
SCIENTIFIC and TECHNOLOGICAL COOPERATION
between

RTD ORGANISATIONS in GREECE
and

RTD ORGANISATIONS in U.S.A, CANADA,
AUSTRALIA, NEW ZEALAND, JAPAN, SOUTH
KOREA, TAIWAN, MALAISIA and SINGAPORE

SecSPeer: Secure and Scalable peer-to-peer computing and
communication systems
(Contract no: HPA-021)

D3.1 “System Implementation”

Abstract: This document describes the implementation of the design ofa scal-
able and secure unstructured Peer-to-Peer system, as described in Deliverable 2.1:
”System Design”.

Contractual Date of Delivery 29 December 2005
Actual Date of Delivery 19 June 2006
Deliverable Security Class Public
Editor Charalambos Papadakis, Elias Athanasopoulos
Contributors Evangelos Markatos, Paraskevi Fragkopoulou

The SecSPeer Consortium consists of:

FORTH-ICS Coordinator Greece
University of Pitts-
burgh

Partner USA

Virtual Trip Ltd. Partner Greece

2

Contents

1 Introduction 7

2 Overview 9

3 Duplicate Elimination 11
3.1 Introduction . 11
3.2 Implementation . 11

3.2.1 Message format . 12
3.2.2 Categories . 13
3.2.3 Banned Categories . 13
3.2.4 Function onReceiveMessage 14
3.2.5 Function onReceiveQueryMessage 14
3.2.6 Function onReceiveStopMessage 15
3.2.7 Function banCategories 15
3.2.8 Function cut . 16

3.3 Conclusions . 16

4 Coloring 21
4.1 Introduction . 21
4.2 Implementation . 22

4.2.1 Unicode-based Categories 22
4.2.2 Bootstrapping . 23
4.2.3 Searching . 24

4.3 Conclusions . 26
4.4 Introduction . 26
4.5 Implementation . 26

4.5.1 Detection of Malicious Nodes 26
4.5.2 Short Term Safe Listing: the SEALING algorithm 27
4.5.3 SEALING Evaluation 27
4.5.4 Conclusions . 28

5 Conclusions 35

References 35

3

4 CONTENTS

List of Figures

3.1 Message format . 12
3.2 Category data . 13
3.3 Banned Category data . 14
3.4 Function onReceiveMessage . 14
3.5 Function onReceiveQueryMessage 18
3.6 Function onReceiveStopMessage 18
3.7 Function banCategories . 19
3.8 Function cut . 20

4.1 Unicode-based categories . 29
4.2 Categories hierarchies . 30
4.3 Function getCategories . 30
4.4 Function SecSPeerBootstrap . 30
4.5 Function onLeafConnect . 31
4.6 Function findSubNetwork . 31
4.7 . 32
4.8 SEALING Algorithm. 33
4.9 The evaluation graph of the SEALING algorithm. The solidcurve

represents the amount of download requests during a DoS attack
using Gnutella. The dashed curve represents the amount of down-
load requests that will be eventually exposed to a Web Server, if
Gnutella nodes utilize the SEALING algorithm. 33

5

6 LIST OF FIGURES

Chapter 1

Introduction

This document comprises the report for the Deliverable 3.1:Implementation, of
the SecSPeer project. The purpose of this document is to describe the implemen-
tation of the system described in Deliverable 2.1: Design, aP2P system designed
to be scalable and secure. The structure of this document is as follows:
Chapter 1 provides an overview of the implementation.
Chapter 2 provides details on the implementation of the algorithm for reduction of
duplicate messages, as described in Deliverable 2.1: Design, Chapter 3.
Chapter 3 provides details on the Coloring algorithm described in Chapter 4 of the
Deliverable 2.1.
Chapter 4 describes the implementation of a policing mechanism to protect the
system against spam traffic and exploiting it to stage indirect DDoS attacks. The
design of this mechanism was described in Chapter 5 of Deliverable 2.1.
Chapter 5 provides some conclusional remarks. The documentends with the Bib-
liography.

7

8 CHAPTER 1. INTRODUCTION

Chapter 2

Overview

In this Chapter, we present an overview of the implementation of the algorithms
proposed in Deliverable 2.1: System Design [8]. Each of the following chapters
describes the implementation of each proposed idea, each meant to address one of
the most important problems P2P systems face today. Each chapter begins with
some introduction and continues with a summary of the problem and the proposed
solution. Then follows the description of the implementation along with details
on the implementation choices and the code itself. All snippets of code presented
in the chapters are in C++-like pseudocode and can be easily integrated into most
unstructured P2P clients today. Each chapter ends with a short discussion, to sum-
marize its contents.

