overhead. To
improve the scalability of our architecture, we run multiple
Argos systems in the core, each one being responsible for
specific applications. As Argos has inherently slow perfor-
mance ,around 30x slowdown of applications, we need mul-
tiple instances in order to serve all clients. We also consider
using traditional load balancing techniques to share load for
the same target applications (like in Web server farms) and
offload Argos by emulating known attacks through systems
like Scriptgen[20]. Honeyd is not a bottleneck as it can serve
thousands of TCP requests per second, around 2000 requests
according to [22].

2.3 Unused IP address space monitoring
Each Honey@home client is requesting an IP address from

the local DHCP server (optionally it can be set to listen to
a static IP address). Most broadband connection routers,
like ADSL routers, organizations and institutes use DHCP
servers to assign addresses. Every time Honey@home client
starts, it requests an address from the local DHCP server.
The main advantage of this approach is that user does not
need to statically set an IP address, which may be even
hard for him to find. Honey@home client can be stopped or
started any time without interrupting the normal operation
of user’s network. Upon the client exit, the clients informs
the DHCP server that the IP address is released. The proce-
dure of how a Honey@home obtains an IP address is shown
at Figure 2.3. The client first creates a pseudo-interface
with a random MAC address and broadcasts a DHCP re-
quest (left part of the Figure). When the DHCP response is
received, client configures itself to wait for packets destined

Figure 2: Honey@home client in action: Creating
an pseudo-interface (left) and getting an IP address
through DHCP server (right)

for the given address, 139.91.70.112 in our example (right
part of the Figure).

The Honey@home client can be configured to claim an IP
address statically or by using a BPF filter. Static alloca-
tion and BPF filter features are mainly targeted for more
advanced users. For example, an administrator can setup a
single Honey@home client in an unused subnet and set the
BPF filter to cover all the addresses of that subnet. In that
way, the unused subnet becomes utile in a few steps. As long
as the client runs, the subnet monitored by the Honey@home
client will contribute to the overall infrastructure.

As a short notice, Honey@home clients also receive legit-
imate traffic, such as broadcast ping or SMB queries. This
traffic has to be white-listed and the decision can be made
either locally or at the core. The Honey@home client can be
configured not to forward traffic sent to specified ports. Ad-
ditionally, Honey@home client can be configured to forward
traffic sent only to a specific set of ports. By default, all traf-
fic destined to the unused address claimed by Honey@home
is sent to core. As Honey@home captures traffic directed
to an unused IP address and not the packets destined for
the actual IP address of the host running the tool, there
are no privacy concerns. All traffic destined to unused ad-
dresses is by default suspicious. The only legitimate traffic
that is destined for unused addresses, according to our traf-
fic traces, is attempts to connect to peer-to-peer ports. As
peer-to-peer programs tend to have some sort of memory,
like host caches of Gnutella, it is observed sometimes that
some external hosts try to reconnect to an address that was
used in the past, participated in a peer-to-peer network, but



is not used anymore and thus claimed by Honey@home. If
the user is concerned about privacy issues, she can configure
the client not to forward traffic directed to these ports.

Honey@home can work even behind NAT. Hosts behind
NAT cannot accept incoming connections from external hosts,
only for ports that are explicitly forwarded to them through
the router setup. For this case, Honey@home clients can
automatically configure the local router to forward specific
ports to the physical machine on which client is running
using the UPnP protocol[7]. UPnP provides an API to con-
figure the router to forward packets for specific address and
ports and is supported by the majority of routers. However,
modern routers have UPnP disabled by default for security
issues as malware can also use it and make infected machines
act like servers. For those users that are not privileged to
change the router configuration, the Honey@home client is
limited to capture suspicious traffic that is generated by in-
ternal infected hosts, for example local scans.

2.4 Unused port monitoring
Regular home users can usually claim one IP address.

However, they can also contribute to the honeypot infras-
tructure by offering their unused port space. Ordinary users
usually run a few applications that listen to specific ports.
These applications include messengers that bind a port for
incoming file transfers and peer-to-peer clients. It is, thus,
rare to find typical users that run a web server to their ma-
chine or an SMTP server.

Based on this observation and given that already infected
hosts keep searching for new victims, it is expected that we
may see connections destined to unused ports of the user.
Honey@home client can be configured to listen to all un-
used port space (default) or to a set of ports specified by
the user. It examines all incoming traffic (through the pcap
library) and searches for connection attempts on the unused
port space. If such an attempt is found then the traffic
going to this port is forwarded to the core. Periodically,
Honey@home client scans the host to obtain a list of used
ports, similar to the way the netstat tool does, and update
the list of unused ones.

