SCIENTIFIC and TECHNOLOGICAL COOPERATION
between
RTD ORGANISATIONS in GREECE

and
RTD ORGANISATIONS in U.S.A, CANADA,
AUSTRALIA, NEW ZEALAND, JAPAN, SOUTH
KOREA, TAIWAN, MALAISIA and SINGAPORE

SecSPeer: Secure and Scalable peer-to-peer computing and
communication systems
(Contract no:)

D4.1 “Deployment - Evaluation”
Abstract: This document describes the deployment and evaluation of the scalable

and secure unstructured Peer-to-Peer system described in Deliverable 3.1: ”System
Implementation”.

Contractual Date of Delivery | 29 June 2006

Actual Date of Delivery 23 October 2006

Deliverable Security Class Public

Editor Charalambos Papadakis, Elias Athanasopoulos

Contributors Evangelos Markatos, Paraskevi Fragkopoulou,
Alexandros Labrinidis, Dimitris Tsigos

The SecSPeer Consortium consists of:

FORTH-ICS Coordinator Greece
University of Pitts- Partner USA
burgh

Virtual Trip Ltd. Partner Greece

Contents

1 Introduction 7
2 Changes 9
2.1 Introduction 9
2.2 Changesinthe architecture 9
3 Partitions 11
3.1 Introduction e 11
3.2 Background Information L. 11
3.3 ThePartitionsDesign 12
3.4 SecSPeer Implementation details 5 1
4 Evaluation 17
4.1 Introduction e 17
4.2 EBEvaluation e 17
4.3 Conclusions 20
5 Security Considerations 21
5.1 Introduction 21
5.2 Architecture 21
5.3 Evaluation 22
6 Conclusions 25
References 25

CONTENTS

List of Figures

3.1
3.2

4.1

4.2

4.3

4.4

5.1
5.2
5.3

The Gnutella 2-tier architecture
lllustration of the Gnutella network and the Partitiolesign . . .

Maintenance costs for Gnutella and Partitions usingmi&ilters.
Incoming, Outgoing and Total traffic.
Operational costs for Gnutella and Partitions usingBid-ilters.
Incoming,Outgoing and Total traffic.
Maintenance costs for Gnutella and Partitions, usinglfdices
for Partitions and Bloom Filters for Gnutella. Incoming, tGoing
and Total traffic.
Operational costs for Gnutella and Partitions usingIRdices for
Partitions and Bloom Filters for Gnutella. Incoming, Outgpand
Totaltraffic.

SEALING Algorithm.
The SEALING criterion
The evaluation graph of the SEALING algorithm

18

LIST OF FIGURES

Chapter 1

Introduction

This document comprises the report for the Deliverable &ystem Deploy-
ment and Evaluation, of the SecSPeer project. The purpogesalocument is to
describe the evaluation of the system described in Delpkese2.1: System Design
and 3.1: System Implementation. The structure of this desuns as follows:
Chapter 2 provides a description and analysis of the changlee system imposed
by the real world deployment of the system.

Chapter 3 provides an overview on the architecture of theesys

Chapter 4 provides details on the evaluation of the scéhalilechanisms of Sec-
SPeer.

Chapter 5 describes the evaluation of the security meamani$ SecSPeer.
Chapter 6 provides some conclusional remarks. The docuemeistwith the Bib-
liography.

CHAPTER 1. INTRODUCTION

Chapter 2

Changes in the SecSPeer
Architecture

2.1 Introduction

As one can see from the previous two Deliverables [7], [8S®eer is based
on the partitioning of the search space to reduce the costeo$earch for some
particular item. This reduction of the search space is aptistred by dividing the
peers in the system in subnetworks, depending on some ciaegigm of the shared
content. One of the requisites of any categorization doiteto be used is the fact
that it creates roughly equal subnetworks, in size. In [edible 3.1 was described
the use of the character encoding used in the filenames asgoaagtion criterion.
Although this criterion has several advantages, duringetiauation it proved to
have a drawback that affected the efficiency and the scijabilthe system. This
disadvantage was the fact that the Latin-based (partlguanglish-based) content
and queries consisted of the largest part in the system.hiordason, the Latin-
based subnetwork was roughly, in size, equal to the origiealork, thus offering
no improvement in the cost of Latin-based queries, whiclsttuted the majority
of them.