Great care has been taken in both the design and especially the implementation
phases, to ensure that the proposed modifications are easilyintegrated in the code
of the unstructured peer-to-peer (P2P) systems used today,such as Gnutella [12]
clients, transforming them into SecSPeer compliant clients. Not only that, but
also we have tried to ensure that components of our system caninter-operate with
components without the modifications we have proposed and implemented, albeit
of course with some reduction to the efficiency of our algorithms, compared to a
system where all components use our modifications. The fact that our clients can
operate in legacy networks and other clients can easily be modified to operate in
our network will ease the deployment of SecSPeer. The implementation changes
do change the Gnutella communication protocol, in such a wayhowever that clients
with legacy code can operate in our system and vice versa.

Recall that an unstructured P2P system is comprised of a number of clients,
called servents. Each servent is usually aware of (and connected to) a small number
of other servents. As was done in Deliverable 2.1, we model anunstructured P2P
system as an undirected graph, where each node is a servent and each edge is a
direct connection between neighbours. Throughout the restof the document, we
shall use the terms node, servent and client interchangebly, all three of them having
the same meaning.

It should be noted that in this document, we only describe theimplementation

9

10 CHAPTER 2. OVERVIEW

of the modifications in the already existant P2P systems. Forthat reason, there is
no code presented here of the algorithms used in today’s unstructured P2P systems
that we also use. For instance, we have not inlcuded the code that a client uses to
connect to the network, which is the same for our system, as isfor every Gnutella
client.

Chapter 3

Implementation of Duplicate
Elimination Algorithm

3.1 Introduction

This chapter contains the description of the implementation of the duplicate elim-
ination algorithm described in Chapter 3 of Deliverable 2.1, entitled ”A feedback-
based approach to reduce duplicate messages”. One can recall from Deliverable
2.1 that the lookup mechanism used in unstructured P2P systems today, called
flooding, can generate a large number of redundant messages.The broadcast of a
message in the network can result to each node receiving the same message multi-
ple times, due to cycles in the network graph. In order to discern which messages
will be redundant and which won’t, the proposed solution dictates that each node
distinguishes each incoming message based on the directionit is travelling (ex-
pressed as the neighbour the node received the message from)and the distance the
message has already travelled (expressed as the number of times this message has
already been propagated through the network, i.e.: the hop count). Each different
neighbour-hop count pair defines a different message category. Each node stops
forwarding to its neighbours those kind of messages (categories) that have a high
ratio of redundant messages (duplicates).

3.2 Implementation

What follows is a detailed explation of the implementation of the algorithm. The
implementation described here assumes a horizon value of one, since in Deliver-
able 2.1 we showed this horizon value to be the most efficient.The code we present
here can be easily modified to support higher horizon values (the orgn variable used
in the code presented below can be modified to represent the list of nodes in the
messages path, instead of a single node).

11

12 CHAPTER 3. DUPLICATE ELIMINATION

Msg
{
UID
type
TTL
hops
frm
orgn
payload

}

Figure 3.1: Message. This collection of data represents theinformation contained
in a message.

3.2.1 Message format

Figure 3.1 shows the format of the messages exchanged between nodes. Informa-
tion needed to be exchanged as part of our algorithm, is embedded is the normal
flood messages. We only define a new message typeStopmessage) which can be
formated as a normal message, with specific values in its fields. Thus, the same
format is used for all messages. As is the case in most unstructured systems today,
each message is assigned some globally unique id (UID). However, messages that
belong to the same flood, are all assigned the same UID. This UID is used, among
other things, to recognize duplicate messages. Thetype of the message defines
whether the message is a query, a ”stop” message, as described below, or any other
type defined by the individual protocol of each unstructuredP2P system. TheTTL
field defines the number of times this message can be forwarded. Each time it is
forwarded, it is forwarded with its TTL value reduced by one.Thehops field con-
tains the number of times the message has already been forwarded. In contrast to
the TTL field, the hops field in incremented each time the message is forwarded.
This of course means that the sum of those two fields is always constant. Thefrm
field contains some unique tag to identify the node that sent the message to the
node that received it, whereas theorgn field contains the identity of the node that
sent the message to the frm node. Finally, thepayloadfield is added for complete-
ness and contains the actuall information of the message (for instance, the query
strings). Apart from the orgn field, all other fields are already part of the Gnutella
messages. The reason for the orgn field is explained below. Inshort, the data for
each node’s categories (figure 3.2) are not maintained by thenode itself but rather
by the edge corresponding to each category. This is so that there is no need for
each node to send a duplicate notification back, each time it receives a duplicate
message but rather a single (stop) message.

3.2. IMPLEMENTATION 13

Category
{
orgn (*)
hops (*)
edge (*)
good
dups

}

Figure 3.2: Category data. This collection of data defines a category along with
the number of non-duplicates (”good”) and duplicate (”dups”) messages of this
category. The starred fields comprise the triplet that uniquely identifies the category
in that node.