The major concern around unused port monitoring is pos-
sible deniability. As an example, a user was running a peer-
to-peer application for several hours ago and then discon-
nected from the peer-to-peer network. However, as such
systems tend to have a sort of “memory”, incoming connec-
tions to the ports of his peer-to-peer application may still
be arriving. Honey@home client sees that ports previously
used by peer-to-peer applications are unused and forwards
their traffic despite the fact that this traffic is legitimate.
We are currently investigating these issues and we are ex-
perimenting on hold-on timers. Hold-on timers remember
that a port was used k hours ago and even if it is currently
unused, it is not forwarded. Another solution is port sam-
pling, that is forward traffic from only a few unused ports.
By default, Honey@home clients do not forward traffic des-
tined to known sensitive ports, like Gnutella and eMule.

3. DEALING WITH CHALLENGES
In this Section, we provide details on how challenges de-

scribed in 2.1 can be dealt with and specifically how we can
hide honeypots (Section 3.1) and prevent automatic instal-
lation of Honey@home clients (Section 3.2). Detectability
issues of Honey@home clients will be discussed in Section 4.

3.1 Hiding honeypots
Hiding honeypots is essential for the viability of the ar-

chitecture. The reason is twofold. First, we want to protect
the core honeypots from immediate exposure. Although, we
cannot protect them from Denial-of-Service attacks (the at-
tacker can easily do DoS on the anonymization network),
we make hard for the attacker to manually compromise our
honeypots or use techniques that evade the deployed de-
tection mechanisms. For Denial-of-Service attacks, the only
measure we could take is not to accept clients that send data
above a certain rate. By default, each Honey@home clients
sends a few kilobytes per minute and it is easy to detect mis-
behaving clients. Second, we envision Honey@home as an
architecture that will act as a feeding mechanism for other
systems as well. Currently, our prototype implementation is
based on honeyd and Argos system but our architecture is
flexible enough so other systems can plug in as well. A di-
rect exposure of honeypots to users would possibly provide
hints for detection mechanisms used in the core.

3.1.1 Anonymous routing
Before we proceed on the approach we use for hiding hon-

eypots, a brief introduction to anonymous routing is pro-
vided. The goal of anonymous routing is to protect the pri-
vacy of both the sender and the recipient of a message, pro-
viding protection for eavesdropping in parallel. Messages are
transferred from sender to recipient through an anonymiza-
tion network and none in the middle of the path can identify
the role of each participant (sender, receiver or forwarder).

The anonymization scheme we selected is onion routing,
a technique based on a set of dedicated servers that route
packets anonymously. Clients simply participate in the net-
work without having to share their resources or help the net-
work route packets. Onion routing uses dedicated software-
based routers, called onion routers, that perform the anonymiza-
tion process. We have also considered peer-to-peer anonymiza-
tion schemes but they can lead to immediate exposure of
Honey@home clients as they become the entities who form
the anonymization network. Additionally, to the best of
our knowledge, there are no widely deployed peer-to-peer
anonymization networks.

The advantage of onion routing is that it is not necessary
to trust each cooperating router. The concept behind onion
routing is the routing onion. Routing onions are used to
create paths through which many messages can be trans-
mitted. In order to create a path, the client at the head of a
transmission randomly selects a number of onion routers and
generates a message for each one, providing them with sym-
metric keys for decrypting messages, and instructing them
which router will be next in the path. Each of these mes-
sages, and the messages intended for subsequent routers, is
encrypted with the corresponding router’s public key. This
provides a layered structure, in which it is necessary to de-
crypt all outer layers of the onion in order to reach an inner
layer. As each router receives the message, it ”peels” a layer
off of the onion by decrypting with its private key, thus re-
vealing the routing instructions meant for that router, along
with the encrypted instructions for all of the routers located
farther down the path. Due to this arrangement, the full
content of an onion can only be revealed if it is transmit-
ted to every router in the path in the order specified by the
layering.