2.2 Changes in the architecture

The change implemented in the SecSPeer architecture aiprsducing subnet-
works, which will be roughly in size. As described in Deligble 2.1: System
Design, the design of SecSPeer remains the same and is haske partition-
ing scheme based on some disjunctive criterion. The impiaed functions
described in Deliverable 3.1: System Implementation aésoain all the same,
with the exception of thegetCategories() function, which is replaced by a uniform
hash function described in the next chapter. In essenceatlgorization scheme
described in the next chapter characterizes keywordsaidsigfiles.

9

10 CHAPTER 2. CHANGES

Another change, which will be analyzed in more depth in the chapter, is
that each peer may belong to all subnetworks. This does nah et the size
of each subnetwork will essentially be equal to the size efdhiginal network.
This is because SecSPeer employes a two-tier architedtoitarso the one of the
FastTrack network [2]. Thus, each subnetwork is compriZddlivapeer and not
Leaf peers. Each Leaf peer participating in a certain sumr&tsimply connected
to some Ultrapeer of that subnetwork. This means that the regjuirement of a
Leaf connecting to all subnetworks is to connect to a numbéHtoapeers equal
to the number of subnetworks, which is trivial for any peeerefor a number of
subnetworks in the order of tens.

Chapter 3

The Partitions Scheme

3.1 Introduction

The aim of the partitions scheme is to improve the partitignscheme by defin-
ing subnetworks, which are, roughly, comparable in sizee ploposed method
partitions the Ultrapeer overlay network into distinct satworks. A novel index
splitting technique is further employed. In general urdtited P2P networks are
indirectly supplied with some information about the pokesibcation of each re-
source. Using a simple hash-based categorization of kelgxtbe Ultrapeer over-
lay network is partitioned into a relatively small numberditinct subnetworks.
By employing an index splitting technique each Leaf peeffex@vely connected
to each different subnetwork. The search space of eachidndivflooding is re-
stricted to a single patrtition, thus the search space isderably limited. This re-
duces the overwhelming volume of traffic produced by floodiridnout affecting
at all the accuracy of the search method (network coverg@eliminary experi-
mental results demonstrate the efficiency of the proposdtade

3.2 Background Information

In order to better understand the partitioning scheme, \ak dbscribe a few tech-
nigues used in unstructured P2P systems today.

The first such technique is 1-hop replication. One-hop capbn dictates that
each peer should inform all of its immediate neighbours effiles it contains.
Using this information during the last hop propagation oéquest at the Ultrapeer
level, the request is forwarded exclusively to those lagtUittrapeers that contain
the requested file. One-hop replication reduces number stages generated
during the last hop of flooding [4]. However, the traffic geated during that last
hop constitutes the overwhelming majority of the trafficgebed during the entire
flooding. Simple calculations show that 1-hop replicatiequiresd times fewer
messages to spread to the whole network compared to naidéftpevhered is the
average degree of the network (average number of connedtioeach Ultrapeer).

11

12 CHAPTER 3. PARTITIONS

Ultrapeer

Ef
(Hoiru Flood i

Leaf index

Ultrapeer Ultrapeer
Leaf index

Leaf index

L) EE

Leaf Leaf

File Ti fi
Leaf (= s —p | caf

Figure 3.1: The Gnutella 2-tier architecture

It is easy to prove that in order to flood an entire, randomiystaucted, network
that employs 1-hop replication, one needs only reachof the peers during all
hops but the last. In today’s Gnutella, where the averagesddg 30, one would
need to reach 10 of the peers and then use 1-hop replication to forward theyque
to the appropriate last hop peers, in order to reach theeemgitwork.