3.2.2 Categories

Figure 3.2 shows the data structure used to define a category of messages. Each
category is defined by a triplet. This triplet consists of theoriginator(orgn), the
hop count(hops)and theedge(edge). As explained above, each node distinguishes
each message it receives, based on the previous node and the hop count of the
message. Since, however, messages that belong to the same category, have different
duplicate ratios for each neighbour the node forwards it to,each node subdivides
each category based on the edge. Thegood and dupsfields represent the non-
duplicate and duplicate count of all messages of this category, respectively. In
the code presented below, we assume the existance of a dictionary of Category
items, called”Categories”. This dictionary stores Category items, based on the
key formed by the< orgn, hops, edge > triplet. In effect, each category tells
the node that, forwarding a message, received from nodeorgn and coming from
hopsnodes away, to neighbouredge, has agood/dupschance of being a redundant
message. Notice that, although this information is relative to some node X, it is
actually stored in the nodeedge. As mentioned before, this is because, in order
for node X to be aware of the number of redundant messages (dups) it has sent for
that category, nodeedgeshould notify node X for each duplicate message node X
sends it. Instead, to avoid this steady stream of messages, the category is stored in
nodeedge. However, since that node is not aware of the aforementionedorgn for
each message node X receives and forwards, node X includes this information in
each message propagated (hence theorgn field in the message format).

3.2.3 Banned Categories

Figure 3.3 shows the data structure that defines a banned category. This structured
is similar to the Category structure of figure 3.2. However, since this data structure
defines an already ”eliminated” category, which means that no messages of this
kind will be propagated by this node, there is not need for the”good” and ”dups”

14 CHAPTER 3. DUPLICATE ELIMINATION

BannedCategory
{
orgn (*)
hops (*)
edge (*)

}

Figure 3.3: Banned Category data. This collection of data define a category of
messages that this node will not forward any more.

01 function onReceiveMessage(Msg m)
02 {
03 if (m.type == "Query")
04 onReceiveQueryMessage(m);
05 if (m.type == "Stop")
06 onReceiveStopMessage(Msg m);
07 }

Figure 3.4: Function onReceiveMessage. This function is called to process each
incoming message.

fields. As is the case of the Categories dictionary, the code presented also assumes
the existence of a BannedCategories dictionary. As is shownin the code below,
each node will first check this dictionary. If the category ofthe message it has
just received exists in the dictionary, for some edge-neighbour, the node does not
forward the message over that particular edge. In addition,and in contrast to the
normal categories, the BannedCategories information is stored on the actual node
to whom they belong.

3.2.4 Function onReceiveMessage

FunctiononReceiveMessage(figure 3.4) is used to distinguish between Query mes-
sages and Stop messages and to call the appropriate function. We discern between
those two cases, in order to make the code snipets presented here smaller and easier
to understand.

3.2.5 Function onReceiveQueryMessage

FunctiononReceiveQueryMessage(figure 3.5) is used to process a query message.
It first checks to see whether the message received is a duplicate or not (Another
dictionary to hold the UIDs of messages already received is assumed. Such a dic-
tionary, in some form or another, already exists in all unstructured P2P systems in
use today, that we know of). If it is a duplicate, the appropriate category is located

3.2. IMPLEMENTATION 15

and itsdupsfield incremented. On the other case, if the message is not a duplicate,
its UID is added to the corresponding dictionary of UIDs, andthe good field of
the appropriate category is incremented. In both cases, if such a category does not
exist in the dictionary, the code of the dictionary creates one at that time. Again
in both cases, the banCategories function is called to checkwhether the measure-
ments the node has collected so far are sufficient for it to decide which categories
generate most duplicates, while at the same time having minimal contribution to
the total number of the non-duplicates. When this process iscompleted, the node
starts forwarding the message to its neighbours. However, as mentioned before, it
will not forward the message to some neighbour, if the category of the message,
for that neighbour can be found in the BannedCategories dictionary. Finally, the
processQuery method implements the node’s processing the new query locally (for
instance to see if some of the data it holds match the query’s criteria).

3.2.6 Function onReceiveStopMessage

Figure 3.6 shows the code of the function used whenever a”Stop” message is re-
ceived. The transmission of such a message is explained further on in this chapter.
The node may receive a”Stop” message from any of its neighbours. The message
notifies the node that most of the messages received from its neighour defined in the
orgn field and which originated a number of hops away from the node equal to the
hops field of the message, are mostly duplicates when forwarded to the neighbour
that sends the”Stop” message. This means that the node should stop forward-
ing those kind of messages to that neighbour, and thus adds that category, for that
edge-neighbour in the BannedCategories dictionary. Sincethe node defined in the
orgn field is a neighbour of the node that receives the”Stop” message (and not of
the node that sends it), this explains the need for an orgn field in the Msg format
(figure 3.1), where the node that forwards a message includesthe previous node in
the message.

