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Chapter 1

Introduction

This document comprises the report for the Deliverable 4.1:System Deploy-
ment and Evaluation, of the SecSPeer project. The purpose ofthis document is to
describe the evaluation of the system described in Deliverables 2.1: System Design
and 3.1: System Implementation. The structure of this document is as follows:
Chapter 2 provides a description and analysis of the changesin the system imposed
by the real world deployment of the system.
Chapter 3 provides an overview on the architecture of the system.
Chapter 4 provides details on the evaluation of the scalability mechanisms of Sec-
SPeer.
Chapter 5 describes the evaluation of the security mechanisms of SecSPeer.
Chapter 6 provides some conclusional remarks. The documentends with the Bib-
liography.
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Chapter 2

Changes in the SecSPeer
Architecture

2.1 Introduction

As one can see from the previous two Deliverables [7], [8], SecSPeer is based
on the partitioning of the search space to reduce the cost of the search for some
particular item. This reduction of the search space is accomplished by dividing the
peers in the system in subnetworks, depending on some categorization of the shared
content. One of the requisites of any categorization criterion to be used is the fact
that it creates roughly equal subnetworks, in size. In Deliverable 3.1 was described
the use of the character encoding used in the filenames as a categorization criterion.
Although this criterion has several advantages, during theevaluation it proved to
have a drawback that affected the efficiency and the scalability of the system. This
disadvantage was the fact that the Latin-based (particularly English-based) content
and queries consisted of the largest part in the system. For this reason, the Latin-
based subnetwork was roughly, in size, equal to the originalnetwork, thus offering
no improvement in the cost of Latin-based queries, which constituted the majority
of them.

2.2 Changes in the architecture

The change implemented in the SecSPeer architecture aims atproducing subnet-
works, which will be roughly in size. As described in Deliverable 2.1: System
Design, the design of SecSPeer remains the same and is based on the partition-
ing scheme based on some disjunctive criterion. The implementated functions
described in Deliverable 3.1: System Implementation also remain all the same,
with the exception of thegetCategories() function, which is replaced by a uniform
hash function described in the next chapter. In essence, thecategorization scheme
described in the next chapter characterizes keywords instead of files.

9
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Another change, which will be analyzed in more depth in the next chapter, is
that each peer may belong to all subnetworks. This does not mean that the size
of each subnetwork will essentially be equal to the size of the original network.
This is because SecSPeer employes a two-tier architecture similar to the one of the
FastTrack network [2]. Thus, each subnetwork is comprized of Ultrapeer and not
Leaf peers. Each Leaf peer participating in a certain subnetwork simply connected
to some Ultrapeer of that subnetwork. This means that the only requirement of a
Leaf connecting to all subnetworks is to connect to a number of Ultrapeers equal
to the number of subnetworks, which is trivial for any peer even for a number of
subnetworks in the order of tens.



Chapter 3

The Partitions Scheme

3.1 Introduction

The aim of the partitions scheme is to improve the partitioning scheme by defin-
ing subnetworks, which are, roughly, comparable in size. The proposed method
partitions the Ultrapeer overlay network into distinct subnetworks. A novel index
splitting technique is further employed. In general unstructured P2P networks are
indirectly supplied with some information about the possible location of each re-
source. Using a simple hash-based categorization of keywords the Ultrapeer over-
lay network is partitioned into a relatively small number ofdistinct subnetworks.
By employing an index splitting technique each Leaf peer is effectively connected
to each different subnetwork. The search space of each individual flooding is re-
stricted to a single partition, thus the search space is considerably limited. This re-
duces the overwhelming volume of traffic produced by floodingwithout affecting
at all the accuracy of the search method (network coverage).Preliminary experi-
mental results demonstrate the efficiency of the proposed method.

3.2 Background Information

In order to better understand the partitioning scheme, we shall describe a few tech-
niques used in unstructured P2P systems today.

The first such technique is 1-hop replication. One-hop replication dictates that
each peer should inform all of its immediate neighbours of the files it contains.
Using this information during the last hop propagation of a request at the Ultrapeer
level, the request is forwarded exclusively to those last hop Ultrapeers that contain
the requested file. One-hop replication reduces number of messages generated
during the last hop of flooding [4]. However, the traffic generated during that last
hop constitutes the overwhelming majority of the traffic generated during the entire
flooding. Simple calculations show that 1-hop replication requiresd times fewer
messages to spread to the whole network compared to naive flooding, whered is the
average degree of the network (average number of connections for each Ultrapeer).