Most of the structured P2P systems today implement 1-hdagipn by hav-
ing peers exchange bloom filters of their indices. A Bloonefif5] is a space
efficient way to represent a set of objects (keys). They eynpi® or more uni-
form hash functions to map each key to a position inN&sized binary array,
whose bits are initially set to 0. Each key is mapped throwgihdnash function to
an array position which is set to 1. To check for the partibgraof some key in
the set, the key is hashed to get its array position. If thaygposition is set to 1,
the bloom filter indicates key membership. Bloom filters iegjmuch less space
than the actual set, there is thus some loss of precisioslated in the possibil-
ity of false positives. This means that a bloom filter may indicate membership for
some key that does not belong to the set (more than one keyseohap the same
position). It cannot however indicate absence of a key wiidh the set (false
negative).

In Gnutella 2 [1] which uses a 2-tier architecture, each Leafe sends its
index (list of keywords) in the form of a bloom filter to all Wdipeers it is connected
to. Each Ultrapeer produced the XOR of all the bloom filten®deives from its
Laves (approximately 30 Leaf nodes per Ultrapeer) and n#ashis collective
bloom filter to all its neighboring Ultrapeers to implememe tL-hop replication.

3.3 The Partitions Design

The scheme we propose allows for the partitioning of any tfpeontent. More
specifically, we propose the formation of categories base@asily applicable

3.3. THE PARTITIONS DESIGN 13

Subnetworks

Ultrapeer
Layer

Leaf Layer Leaf Layer

Gnutella architecture Partitions architecture

Figure 3.2: lllustration of the Gnutella network and thetians design

rules. Such a simple rule is to apply a uniform hash functioreach keyword
describing the files. This hash function maps each keywoahtmteger, from a
small set of integers. Each integer defines a different ocayeyVe thus categorize
the keywords instead of the content (files) itself. Given alsset of integers, it
is very likely that each peer will contain at least one keyavfsom each possible
category.

Unstructured P2P systems like Gnutella 2 [1] employ a 2dtascture. In
those systems Ultrapeers form a random overlay networklewldaf nodes are
connected to Ultrapeers only. Each Leaf sends to the Ukrapié is connected
to its index in the form of a bloom filter. Ultrapeers flood gesrto the overlay
network on the Leave’s behalf. Flooding is only performedhat Ultrapeer level
where 1-hop replication is implemented. Whenever an Udieapeceives a request
this is targetedly forwarded only down to those Leaves tloatain the desired
information (except in the case of false positives). Figl ghows a schematic
representation of the 2-tier architecture.

The keyword categorization method is used in 2-tier untired systems. In
the Partitions design, each Ultrapeer in the system is rafydand uniformly as-
signed responsibility for a single keyword category, byd@nly selecting an in-
teger from the range set of the hash function used to camgthe keywords.
Ultrapeers responsible for the same category form a dissuionetwork. Leaves
connect to one Ultrapeer per subnetwork and send to it akelre/ords belonging
to that category. Thus, an innovative index splitting tégha is used. Instead of
each Leaf sending its entire index to an Ultrapeer, each $@#s its index based
on the defined categories and distributes it to one Ultrapeecategory. Notice
that peers operating as Ultrapeers also operate as Leatlessgme time (have a
dual role). Even though in this design each Leaf connectsdrerthan one Ul-
trapeers, the volume of information it transmits is the samee each part of its
index is send to a single Ultrapeer. We can either send tfisnration in the
form of bloom filters or as strings containing the actual kexale. Each Leaf node
sends to the Ultrapeer of a category all keywords that belotige same category.

14 CHAPTER 3. PARTITIONS

Each Ultrapeer sends to its neighboring Ultrapeers all #heviords of its Leaf
nodes to implement 1-hop replication. Thus the amount afrimétion transmitted
from Leaves to Ultrapeers upon connection as well as for theplreplication is
increased compared to Gnutella which uses bloom filters. Aswill see in the
following section this increase is insignificant comparedhe gain incurred from
the reduced flooding traffic. In Fig. 3.2 we can see a schemgpiesentation of
the Partitions design.

This separation of Ultrapeers from content has the beneéil@iving them to
be responsible for a single keyword category. The benefitisfis two-fold. First,
it reduces the size of the subnetworks since they are coetpldiscrete (at least
on the overlay level). Secondly, it allows each Ultrapeeude all its Ultrapeer
connections to connect to other Ultrapeers of the same subrie maintaining
the efficiency of 1-hop replication at the Ultrapeer level.