3.2.7 Function banCategories

The warm-up period of the algorithm is defined as the time the node spends ob-
serving the traffic patterns, in order to make the necessary decisions later on. The
banCategoriesfunction of figure 3.7 is used to first determine whether the measure-
ments collected so far are sufficient to decide which categories are more harmful to
the system than useful. If that is the case, thecut function described below is used
to do the actual elimination of the harmful categories, by deciding which is which.
ThebanCategoriesfunction declares the warm-up period over when the ratio of all
the duplicates over all the messages received by that node more or less stabilizes to
some value. The value is assumed to have stabilized when the total change over the
last (thirty in this case) changes in its value are less than 0.01 and the average of the
absolute of each change is less than 0.02. Those thresholds ensure that not only the
changes in the ratio value are small, but also that the value is not slowly increasing

16 CHAPTER 3. DUPLICATE ELIMINATION

or decreasing constantly over time. If the value in questionhas stabilized, thecut
function is called. TheoldPercvariable is used so that the ratio value computed
by one call of thebanCategoriesfunction is retained in the next call of the same
function, in order to compute the difference. Finally the value of thecgoodvari-
able is checked. If it is positive, this means that not only the warm-up phase was
over and thecut finction was called, but thecut function also banned some of the
categories, as explained below. If this is the case, then allother measurements are
purged and the process starts anew, in the warm-up phase (TheoldPercvariable is
re-initialized, as are the rest of the variables that control the stabilization process).
This is done because the traffic patterns will change, due to the fact that some cat-
egories have been banned. If the value of thecgoodvariable remains zero, either
the warm-up period is not over, or no categories were eliminated. In either case,
the measurements continue until we are able to ban some categories.

3.2.8 Function cut

The last function presented in this chapter is used wheneverthe banCategories
function declares the warm-up phase over. This means that the knowledge of the
traffic patterns of the network is sufficient to allow us to decide which messages
should not be forwarded. Thecut function (figure 3.8) iterates through all cate-
gories. As is shown, for each category, the function computes the current ratio
of all duplicate messages over all messages (line 18). It then computes the same
ratio with the duplicate messages quantity reduced by the duplicate messages of
the category considered. However, if that category is banned, the non-duplicate
messages as well as the duplicate ones are eliminated. For this reason, line 27
computes the ratio of the remaining non-duplicate messagesover the total non-
duplicate messages. The same ratio, when the category was not banned is one (line
19). Having two D and C pairs, the algorithm has to decide which one is more effi-
cient. The efficiency function used is defined as the product of each C and D pair.
This efficiency function can easily be modified to adapt to cases where increased
coverage of the flood is required, even at the cost of more duplicate messages, by
using, for instance,(C2

∗ D)1/3. Should the efficiency rating value of the C and
D pair that corresponds to the case where the considered category is banned be
higher, the node sends a”Stop” message to the appropriate neighbour, to notify it
not to forward certain messages to itself. Finally thecgoodandcdupsvariables are
used to count the total number of non-duplicate and duplicate messages of all the
categories that were banned.

3.3 Conclusions

In this chapter, we presented the implementation of the duplicate elimination al-
gorithm, designed in Deliverable 2.1. The code we presentedwere written in C++
with only some small parts of pseudo-code to facilitate its understanding and fo-

3.3. CONCLUSIONS 17

cus on the important parts of the implementation. The extreme similarity of the
code to C++ enables the code to be easily imported to any unstructured P2P sys-
tem client, especially any Gnutella client, such as LimeWire [5], BearShare [3] and
Gtk-Gnutella [4], to make them compatible with SecSPeer. Inaddition, since dur-
ing the initialization of a connection between two servents, information regarding
the version of the software of each client is exchanged, it iseasy for any client
incorporating our code, to behave as a legacy client over connections with other
legacy clients. This means that not only legacy clients can easily be enhanced to
be able to work in our system, but also clients of the SecSPeersystem can easily
be integrated in the existing unstructured P2P networks. The more clients partici-
pating in the network use our code, the better the efficiency.Notice that inside the
implementation, a number of dictionaries are used. The dictionary is a well-known
data structure and different and efficient implementationsof this data structure are
abudant. In our case, for instance, we used red-black trees [13].

18 CHAPTER 3. DUPLICATE ELIMINATION

01 function onReceiveQueryMessage(Msg m)
02 {
03
04 if (m is duplicate)
05 {
06 Category c = Categories.find(m.orgn, m.hops-1, m.frm);
07 c.dups++;
08 banCategories();
09 }
10 else
11 {
12 Category c = Categories.find(m.orgn, m.hops-1, m.frm);
13 c.good++;
14
15 processQuery(m);
16 banCategories();
17
18 foreach (Neighbour n in Neighbours)
19 {
20 if (BannedCategories.exists(frm, m.hops, n))
21 {
22 Msg nm = new Msg(m.UID, m.type,
23 m.TTL-1, m.hops+1, m.frm, m.payload);
24 sendMessage(nm, n);
25 }
26 }
27 }
28 }

Figure 3.5: Function onReceiveQueryMessage. This function processes a query
message

01 function onReceiveStopMessage(Msg m)
02 {
03 BannedCategories.add(new BannedCategory(m.orgn, m.hops, m.frm));
04 }