Tor is the most popular and widely used implementation
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Figure 3: An overview of how Tor works. Client es-
tablishes a path of onion routers and sends onions,
messages encrypted with public keys of all path’s
routers. At each router the onion is piled off -
decrypted by router’s public key- and forwarded to
the next router. The last router has fully decrypted
content and communicates directly with recipient
through a standard TCP/IP connection.

of onion routing and is used for anonymizing any application
that uses the TCP protocol. The Tor network has several
thousands users and around 400 onion routers are deployed.
Figure 3 illustrates how Tor works. At the sender side, user
installs a SOCKS proxy that is used by the applications.
This specialized proxy connects to Tor network to create
an onion routing path. All communication between sender
and onion routers and among routers is done using the TLS
protocol (blue line). At the server side no deployment is
needed. The last router of the path communicates with the
recipient using the standard TCP/IP protocol (green line).
Sender sends onions which are piled off along the path. The
last router receives an onion with non-encrypted content and
forwards it to the recipient. The response of the recipient
follows the same path backwards.

3.1.2 Using Hidden Services
The way Tor was described earlier assumes that every

sender knows the address of the recipient. This is not the
case for our system, where address of honeypots must remain
hidden. Tor offers a functionality called “hidden services”,
that permits the recipient to hide its address. Hidden ser-
vices work as follows. Initially , the recipient gets a descrip-
tor for its hidden service from a centralized service lookup
server. This descriptor is a DNS-like name, in the form of
“xyz.onion”, where the .onion domain can be resolved only
inside the TOR network. Afterward, it creates onion paths
to several introduction points. An introduction point can
be any onion router. It then advertises the descriptors of in-
troduction points and addresses to service lookup repository.
The client only needs to know the service descriptor. For ex-
ample, when a client browses a hidden web server it types to
her browser a URL like “http://xyz.onion”, where xyz.onion
is the service descriptor. When clients lookups for xyz.onion
at the directory server, a set of introduction points is re-
turned. The client creates an onion path to a “rendezvous
point” and requests one of the introduction points to con-

nect to a server. The introduction point passes the request
to the server (remember that introduction point and server
are connected through an onion path) along with the address
of the rendezvous point. If the server wants to connect to
the client, it creates a path to the rendezvous point and
then the point mates the two paths. We have implemented
Honey@home core as a hidden service. Honey@home clients
only know the service descriptor of the core and will connect
to it using a “xyz.onion” name. We use two safety fea-
tures to protect our honeypots from attacks against TOR.
First, the entry TOR node from honeypots to the introduc-
tory point is a trusted node, maintained by Honey@home
developers. This measure protects our infrastructure from
Sybil attacks, where attackers users flood the TOR network
with malicious servers so they can control the entry and exit
nodes of TOR users. Second, we use SSL connection over
the TOR network to ensure that even if the trusted router
of the path is compromised, it cannot inspect the contents
of the communication or understand that is a Honey@home
client-Honey@home core communication.

3.2 Preventing automatic installations
In the case that an attacker owns a botnet, she can auto-

matically install Honey@home clients in all bots if no mea-
sure for preventing automatic installation is taken. Massive
deployment of Honey@home client to a botnet will cause
deniability issues at the core. While the core does not suffer
from false positive problems (specially crafted traffic that
can trigger false alerts), its capacity in processing power is
limited. To prevent attackers from massive installations,
Honey@home clients are verified to the core by providing a
registration key. The registration can be done at the official
site of Honey@home. We employ Enhanced CAPTCHAs[9]
techniques for the registration process. Additionally, two or
more users with the same registration key cannot be con-
nected with the core at the same time.

4. DETECTABILITY OF HONEY@HOME
CLIENTS

Honey@home clients are part of a distributed honeypot
infrastructure and although they do not present any special
functionality themselves, they are considered as detectors
from an attacker point of view. Detectability of honeypots
is an open issue and has been studied partially in [17, 2, 18]
but those techniques focus more on detecting the underlying
software system, like honeyd or Sebek. In this work we do
not study how to secure the core honeypots from exposure
but we try to identify how an attacker can understand if a
host is running the Honey@home client.

A honey@home client relies on the Tor network to for-
ward its packets to the core honeypots. The attack scenario
is as follows. An attacker wants to identify whether some
hosts in a given subnet are running Honey@home. To do
so, she performs a TCP scan for specific ports at this sub-
net. Some hosts will respond in time trespond. Honey@home
clients will need additional time ttunnel to forward the packet
through Tor, wait for the response and inject it back to the
attacker. If ttunnel is much larger than trespond then it is
an indication that Honey@home is running. Time ttunnel is
the response time between Honey@home client and the core
honeypots multiplied by a delay factor due to the Tor net-
work. We measured the delay introduced by Tor in terms
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of time needed to browse several popular web pages (only
their main index file). In our experiment, we downloaded
the index file of 500 web pages with and without TOR from
two different environments: our institute’s 1GBps line and
an ADSL connection of 1MBps. The results are summarized
in Figure 4. For 90% of the cases, we needed up to 4 seconds
to retrieve the index file without Tor for both environments
and up to 15 seconds in the presence of Tor. This gives us a
slow factor of 3 to 4 when using Tor thus making the time
ttunnel noticeable.