11
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Figure 3.1: The Gnutella 2-tier architecture

It is easy to prove that in order to flood an entire, randomly constructed, network
that employs 1-hop replication, one needs only reach3/d of the peers during all
hops but the last. In today’s Gnutella, where the average degree is 30, one would
need to reach 10% of the peers and then use 1-hop replication to forward the query
to the appropriate last hop peers, in order to reach the entire network.

Most of the structured P2P systems today implement 1-hop replication by hav-
ing peers exchange bloom filters of their indices. A Bloom filter [5] is a space
efficient way to represent a set of objects (keys). They employ one or more uni-
form hash functions to map each key to a position in anN -sized binary array,
whose bits are initially set to 0. Each key is mapped through each hash function to
an array position which is set to 1. To check for the participation of some key in
the set, the key is hashed to get its array position. If that array position is set to 1,
the bloom filter indicates key membership. Bloom filters require much less space
than the actual set, there is thus some loss of precision translated in the possibil-
ity of false positives. This means that a bloom filter may indicate membership for
some key that does not belong to the set (more than one keys mapped to the same
position). It cannot however indicate absence of a key whichis in the set (false
negative).

In Gnutella 2 [1] which uses a 2-tier architecture, each Leafnode sends its
index (list of keywords) in the form of a bloom filter to all Ultrapeers it is connected
to. Each Ultrapeer produced the XOR of all the bloom filters itreceives from its
Laves (approximately 30 Leaf nodes per Ultrapeer) and transmits this collective
bloom filter to all its neighboring Ultrapeers to implement the 1-hop replication.

3.3 The Partitions Design

The scheme we propose allows for the partitioning of any typeof content. More
specifically, we propose the formation of categories based on easily applicable
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Figure 3.2: Illustration of the Gnutella network and the Partitions design

rules. Such a simple rule is to apply a uniform hash function on each keyword
describing the files. This hash function maps each keyword toan integer, from a
small set of integers. Each integer defines a different category. We thus categorize
the keywords instead of the content (files) itself. Given a small set of integers, it
is very likely that each peer will contain at least one keyword from each possible
category.

Unstructured P2P systems like Gnutella 2 [1] employ a 2-tierstructure. In
those systems Ultrapeers form a random overlay network, while Leaf nodes are
connected to Ultrapeers only. Each Leaf sends to the Ultrapeers it is connected
to its index in the form of a bloom filter. Ultrapeers flood queries to the overlay
network on the Leave’s behalf. Flooding is only performed atthe Ultrapeer level
where 1-hop replication is implemented. Whenever an Ultrapeer receives a request
this is targetedly forwarded only down to those Leaves that contain the desired
information (except in the case of false positives). Fig. 3.1 shows a schematic
representation of the 2-tier architecture.

The keyword categorization method is used in 2-tier unstructured systems. In
the Partitions design, each Ultrapeer in the system is randomly and uniformly as-
signed responsibility for a single keyword category, by randomly selecting an in-
teger from the range set of the hash function used to categorize the keywords.
Ultrapeers responsible for the same category form a distinct subnetwork. Leaves
connect to one Ultrapeer per subnetwork and send to it all thekeywords belonging
to that category. Thus, an innovative index splitting technique is used. Instead of
each Leaf sending its entire index to an Ultrapeer, each Leafsplits its index based
on the defined categories and distributes it to one Ultrapeerper category. Notice
that peers operating as Ultrapeers also operate as Leaves atthe same time (have a
dual role). Even though in this design each Leaf connects to more than one Ul-
trapeers, the volume of information it transmits is the samesince each part of its
index is send to a single Ultrapeer. We can either send this information in the
form of bloom filters or as strings containing the actual keywords. Each Leaf node
sends to the Ultrapeer of a category all keywords that belongto the same category.
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Each Ultrapeer sends to its neighboring Ultrapeers all the keywords of its Leaf
nodes to implement 1-hop replication. Thus the amount of information transmitted
from Leaves to Ultrapeers upon connection as well as for the 1-hop replication is
increased compared to Gnutella which uses bloom filters. As we will see in the
following section this increase is insignificant compared to the gain incurred from
the reduced flooding traffic. In Fig. 3.2 we can see a schematicrepresentation of
the Partitions design.

This separation of Ultrapeers from content has the benefit ofallowing them to
be responsible for a single keyword category. The benefit of this is two-fold. First,
it reduces the size of the subnetworks since they are completely discrete (at least
on the overlay level). Secondly, it allows each Ultrapeer touse all its Ultrapeer
connections to connect to other Ultrapeers of the same subnetwork, maintaining
the efficiency of 1-hop replication at the Ultrapeer level.