Figure 3.6: Function onReceiveStopMessage. This functionprocesses a stop mes-
sage

3.3. CONCLUSIONS 19

01 function banCategories()
02 {
03 int msgs, good, dups, cgood = 0, cdups = 0;
04 static float oldPerc = -1;
05 static int change = 0;
06
07 foreach(Category c in Categories)
08 {
09 good += c.good;
10 dups += c.dups;
11 }
12
13 msgs = good+dups;
14
15 if (!msgs) return;
16
17 if (oldPerc != -1)
18 {
19 float newPerc = (dups*100.0)/msgs;
20
21 if (change < 30)
22 {
23 change++;
24 percdiff += oldPerc - newPerc;
25 percabs += fabs(oldPerc - newPerc);
26 }
27 else
28 {
29 percdiff -= percdiff /30;
30 percdiff += oldPerc - newPerc;
31 percabs -= percabs /30;
32 percabs += fabs(oldPerc - newPerc);
33
34 if (percdiff < 1 && (percabs/30) < 2)
35 cut();
36 }
37 }
38 if (cgood > 0)
39 {
40 Categories.purgeAll();
41 oldPerc = -1;
42 percdiff = percabs = change = 0;
43 }
44 else
45 oldPerc = ((dups-cdups)*100.0)/(good+dups-cdups-cgood);
46 }

Figure 3.7: Function banCategories. This function checks for the conclusion of the
warm-up phase.

20 CHAPTER 3. DUPLICATE ELIMINATION

01 function cut()
02 {
03 foreach(Category c in Categories)
04 {
05 int oldg, oldd, newg, newd;
06 double oldRate, newRate, D, C;
07
08 oldg = good - cgood;
09 oldd = dups - cdups;
10 newg = oldg - c.good;
11 newd = oldd - c.dups;
12
13 if (oldg+oldd == 0)
14 oldRate = 0;
15 else
16 {
18 D = ((oldg*1.0)/(oldg+oldd)) ;
19 C = ((oldg*1.0)/oldg);
20 oldRate = D*C;
21 }
22 if (newg+newd == 0)
23 newRate = 0;
24 else
25 {
26 D = ((newg*1.0)/(newg+newd));
27 C = ((newg*1.0)/oldg);
28 newRate = D*C ;
29 }
30
31 if (newRate > oldRate)
32 {
33 Msg nm = new Msg(m.UID, STOP, 0, c.hops, c.orgn, "");
34 sendMessage(nm, c,frm);
35 Categories.remove(c.orgn, c.hops, c.edge);
36 cgood += (c.msgs - c.dups);
37 cdups += c.dups;
38 }
39 }
47 }

Figure 3.8: Function cut. This function performs the actualfiltering on the cate-
gories.

Chapter 4

Implementation of the Coloring
algorithm

4.1 Introduction

This chapter contains the description of the implementation of the algorithm de-
scribed in Chapter 4 of Deliverable 2.1, entitled ”Flood Driving algorithms - Di-
vide and Conquer”. The purpose of the algorithms implemented in the previous
chapter was to reduce the cost (in messages) of flooding a system of N nodes with
d average degree, from (d-1)*N to N, thus making it independant of the average
degree. The purpose of the algorithms implemented in this chapter is to further
reduce that cost to less than N. If possible, the cost should be in the order of the
number of results requested in each query. As one may recall from Deliverable 2.1,
the main idea behind this scheme is to create subnetworks of the original network.
Each subnetwork corresponds to some type of content and somenode may join in
any subnetwork only if it contains data of that type. Each query is also assigned
a type in the same manner and is directed only to the corresponding subnetwork.
This way, the flood is directed only to nodes that have a chanceof containing some
result. If the node that initiates the query is not aware of any node participating
in the subnetwork to be flooded, a flood on all its neighbours (on all subnetworks)
can be conducted to locate such a node. Since, by definition, the number of the
nodes participating in some subnetwork is larger than the data being looked up, the
search for a node will be less costly. The criterion we use to categorize the data
and the queries is the character set used in the names of the data and the strings of
the query. All possible character sets are sorted accordingto how widespread their
use is. In cases where a query contains more than one character set, the one used
less often is used to direct the query. The implementation ofthe scheme summarily
outlined above, which we call”Coloring” , is described below.

21

22 CHAPTER 4. COLORING

4.2 Implementation

This section presents, in detail, the implementation of theColoring algorithm. The
algorithm (and its implementation) is divided into two subparts, the bootstrapping
procedure and the actual searching. The bootstrapping procedure is used to connect
the node in the system, by connecting it to the appropriate subnetworks, depending
on the types of data it shares. Each node should not connect tomany subnetworks.
Not only the opposite would require a lot of connections, butconnecting to many
subnetworks means that this node will receive many queries,which beats the reason
for using the Coloring scheme. Thus, the criterion used to categorize the content
of each node should define a few categories which describe most of the content of
the node. The character set criterion we have used exhibits this property, since it is
quite rare that some user’s client will contain data that useall character sets (in a
sense, it is quite rare that a user speaks all languages). Onemay note that almost
every user may posses data that use the english character set, however, on the other
hand, not all users contain data that use other character sets, such as chinese or
cyrillic. Using this criterion, it is also easy to characterize a query even without
the help of the requesting user. We use the Unicode CharacterCode for many
reasons. Not only is it the current standard, containing symbols for all languages
(even ancient or fantastical ones) but also the code for the latin letters is the same
as in ASCII code, making it possible to categorize data whosenames are in ASCII
code.