There are, however, two apparent drawbacks to this desitpe. fifst one is
due to the fact that each Leaf connects to more than one ©#rapone per con-
tent category. Even though each Leaf sends the same amomndeafdata to the
Ultrapeers upon connection as before, albeit distributediever it requires more
keepalive messages to ensure that its Ultrapeers arepsithting. Keepalive mes-
sages however are very small compared to the average Gnpitetbcol message.
The second drawback arises from the fact that each subrietwatains informa-
tion for a specific keyword category. Requests however matago more than one
keywords and each result should match all of them. Since BHcdpeer is aware
of all keywords of its Leaves that belong to a specific catggbmay forward a
request to some Leaf that contains one of the keywords budlhot them. This
fact reduces the efficiency of the 1-hop replication at thedpker level and at
the Ultrapeer to Leaf query propagation. This drawback @apdrtly ammended
in two ways. When we send a bloom filter to the Ultrapeer, tHegrfcontains
only keywords of a single type, thus making the filter morespand reducing he
possibility of false positives. When we send a full indexséapositives are com-
pletely eliminated and accuracy is increased. Furtherpmbesmost rare keyword
can be used to direct the search, thus further increasingfteetiveness of the
search method. The size of the index (set of the keywordsh&l sompared to
the benefit of the additional accuracy.

In order to evaluate the effectiveness of our design andtipact of the draw-
backs, we used a simple model that takes into account theraémtioned. Prelim-
inary simulation results are also reported.

One final worth noting observation is the fact that we can mnibe fact that
Partitions filter queries using one keyword only some motes i done by using
the most rare keyword when resolving multiple-keyword tpgerSince we are us-
ing complete indices instead of Bloom filters, the rarity &&gword in the system
can be used effectively. (In the case of Bloom filters, raistyiot as important,
due to false positives. This is because each position inrtlag &as equal proba-
bility of being set). In order to determine which keyword isma rare, lookup can
begin by first contacting one Ultrapeer per keyword type.e@ithe density of con-

3.4. SECSPEER IMPLEMENTATION DETAILS 15

tent per Ultrapeer and the fact that each Ultrapeer has aiephowledge of its
neighbours’ keywords, each Ultrapeer has complete knayeled the keywords of
9300 Leaves. Such a sample should be more than enough tyrdarermination
purposes.

3.4 SecSPeer Implementation details

In SecSPeer, we have used a number of ten subnetworks. Tinisenuas will

be proven in the Evaluation chapter, was chosen so that timerof Leaf con-
nections will be kept to small levels. This is because thele/bbilosophy of the
two-tier approach is to reduce the load on Leaves. This misat®ach Ultrapeer
serves 300 Leaves, however receiving from theitOth of each one’s keywords.

16

CHAPTER 3. PARTITIONS

Chapter 4

Evaluation of the SecSPeer
System

4.1 Introduction

In this section, we shall present the results of measureswveatmade, in order to
evaluate the scalability of SecSPeer. Two basic kinds osoregents were made,
one to measure the maintenance costs of the system and ocle mwtiuded the

operational costs also (i.e. query load).

4.2 Evaluation

In order to measure the maintenance costs of Gnutella anidid?er, we focus on
the operation of a single Ultrapeer, because the load ofdsimwnegligible in both
systems compared to a Ultrapeers load since flooding isnpeefbat the Ultrapeer
overlay. In both cases we measured the costs in a few houng ilifé of a single
Ultrapeer, with Leaves coming and going. Each time a Leabimecting to the
Ultrapeer, it sends its index information, which is propgagdaby the Ultrapeer to
its thirty Ultrapeer neighbours. In addition, we assumedt,tperiodically, each
Ultrapeer receives a small keep-alive message from eachdnehreplies with
a similar message to each one of them. For each communidatkomy place,
we measured the incoming or outgoing traffic in bytes, in otdeestimate the
bandwidth requirements.

There are two modifications in this scenario, between Glaugeld Partitions.
In Partitions, the number of Leaves is 300.