There are, however, two apparent drawbacks to this design. The first one is
due to the fact that each Leaf connects to more than one Ultrapeers, one per con-
tent category. Even though each Leaf sends the same amount ofindex data to the
Ultrapeers upon connection as before, albeit distributed,however it requires more
keepalive messages to ensure that its Ultrapeers are still operating. Keepalive mes-
sages however are very small compared to the average Gnutella protocol message.
The second drawback arises from the fact that each subnetwork contains informa-
tion for a specific keyword category. Requests however may contain more than one
keywords and each result should match all of them. Since eachUltrapeer is aware
of all keywords of its Leaves that belong to a specific category, it may forward a
request to some Leaf that contains one of the keywords but notall of them. This
fact reduces the efficiency of the 1-hop replication at the Ultrapeer level and at
the Ultrapeer to Leaf query propagation. This drawback can be partly ammended
in two ways. When we send a bloom filter to the Ultrapeer, that filter contains
only keywords of a single type, thus making the filter more sparse and reducing he
possibility of false positives. When we send a full index, false positives are com-
pletely eliminated and accuracy is increased. Furthermore, the most rare keyword
can be used to direct the search, thus further increasing theeffectiveness of the
search method. The size of the index (set of the keywords) is small compared to
the benefit of the additional accuracy.

In order to evaluate the effectiveness of our design and the impact of the draw-
backs, we used a simple model that takes into account the aforementioned. Prelim-
inary simulation results are also reported.

One final worth noting observation is the fact that we can remedy the fact that
Partitions filter queries using one keyword only some more. This is done by using
the most rare keyword when resolving multiple-keyword queries. Since we are us-
ing complete indices instead of Bloom filters, the rarity of akeyword in the system
can be used effectively. (In the case of Bloom filters, rarityis not as important,
due to false positives. This is because each position in the array has equal proba-
bility of being set). In order to determine which keyword is more rare, lookup can
begin by first contacting one Ultrapeer per keyword type. Given the density of con-
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tent per Ultrapeer and the fact that each Ultrapeer has complete knowledge of its
neighbours’ keywords, each Ultrapeer has complete knowledge of the keywords of
9300 Leaves. Such a sample should be more than enough for rarity determination
purposes.

3.4 SecSPeer Implementation details

In SecSPeer, we have used a number of ten subnetworks. This number, as will
be proven in the Evaluation chapter, was chosen so that the number of Leaf con-
nections will be kept to small levels. This is because the whole philosophy of the
two-tier approach is to reduce the load on Leaves. This meansthat each Ultrapeer
serves 300 Leaves, however receiving from them1/10th of each one’s keywords.
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Chapter 4

Evaluation of the SecSPeer
System

4.1 Introduction

In this section, we shall present the results of measurements we made, in order to
evaluate the scalability of SecSPeer. Two basic kinds of measurments were made,
one to measure the maintenance costs of the system and one which included the
operational costs also (i.e. query load).

4.2 Evaluation

In order to measure the maintenance costs of Gnutella and Partitions, we focus on
the operation of a single Ultrapeer, because the load of Leaves is negligible in both
systems compared to a Ultrapeers load since flooding is performed at the Ultrapeer
overlay. In both cases we measured the costs in a few hours in the life of a single
Ultrapeer, with Leaves coming and going. Each time a Leaf is connecting to the
Ultrapeer, it sends its index information, which is propagated by the Ultrapeer to
its thirty Ultrapeer neighbours. In addition, we assumed that, periodically, each
Ultrapeer receives a small keep-alive message from each Leaf and replies with
a similar message to each one of them. For each communicationtaking place,
we measured the incoming or outgoing traffic in bytes, in order to estimate the
bandwidth requirements.

There are two modifications in this scenario, between Gnutella and Partitions.
In Partitions, the number of Leaves is 300.

In addition, the process of computing the size of the index information sent
to the Ultrapeer differs greatly. In the case of Gnutella, wehave used the code
used by LimeWire [3], the most popular Gnutella client, to construct the bloom
filter of each Leaf. We first randomly decided on the number of files shared by
each Leaf, based on the file sharing distribution per peer presented in [9]. We then
extracted this number of files from a list of filenames obtained from the network by

17
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Figure 4.1: Maintenance costs for Gnutella and Partitions using Bloom Filters.
Incoming, Outgoing and Total traffic.