4.2.1 Unicode-based Categories

Figure 4.1 shows the categories we have defined in the implementation, using the
available Unicode character scripts. The subnetworks thatwill be formed in the
system correspont to the middle column of the figure. Some categories may also
function as a super-category for other categories. This hierarchy, shown in fig-
ure 4.2, reflects the fact that some languages share many characters (usually be-
cause they evolved from the same base language).This hierarchical information,
however, is only used when querying the system and is not reflected in the struc-
ture of the subnetworks. Since characters of a parent category are also used by each
of its children, as shown in figure 4.2, one needs a prioritization scheme to define
unambiguously the category each data belongs to. It is the case that all characters
of some piece of data can only be categorized to one category on each level of the
tree shown in figure 4.2, since the character sets that distinguish each category on
the same level, are distict. For instance, in the level of the”German-based” cate-
gory, the other two categories on the same level (”Spanish” and ”Portuguese”) do
not use umlauted characters. However, one needs to disambiguate between cate-
gories of different levels. In theLatin super-category for instance, should the word
”f örs̈aljningsframgång” be assigned to theLatin, theGerman-basedor theScan-
dinaviancategory? The rule used to solve this problem is that some piece of data
is assigned to the category lowest in hierarchy tree. Thus, in the example above

4.2. IMPLEMENTATION 23

the word will be assigned to theScandinavian. Any node containing this word
will only connect to that category and not any ”parent” categories. Using the same
scheme, each query assigned to some category, should be sentto that category
and all its ”children” in the tree. For instance, any query that is assigned to the
German-basedcategory should be also sent to theScandinavian, Dannish - Nor-
wegianandFinnishcategories.In the code presented in the rest of this chapter, we
assume the existence of a function which returns a data structure (List) containing
all the categories defined by the contents of a node. (Figure 4.3).

4.2.2 Bootstrapping

As mentioned before, each subnetwork corresponds to one category and vice versa.
Bootstrapping in the appropriate character sets can be donein the same way that
a Gnutella client connects to the network today. This is doneusing webcaches to
learn of some other nodes already in connected in the networkand use those nodes
to connect. Since there is a known number of character sets, one webcache can
be used for each category/subnetwork. Assuming a function that Gnutella uses to-
day to bootstrap in the system, given a webcache and the number of connections
to initiate, we can use it to implement our bootstrapping function as is shown in
Figure 4.4. Parameterwebcaches[]is assumed to be an array containing the web-
caches for all categories, indexed on a per-category basis.Thesizefunction returns
the number of categories in theList. Thus, we divide all available connections
equally among the subnetworks the node should join.

Ultrapeers

Notice that theGnutellaBootstrapfunction differs when a node is in ”Leaf” mode
from when it is in ”Ultrapeer” node. We assume the reader is familiar with the ”Ul-
trapeerarchitecture [2], which was also described in Deliverable 2.1. This means
that in the case of Leaves, the result of this function will bethat for each category it
is invoked, at most three connections will be made to Ultrapeers belonging to that
category/subnetwork. This is the standard behaviour of this function in Gnutella-
compliant clients and it has almost the same behaviour in ourimplementation. It
only differs in one aspect. This difference explains the existence of arraymode.
This array contains information regarding the status of thenode in each category
it belongs to. Notice that the same node can be a Leaf in some category and an
Ultrapeer in another. In standard GnutellaBootstrap function, each node sends a
Bloom filter [9] of its content to all neighbours. If the node is in Ultra-peer node,
that bloom filter includes the contents of its Leaves. In the case of SecSPeer, a
Leaf sends to each Ultrapeer it connects to, only the contentthat belongs to that
subnetwork. Similarly, an Ultrapeer of category A (for instance), will send to its
Ultrapeer neighbours in subnetwork A a Bloom filter of its category A content,
including the content of its category A Leaves. What it more,during the handshak-
ing of a new connection, the two participating nodes should exchange information