In addition, the process of computing the size of the inddéarination sent
to the Ultrapeer differs greatly. In the case of Gnutella, hage used the code
used by LimeWire [3], the most popular Gnutella client, tostouct the bloom
filter of each Leaf. We first randomly decided on the numberletfshared by
each Leaf, based on the file sharing distribution per peeepted in [9]. We then
extracted this number of files from a list of filenames obtdiftem the network by

17

Maintenance Costs (with Bloom Filters) Operational Costs (with Bloom Filters)
@EGnutala mPartiions OPartitions with Replication | @ Gnutella B Partitions OPartitions with Replication |
GO0 180000
— 160000 [
S0000 —
140000
40000 — 120000
E § 100000
3 30000 i g
£ e — £ 200
@ @
20000 — Bso0o0
A0000 [
1o0ono —
.
] T T _— 0 T T
1K1 ouT TOTAL I ouT TOTAL

Figure 4.1: Maintenance costs for Gnutella and PartiticsiaguBloom Filters.
Incoming, Outgoing and Total traffic.

Figure 4.2: Operational costs for Gnutella and PartitiosiagiBloom Filters. In-

coming,Outgoing and Total traffic.

Maintenance Costs Operational Costs
O Gnutella B Partitions O Gnutella m Partitions
4500 140000
4000 120000
3500
100000
3000
& 2500 8 50000
& 2000 & 0000
1500
40000
1000
500 4 20000 «‘7
P e—— | a —_—
IN ouTt TOTAL IN ouT TOTAL

Figure 4.3: Maintenance costs for Gnutella and Partitioss)g Full Indices for
Partitions and Bloom Filters for Gnutella. Incoming, Outgpand Total traffic.

Figure 4.4: Operational costs for Gnutella and Partitiossg Full Indices for
Partitions and Bloom Filters for Gnutella. Incoming, Outgpand Total traffic.

4.2. EVALUATION 19

a Gnutella crawler developed in out lab. Those filenames feerto the LimeWire
bloom filter generation code, which produced the corresipgntiloom filter in
compressed form, i.e., the way it is sent over the network ibyeMVire servents.
Thus we constructed the actual bloom filter, although whatea#ly need in this
case is just its size.

In the case of Partitions, we likewise computed the numbélesfto be shared
by each Leaf. We extracted again the same number of filenaimesthe list of
available filenames.

However, we also subdivided the Partitions scheme depegratirthe form of
the index information sent by Leaves to Ultrapeers. Two BrpEnts were run
with the Partitions scheme using bloom filters. In the firagtebloom filter sent
to an Ultrapeer only contained appropriate keywords (ofsémae type as the cor-
responding Ultrapeer). In the second experiment, we uggitaéon, i.e. each
bloom filter contained all the keywords of the Leaf, regasdlef type. In addition,
positions of keywords of the corresponding type as the Pétea were set in the
bloom filter to the value of two instead of one. (This bloonefilessentially dis-
tinguishes between keywords of the appropriate type andetaypes). Another
experiment was run using full indices. Here, instead of toesing the bloom
filter, we instead compressed the string formed by all fileesmfo a Leaf and com-
pute its size. Notice that there is no replication in theifudices experiments. Each
Leaf sends a compressed string of all keywords of the saneeetypphe Ultrapeer it
sends the string to. Figs. 4.1 and 4.3 show the results of #asunrements for the
costs of maintaining the structures of Gnutella and Panttj without any query
(flood) traffic. From this figure it is obvious that, as expéctie maintenance cost
of partitions is higher than that of Gnutella, but not as muthiwe will see in the
next paragraph the gains incurred during the operatiorasgbf the two systems
outweighs the increased maintenance costs.