Figure 4.2: Operational costs for Gnutella and Partitions using Bloom Filters. In-
coming,Outgoing and Total traffic.

Figure 4.3: Maintenance costs for Gnutella and Partitions,using Full Indices for
Partitions and Bloom Filters for Gnutella. Incoming, Outgoing and Total traffic.

Figure 4.4: Operational costs for Gnutella and Partitions using Full Indices for
Partitions and Bloom Filters for Gnutella. Incoming, Outgoing and Total traffic.
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a Gnutella crawler developed in out lab. Those filenames werefed to the LimeWire
bloom filter generation code, which produced the corresponding bloom filter in
compressed form, i.e., the way it is sent over the network by LimeWire servents.
Thus we constructed the actual bloom filter, although what wereally need in this
case is just its size.

In the case of Partitions, we likewise computed the number offiles to be shared
by each Leaf. We extracted again the same number of filenames from the list of
available filenames.

However, we also subdivided the Partitions scheme depending on the form of
the index information sent by Leaves to Ultrapeers. Two experiments were run
with the Partitions scheme using bloom filters. In the first, each bloom filter sent
to an Ultrapeer only contained appropriate keywords (of thesame type as the cor-
responding Ultrapeer). In the second experiment, we used replication, i.e. each
bloom filter contained all the keywords of the Leaf, regardless of type. In addition,
positions of keywords of the corresponding type as the Ultrapeer were set in the
bloom filter to the value of two instead of one. (This bloom filter essentially dis-
tinguishes between keywords of the appropriate type and therest types). Another
experiment was run using full indices. Here, instead of constructing the bloom
filter, we instead compressed the string formed by all filenames fo a Leaf and com-
pute its size. Notice that there is no replication in the fullindices experiments. Each
Leaf sends a compressed string of all keywords of the same type as the Ultrapeer it
sends the string to. Figs. 4.1 and 4.3 show the results of the measurements for the
costs of maintaining the structures of Gnutella and Partitions, without any query
(flood) traffic. From this figure it is obvious that, as expected, the maintenance cost
of partitions is higher than that of Gnutella, but not as much. As we will see in the
next paragraph the gains incurred during the operational phase of the two systems
outweighs the increased maintenance costs.

We then focused our attention to the query traffic load. Measurements con-
ducted in our lab showed that, on the average, each Ultrapeergenerates 36 queries
per hour (i.e., queries initiated by itself or its Leaves). This adds up to approxi-
mately 2000 queries per second generated anywhere in the Gnutella network. In
our measurements, we assumed that the aim of each flood (both in Gnutella and
Partitions) is to reach the entire network. As we mentioned before, such a flood
would need to reach1

10
th of the Gnutella’s network (or a Partitions’ subnetwork).

This means that the Ultrapeer in our measurements has a probability of 0.1 to re-
ceiving each query. In addition, every time this does not occur, it has another
opportunity to receive the query during the last hop, depending on its bloom filter
(or index) (in case the searched keywords match its index or bloom filter). Should
the Ultrapeer receive a query, it is assumed to propagate it to its Leaves, again de-
pending on their bloom filters or index (again depending on a possible keyword
match by the bloom filter or the index). Figs. 4.2 and 4.4 show the comparison in
the traffic load of Gnutella and Partitions, including maintenance and query traffic.
We used a size of 40 bytes for each query. In reality, the size of a query can be up
to a few hundred bytes, if XML extensions are used. In addition, for every 1400
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bytes for each message sent, we added 40 bytes for the TCP and IP header. From
these figures it is evident that Partitions outperform Gnutella in operational costs,
in every case.

4.3 Conclusions

In this Chapter, we have shown that the SecSPeer servent, while employing the
Partitions scheme, faces up to even 5 times less traffic. Thisclearly demonstrates
the ability of SecSPeer to scale to larger numbers than otherunstructured P2P
systems, since its operation imposes less bandwidth requirements to its servents.



Chapter 5

Security Considerations

In this Chapter we analyze issues in regards to the Security considerations of the
SecSPeer system. We first give a short introduction to Security issues, since we
have mention them in detail in previous deliverables, we proceed and analyze the
architecture of the new system and conclude with its evaluation.