24 CHAPTER 4. COLORING

regarding all the subnetworks each is part of, regardless ofbut including if they
are Leaves or Ultrapeers in each one of them. Since the new neighbour Y of some
node X may be also part of some other subnetwork that node X is also part of, this
means that this connection can be used as a connection for both subnetworks, re-
ducing the total number of connections required. For instance, nodes than belong
to theScandinaviancategory will more likely also belong to theGerman-based
category, since they will most likely contain words with umlauts but without the
åcharacter. ThepruneConnectionsfunction computes the available connections for
each subnetwork and disconnects any of them which are in excess of the number
of connections required for each subnetwork, in order to tryto reduce the num-
ber of connections to D, if the bootstrapping procedure resulted to more than D
connections. Another approach that can be used in the Ultrapeer-Leaf connectivity
scheme can be used to even more reduce the number of connections (and work-
load) of Leaves, at the same time of course, placing more stress on Ultrapeers.
Each Leaf can use only one Ultrapeer to connect to the network, instead of one per
category it belongs to. This means however that all the content (of any type) of that
Leaf should be sent to the Ultrapeer. In turn, the Ultrapeers”adopts” that content
and thus connects to any appropriate catefories. This scheme has the drawback that
the content of each Ultrapeer becomes more diverse, thus forcing the Ultrapeer to
connect to more subnetworks. As we mentioned before, the larger the conjuctions
between any two subnetworks, the less efficient the Coloringscheme is. One way
to still use this Ultrapeer-Leaf connectivity scheme and yet not jeopardize the effi-
ciency of the algorithm is to make the Ultrapeer reject any Leaves that will expand
its range of categories over some limit. For instance, if that limit is two categories,
then the Ultrapeer will reject any Leaves that differ in morethan two categories.
If the Ultrapeer already has its categories expanded by two,it will not accept any
Leaves with even one category not already part of the Ultrapeer’s epanded list of
categories. According to this scheme, the bootstrapping ofboth Leaves and Ultra-
peers is the same as in Gnutella. The difference with the SecSPeer bootstrap is that
now, the categories of the Ultrapeer can change every time a new Leaf is connected,
while in the previous scheme, each Ultrapeer received from its Leaves only appro-
priate content. Thus, we now need an ”onLeafConnect()” function, illustrated in
figure 4.5. ThenodeListdictionary corresponds to the Leaf’s categories, whereas
thecomparefunction used returns a dictionary of the categories ofnodeListthat are
not already incatList, in this case. TheexpLimitvariable contains the maximum
number of categories this Ultrapeer can accept.

4.2.3 Searching

Searching in SecSPeer is divided into two, distinct phases,explained below, in de-
tail. Even before those two phases, however, the query to be sent is assigned to
some category (using thegetCategories()function, which in this case will return
one result/category). The purpose of this is that that queryshould only be propa-
gated across the nodes of the subnetwork that correspond to that category. Notice

4.2. IMPLEMENTATION 25

that if the category of the query is not a leaf node in the tree of figure 4.2, then the
query will have to be propagated to more than one categories/subnetworks. To be
able to do that, the node has to be (or become) aware of at leastone node in each
of these subnetworks. At this point, theSearching for the subnetworkprocess is
invoked, for each subnetwork we need to contact.

Searching for the subnetwork

The pseudo-code for locating a node of a subnetwork is illustrated in figure 4.6.
The node initiating the subnetwork search first checks whether it is itself a part of
that subnetwork. If that is the case, the first phase of the lookup (Searching for the
subnetwork) is already complete, and the node moves to the second phase.Oth-
erwise, it checks to see if at least one of its neighbours is part of that subnetwork.
This process requires no communication, since during the handshake procedure,
when a node first connects to a neighbour, information about the nodes, including
the subnetworks they belong to, is exchanged. Finally, if all has failed, the node
asks its neighbours if they are aware of any node of that subnetwork. The neigh-
bours will check whether some of their neighbours are part ofthe sub-network and
may or may not also propagate the request, according to the TTL value. If the
node receives some positive replies, it caches them for so long, as half the average
lifetime of a node it has observed so far. This information can be used to answer
queries of other nodes, themselves looking for nodes of thatsubnetwork. This
means that the reply of the neighbours we mentioned just before, can either be be-
cause at least one of their own neighbours belongs to that category, or their cache
contained some entry for that subnetwork. Given the number of distinct categories,
the fact that each node may belong to more than one of them and the average de-
gree of the connections (around thirty) it is highly unprobable that this algorithm
will fail to locate the necessary nodes, even with a TTL of one. In the pseudo-code
of figure 4.6,catList is assumed to contain all the categories the node belongs to
and its exists function is assumed to return a boolean value,depending on whether
the category-argument exists in thecatListor not.

Searching for data

After all appropriate nodes have been located, the queryingnode sends a standard
Gnutella request to each node. The query is sent by first establishing a TCP con-
nection with that node, which remains active until the requesting client receives
enough results, or up to some timeout. If GUESS [1] is used, then the query can be
sent via UDP.

Routing

Each node that receives a query, routes it in the standard Gnutella fashion. How-
ever, it does so only after it has itself categorized the query and then forwards it

26 CHAPTER 4. COLORING

only to those neighbours that belong to the category corresponding to the query.
Notice that, as mentioned before, each connection can servemore than one cate-
gories, if both nodes at the end of the connection share more than one common
categories-subnetworks.