Honey@home clients are designed to run by normal users.
As we cannot reduce the delay of forwarding packets (even
the absence of Tor would still yield a significant overhead),
we rely on users’ behavior to hide Honey@home clients. We
performed a scan to port 80 in ten different subnets. Two
of them belong to institutes, one in U.S. and one in Singa-
pore, and the rest belong to ADSL users of two major Greek
ISPs. For those hosts that had port 80 open, we measured
the time to retrieve the index file. We performed the same
experiment for the next 2 days after the initial measure-
ment and took again the times. The results are summarized
in Figure 5. To avoid making the figure crowded, we plotted
the results from the first two days. The results for ADSL
subnets are merged and plotted in a single line. We made
three interesting observations. First, the hosts that were
found to have port 80 open differ slightly from day to day.
Some hosts never reappear with port open and some new
hosts respond to the port. In fact, only 7% of the hosts
were persistently responding to the port all the 3 days. Sec-
ond, hosts that persistently respond to port 80 present a
variation in their response time. Third, a significant per-
centage of hosts respond in time greater than 5 seconds,
with some hosts needing even more than 30 seconds. This
delay response allows us to hide honey@home clients as it is
unclear for attacker if it is a host responding very slow or a
Honey@home node that forwards traffic to core honeypots.

5. SIMULATIONS
As Honey@home is not yet largely deployed, we performed

simulation to measure its effectiveness in terms of detection
rate and speed. Our simulated scenario involved the spread
of a worm, where each infected hosts scans 10 other hosts

per second and the vulnerable population is 2% of total IP
address space (around 80 million hosts). We assumed that
infected hosts do not scan at the loopback (127.0.0.0/8) and
NAT subnets (192.168/16, 172.16/12 and 10/8 as defined in
[1]) and the initial number of infected hosts was arbitrarily
set to 10. Infected hosts were doing random scanning with-
out any topological information included in the scanning
process. We consider that the population of Honey@home
clients remains unchanged throughout the one simulated
minute.

Our initial measurement counted the number of worm in-
stances observed as a function of Honey@home population
within the first minute of the worm spread. Results are sum-
marized in Figure 6. As the number of honey@home clients
increases, the number of observed attacks is also increased
in a linear fashion. For example, with 10,000 clients we can
observe 100 instances of the attack, while we need more than
100,000 clients to have 1000 samples. Taking into consider-
ation that attacks may have polymorphic or metamorphic
properties, we need multiple observations to characterize the
attack or even generate signatures for it.

Our second measurement focused on the detection delay
of the first worm instance, that is the time needed to see at
least one attack instance in one of the deployed Honey@home
clients. The results are displayed at Figure 7. Linearity does
not apply for the detection delay. Doubling the number of
clients does not necessarily mean that we will see the first
instance of the attack in half time. With 100 clients, we need
around 52 secs to observe the first instance, while to see it
in half time (nearly 25secs) we need around 50k clients. In
order to have a detection time of less than 10 seconds we
need more than a half million clients. We would like to note
here that the term client does not directly refer to a person
that will install Honey@home. We use the term client here
to denote an unused IP address. As Honey@home is de-
signed to monitor arbitrarily large unused IP address space,
the number of actual installations may be significantly less
than the number of monitored addresses.
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Figure 6: Instances of an attack observed as a func-
tion of Honey@home population

100		 1000	 5K	 10K 50K100K 500K 1M 2M

Number of clients 

T
im

e 
of

 fi
rs

t d
et

ec
tio

n 
(s

ec
s)

 

0

5

10

15

20

25

30

35

40

45

50

55

60

Figure 7: Time needed to detect first instance of an
attack as a function of Honey@home population

6. RELATED WORK
In [27], the authors describe the risk to the Internet due to

the ability of attackers to quickly gain control of vast num-
bers of hosts. They argue that controlling a million hosts can
have catastrophic results because of the potential to launch
distributed denial of service (DDoS) attacks and access any
sensitive information that is present on those hosts. Their
analysis shows how quickly attackers can compromise hosts
using “dumb” worms and how “better” worms can spread
even faster. In subsequent work [26], the same authors show
how a worm using pre-compiled lists of IP addresses known
to be vulnerable can infect one million hosts in half a second.