We then focused our attention to the query traffic load. Meaments con-
ducted in our lab showed that, on the average, each Ultrgmeerates 36 queries
per hour (i.e., queries initiated by itself or its LeaveshisTadds up to approxi-
mately 2000 queries per second generated anywhere in thil@noetwork. In
our measurements, we assumed that the aim of each flood ¢(b@hdutella and
Partitions) is to reach the entire network. As we mentionefbte, such a flood
would need to reaclﬁl%th of the Gnutella’s network (or a Partitions’ subnetwork).
This means that the Ultrapeer in our measurements has ahiligbaf 0.1 to re-
ceiving each query. In addition, every time this does notugcit has another
opportunity to receive the query during the last hop, dependn its bloom filter
(or index) (in case the searched keywords match its indexoonbfilter). Should
the Ultrapeer receive a query, it is assumed to propagatdtg t.eaves, again de-
pending on their bloom filters or index (again depending orossible keyword
match by the bloom filter or the index). Figs. 4.2 and 4.4 shwevdomparison in
the traffic load of Gnutella and Partitions, including maimance and query traffic.
We used a size of 40 bytes for each query. In reality, the dizegoiery can be up
to a few hundred bytes, if XML extensions are used. In addljtfor every 1400

20 CHAPTER 4. EVALUATION

bytes for each message sent, we added 40 bytes for the TCIP &ecdier. From
these figures it is evident that Partitions outperform Gllaiia operational costs,
in every case.

4.3 Conclusions

In this Chapter, we have shown that the SecSPeer servere arhploying the
Partitions scheme, faces up to even 5 times less traffic. cié@sly demonstrates
the ability of SecSPeer to scale to larger numbers than athstructured P2P
systems, since its operation imposes less bandwidth ergaints to its servents.

Chapter 5

Security Considerations

In this Chapter we analyze issues in regards to the Secuwitgiderations of the
SecSPeer system. We first give a short introduction to Sgassues, since we
have mention them in detail in previous deliverables, we@ed and analyze the
architecture of the new system and conclude with its eviainat

5.1 Introduction

Unstructured P2P systems are very vulnerable to secungipiation. The main
reason for the latter observation is the lack of a centralpmmrent to verify the
information injected by every node in the system or even tdwéhe identity of
every node entering the system [6]. That is, adversariesimegt malicious nodes
in the system, which in turn they may inject fake informatibat will drive the sys-
tem in collapse or even redirect the system to a third panyprder. Redirecting
a major portion of the P2P system in a third party computeoiisiered as a pure
Denial of Service attack, which includes properties of askl@rowd event.

The nature of the Denial of Service attack and the machangsndoyeed in
order to achieve this kind of trick are analyzed in previowdirables.

It is crucial to implement an architecture, which will prevehe use of the
system as a Denial of Service weapon against third party aters

5.2 Architecture

The base architecture of our system, as far as the securigidgrations are con-
cerned, is build in the SEALING (Short Term Safe Listing)@ithm. Although
the SEALING algorithm has been mentioned in previous dedivkes, we provide
the algorithm in this document, in Fig. 5.1, for easier regdi

Denote, that the algorithm is based on the SEALING heuristigich tests
nodes to verify that they operate the SecSPeer protocok Kihd of verification,
which is performed in a distributed way for every node, isduseorder to isolate
the system from anaware third party computers, which carsente SecSPeer

21

22 CHAPTER 5. SECURITY CONSIDERATIONS

requests. That is, every node of the system verifies thahitects to a compatible
with the protocol node, before sending a SecSPeer request.
The SEALING Validation criterion is depicted in 5.2.

0 SafeListLifeTime := 30 nmins;

1 if (Ghutell aPacket (pkt) == QueryHi t Packet) {
2 Gnut el | aExt r act Node(pkt, &Gnutel | aNode) ;
3 if (SafeListContains(GnautellaNode)) {

4 if (CurrentTinme() -

5 Saf eLi st Get Ti meCf Node(Ghut el | aNode) <
6 Saf eLi stLifeTi me)

7 Gnut el | aDr opPacket (pkt);

8 }

9 el se

10 Gnut el | aPar seHi t s(pkt);

11 }

12 ...

13 onDownl oadAtt enpt (node, file) {

14 if (Gnutell aHandShake(node))

15 Gnut el | aDownl oad(node, file);

16 el se

17 Saf eLi st Add(node) ;

18 }

19

Figure 5.1: SEALING Algorithm.