5.1 Introduction

Unstructured P2P systems are very vulnerable to security exploitation. The main
reason for the latter observation is the lack of a central component to verify the
information injected by every node in the system or even to verify the identity of
every node entering the system [6]. That is, adversaries mayinject malicious nodes
in the system, which in turn they may inject fake informationthat will drive the sys-
tem in collapse or even redirect the system to a third party computer. Redirecting
a major portion of the P2P system in a third party computer is considered as a pure
Denial of Service attack, which includes properties of a Flash Crowd event.

The nature of the Denial of Service attack and the machanismsemployeed in
order to achieve this kind of trick are analyzed in previous Deliverables.

It is crucial to implement an architecture, which will prevent the use of the
system as a Denial of Service weapon against third party computers.

5.2 Architecture

The base architecture of our system, as far as the security considerations are con-
cerned, is build in the SEALING (Short Term Safe Listing) algorithm. Although
the SEALING algorithm has been mentioned in previous deliverables, we provide
the algorithm in this document, in Fig. 5.1, for easier reading.

Denote, that the algorithm is based on the SEALING heuristic, which tests
nodes to verify that they operate the SecSPeer protocol. This kind of verification,
which is performed in a distributed way for every node, is used in order to isolate
the system from anaware third party computers, which can notserve SecSPeer

21
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requests. That is, every node of the system verifies that it connects to a compatible
with the protocol node, before sending a SecSPeer request.

The SEALING Validation criterion is depicted in 5.2.

0 SafeListLifeTime := 30 mins;
1 if (GnutellaPacket(pkt) == QueryHitPacket) {
2 GnutellaExtractNode(pkt, &GnutellaNode);
3 if (SafeListContains(GnutellaNode)) {
4 if (CurrentTime() -
5 SafeListGetTimeOfNode(GnutellaNode) <
6 SafeListLifeTime)
7 GnutellaDropPacket(pkt);
8 }
9 else
10 GnutellaParseHits(pkt);
11 }
12 ...
13 onDownloadAttempt(node, file) {
14 if (GnutellaHandShake(node))
15 GnutellaDownload(node, file);
16 else
17 SafeListAdd(node);
18 }
19 ...

Figure 5.1: SEALING Algorithm.

5.3 Evaluation

The evaluation of the SEALING algorithm must be done in the server (victim)
side. Denote, that our security considerations transform SecSPeer to a safe P2P
protocol in the Internet environment, in the sense that it may not interfere with other
services, such as the World Wide Web. That is, although the SEALING algorithm
is completely distributed and it is based on local heuristics, it is useless to evaluete
it in per node basis. We are interested in the request attempts absorbed by the
SEALING algorithm - requests that they never issued, since the server (victim)
kept in a safe list. Thus, it is easier to measure this requestrate in a sensor co-
located with an attacked Web Server.

The evaluation testbed is as follows. A Web Server stands as avictim and it
logs all incoming requests. The incoming requests in our controlled Web Server
are side effect of the malicious behaviour of SecSPeer clients. That is, clients that
advertize the Web Server as a SecSPeer participant in the system.

Legitimate SecSPeer nodes that they are fooled by maliciousnodes and send
requests to the victim Web Server represent the attack mangnituted. SecSPeer
nodes, which utilize the SEALING algorithm have a reduced attack magnitude,
compared to the attack issued by non-SEALING compatible SecSPeer nodes.

The evaluation graph is depicted in 5.3
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SEALING Validation Criterion: Any host advertised in a SecSPeer response
packet which can not respond correctly to a SecSPeer Handshake process is con-
sidered as a non-SecSPeer participant and a potential victim for a Denial of Service
attack.

Figure 5.2: The SEALING criterion
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Figure 5.3: The evaluation graph of the SEALING algorithm. The solid curve
represents the amount of requests during a DoS attack using the P2P system. The
dashed curve represents the amount of requests that will be eventually exposed to a
third party server (victim) when the system utilizes the SEALING algorithm. The
difference of the two curves represents the savings - the reduction of the attack
magnitude - intoduced by the utilization of the SEALING algorithm in the system.
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Chapter 6

Conclusions

The information presented in this document illustrates theproven efficiency of Sec-
SPeer. SecSPeer servents, by employing the Partitions scheme, were shown to face
much less traffic load and thus exhibit a much larger degree ofscalability, surpass-
ing that of traditional unstructured P2P systems by even an order of magnitude.
In addition, by using the Sealing algorithm, it was shown to efficiently detect and
avoid efforts of malicious peers to exploit the system to perform DDoS attacks,
thus providing better security than its counterparts. Finally, it includes an efficient
broadcast mechanism, which can be used to broadcast system-wide information,
such as an approximation of the size of the network.
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