The Honeynet project [4] is a non-profit organization that
is devoted to the research concerning honeypots and their
underlying architecture. Central aim of the project is the
in-depth analysis of attacks and the capture of malware
(e.g. IRCBots). The Honeynet project deploys an archi-
tecture that consists of a central gateway, “Honeywall”, and
the honeypot network. Honeywall separates the network
in which the honeypots are deployed from the rest of the
network. Additionally, Honeywall performs access control
of outbound connections from the honeypots and captures
network data. The network behind Honeywall consists of
high-interaction honeypots without emulation. Honeypots
are also instrumented to trace their system calls through
the Sebek tool [6].

Collapsar [30] is a project developed by the Purdue Uni-
versity aiming at the deployment and management of a large
number of coordinating high-interaction honeypots across
different network domains. The Collapsar architecture is
comprised of a Collapsar center, a centralized operation cen-
ter which hosts a network of high-interaction honeypots, and
traffic redirectors. The redirector allows to virtually deploy
honeypots in arbitrary networks and its basic function is
to forward all traffic received to the honeypots of the Col-
lapsar center. The redirector is implemented as a virtual
machine based on the User-Mode Linux (UML [8]). High-
interaction honeypots of the Collapsar center are based on
either VMware or UML. Collapsar is somehow similar to
our approach but has two major differences. First, redirec-
tors are implemented as virtual machines. This approach
requires more resources than our client and thus needs a

dedicated machine to run. Second, redirectors are consid-
ered as trusted entities. Honey@home is designed to run in
any workstation, thus it makes no assumption about trust-
ing its clients.

Vigilante[14] is an infrastructure that aims at worm con-
tainment. The architecture of Vigilante is based on the col-
laboration of end hosts and makes no assumptions that col-
laborating hosts trust each other. The proposed approach
has preferred to move from network-level to host-level in
order to eliminate problems like encrypted traffic or lack of
information about software vulnerabilities. End hosts act as
honeypots; they run instrumented version of software that
normally wouldn’t run on the host. For example, a host can
run an instrumented version of a database, not a common
application for a normal host. One of the major contri-
butions of Vigilante is the concept of self-certifying alerts
(SCAs). SCAs are distributed among the collaborating of
hosts and their novelty is that they can be verified by recip-
ients. This property eliminates the need for trust between
the hosts. Three types of SCAs can be identified: arbitrary
execution control, arbitrary code execution and arbitrary
function argument. Honey@home does not require clients
to run instrumented versions of applications, which needs a
handful of resources. We focus more on the scalability, sup-
porting thousands of clients requiring minimum resources
from them, and on the attack detection. Signatures gener-
ated by our architecture are similar to the ones described
in [21], that is common subsequences between the memory
pages around the overflown buffer and the network trace of
the attack. Such signatures are used at the network level to
catch attacks. On the other hand, Vigilante detectors gen-
erate assembly-level filters that are used at the host level to
block the attacks. Finally, our architecture does not include
any signature distribution mechanism at its current phase.

Bailey et al. in [11] propose a hybrid honeypot architec-
ture for scalable network monitoring. In their architecture
they filter prevalent content by using low-interaction honey-
pots and use a handoff mechanism to enable interaction be-
tween low and high-interaction honeypots. Low-interaction
honeypots filter out uninteresting traffic such as unestab-
lished TCP connections or payloads that have been observed
many times in the past. Apart from honeypots, their pro-
posed architecture introduces a control component. This



component aggregates traffic statistics from low-interaction
honeypots and analyzes all received data for abnormal be-
havior.

7. CONCLUSIONS
We have explored the design of Honey@home, a lightweight

tool that enables users without expertise in honeypot tech-
nologies to contribute the fight against cyber-attacks. Ho-
ney@home claims unused IP addresses and ports, either dy-
namically or statically, and forwards all traffic directed to
them to a centralized core of honeypots. The core consists
of honeyd instances as low-interaction honeypots and Argos
systems as high-interaction ones. As Honey@home can be
used by anyone, including attackers, three major challenges
need to be addressed: hide the identity of users, hide the
identity of honeypots and prevent automatic installations.
By using Tor, a well-known and deployed anonymization
network used by thousands of users, we can hide the identity
of both clients and honeypots. To prevent automatic instal-
lations, each client needs to be registered through the offi-
cial website, where CAPTCHA techniques are used similar
to many popular large-scale services. Overall, Honey@home
enables the creation of a distributed infrastructure with lit-
tle effort and aims toward a scalable solution that overcomes
the problem of classic honeypots, that is monitoring a small
portion of unused IP address space.
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