5.3 Evaluation

The evaluation of the SEALING algorithm must be done in thevese(victim)
side. Denote, that our security considerations transfoecS8eer to a safe P2P
protocol in the Internet environment, in the sense that it n@ interfere with other
services, such as the World Wide Web. That is, although th&L.8¥G algorithm

is completely distributed and it is based on local heussiicis useless to evaluete
it in per node basis. We are interested in the request attseatptorbed by the
SEALING algorithm - requests that they never issued, siheeserver (victim)
kept in a safe list. Thus, it is easier to measure this reguadstin a sensor co-
located with an attacked Web Server.

The evaluation testbed is as follows. A Web Server standsvadtien and it
logs all incoming requests. The incoming requests in outrobed Web Server
are side effect of the malicious behaviour of SecSPeertslidmat is, clients that
advertize the Web Server as a SecSPeer participant in thensys

Legitimate SecSPeer nodes that they are fooled by maliciodss and send
requests to the victim Web Server represent the attack nitatgph SecSPeer
nodes, which utilize the SEALING algorithm have a reduceddckt magnitude,
compared to the attack issued by non-SEALING compatiblé&sBeer nodes.

The evaluation graph is depicted in 5.3

5.3. EVALUATION 23

SEALING Validation Criterion: Any host advertised in a SecSPeer response
packet which can not respond correctly to a SecSPeer Handshake process is con-
sidered asa non-SecSPeer participant and a potential victimfor a Denial of Service
attack.

Figure 5.2: The SEALING criterion

SEALING Evaluation

100000 : ,
= DoS Attack
3 SEALING ———
< 10000 {
[}
-
2 q000f [——
]
>
o
¢ 100 t
he]
m /
S ol
c L ki
= J;
o
o

1 1 1 1 1 1 1 1
22/11:12 22/11:14 22/11:16 22/11:18 22/11:20 22/11:22 23/11:00 23/11:02 23/11:0¢
Time

Figure 5.3: The evaluation graph of the SEALING algorithmheTsolid curve
represents the amount of requests during a DoS attack ueng2P system. The
dashed curve represents the amount of requests that wildpéually exposed to a
third party server (victim) when the system utilizes the SI¥G algorithm. The
difference of the two curves represents the savings - thectiesh of the attack
magnitude - intoduced by the utilization of the SEALING aigfum in the system.

24

CHAPTER 5. SECURITY CONSIDERATIONS

Chapter 6

Conclusions

The information presented in this document illustrategtiogen efficiency of Sec-
SPeer. SecSPeer servents, by employing the Partitionsscheere shown to face
much less traffic load and thus exhibit a much larger degreeaifbility, surpass-
ing that of traditional unstructured P2P systems by evenrdaromf magnitude.
In addition, by using the Sealing algorithm, it was shownftiently detect and
avoid efforts of malicious peers to exploit the system tdgren DDoS attacks,
thus providing better security than its counterparts. IBin& includes an efficient
broadcast mechanism, which can be used to broadcast systEminformation,
such as an approximation of the size of the network.

25

26

CHAPTER 6. CONCLUSIONS

References

[1] Gnutella 0.6 protocol specification.
[2] Kazaa inc. http://www.kazaa.com.
[3] Limewire inc. http://www.limewire.com.

[4] Gkantsidis C. Mihail M. Saberi A. Hybrid search schemes dinstructured
peer-to-peer networks. Proceedings of INFOCOM'’ 05, 2005.

[5] Burton H. Bloom. Space/time trade-offs in hash codinthvallowable errors.
Communications of the ACM, 13(7):422-426, 1970.

[6] J. Douceur. The sybil attack. ohn R. Douceur. The sybil attack. In Proc. of
the IPTPS02 Workshop, Cambridge, MA (USA), March 2002., 2002.

[7] Elias Athanasopoulos Harris Papadakis. Secspeeradable 2.1: System de-
sign. 2005.

[8] Elias Athanasopoulos Harris Papadakis. Secspeeredalile 3.1: System im-
plementation. 2005.

[9] Shanyu Zhao R. Rejaie and D. Stutzbach. Characterizieg in the mod-
ern gnutella network: A measurement study.Phoc. SPIE/ACM Multimedia
Computing and Networking, 2005.

27