4.3 Conclusions

In this chapter, we presented the implementation of a schemethat aims to reduce
the cost of flooding in messages, by better directing the floodto nodes with appro-
priate content and avoiding to contact nodes without the type of information we
want. One should notice that the low level functions used arethe standard Gnutella
protocol functions, making this scheme very easy to implement and integrate to
the Gnutella network. In addition, the categorization scheme we used can easily
be modified to include more or less categories, to improve theefficiency of the
system. However, this task is part of the Evaluation phase ofthis project.

4.4 Introduction

This chapter contains the description of the implementation of two different so-
lutions to prevent malicious action in an unstructured P2P system. As has been
described in Chapter 5 of Deliverable 2.1, entitled ”SystemSecurity”, there is a
number of issues regarding Security in unstructured P2P systems. The most im-
portant among them is the ability to insert malicious nodes,which can instrument
the whole system to perform Denial of Service attacks to third parties.

In this chapter we describe the implementation of the algorithm for the de-
tection of malicious nodes of a P2P system, which we analyzedin section 5.6 of
Deliverable 2.1, as well as the implementation of SEALING. SEALING is a val-
idation algorithm, which focuses on preventing Denial of Service attacks to third
parties.

4.5 Implementation

4.5.1 Detection of Malicious Nodes

A malicious node of a P2P system is considered as the node thatis able to provide
service for every incoming request. For example, in a P2P system dedicated to
file sharing, a malicious node will respond to every incomingSearch Query and
will redirect queriers to a victim node. This is the fundamental property, which
is used in our algorithm in order to detect malicious nodes and isolate them from
the system. Our strategy forces a legal peer to issue a Query with random search
criteria and TTL=1, at a random time period upon handshakingwith a new node,
the new node it handshaked with. If it receives a reply for therandom Query then
it should drop the connection.

4.5. IMPLEMENTATION 27

The algorithm is depicted in Fig. 4.7. We have implemented the function
MaliciousDetector() (line 15), which is called during random time intervals. The
largest time interval is 255 seconds (defined in line 1). Whenthe MaliciousDetec-
tor() function is called, all neighbors are queried by generating Query packets with
random search criteria (SendRndQuery(), line 3). Each random Query is stored in
a dictionary (FakeQueries). When a QueryHit is received it is first checked in order
to investigate if it is a QueryHit generated by one of our random Queries. If this is
the case, we drop the connection (line 29) of the node which issued the QueryHit,
since it is considered as a malicious one.

4.5.2 Short Term Safe Listing: the SEALING algorithm

This section describes the implementation of the SEALING algorithm, which has
been evaluated in a real P2P System (Gnutella).

Our SEALING algorithm mainly focuses on protecting innocent victims such
as non-Gnutella participants from DoS attacks originated from Gnutella. We con-
sider a non-Gnutella participant as any host advertised to Gnutella (i.e. with an IP
address and port number delivered in a Gnutella QueryHit) that does not support
the Gnutella protocol. That is, the following Validation Criterion is used to distin-
guish between third parties that are potential victims of a DoS attack from normal
Gnutella peers:

SEALING Validation Criterion: Any host advertised in a Gnutella QueryHit packet
which can not respond correctly to a Gnutella Handshake process is considered as
a non-Gnutella participant and a potential victim for a Gnutella-based DoS attack.

The SEALING algorithm is shown in Figure 4.8. The goal of the algorithm
is to place potential DoS victims in a Safe List based on the SEALING Validation
Criterion. This Safe List keeps track of machines that should not be contacted
for downloads. Each Gnutella node keeps a Safe List and periodically updates its
records. Each record has a lifetime of a fixed time interval. For the purposes of our
evaluation, we used a fixed time interval of 30 minutes.

4.5.3 SEALING Evaluation

We attempt to evaluate the SEALING algorithm using the tracecollected from the
Middle DoS attack. We group the download requests by the IP address recorded
by the Web Server during the attack. We consider the first download request as
a download attempt that, according to SEALING, will fail since the Web Server
will not respond correctly to the Gnutella Handshake. Basedon SEALING, all the
download requests following the first download and for the next 30 minutes will be
filtered out by the Gnutella peer and eventually will not makeit to the Web Server.
That is, we assume that the Gnutella peer that received the QueryHit, will add the
Web Server to its Safe List after failing to Handshake with it.

28 CHAPTER 4. COLORING

For every download request we find in the trace we compare its timestamp
with the first one encountered in the trace, which serves as the time offset of the
SEALING algorithm. If the timestamp of a download request isfound to be over
30 minutes after the time offset, then we consider that the download request serves
as a new Handshake, which will also eventually fail. Again, we filter out the next
download requests we encounter in the trace that have relative time difference less
than 30 minutes with the new time offset. The results of the evaluation, as shown in
Figure 4.9, indicate that SEALING reduces the effectiveness of the DoS by roughly
two orders of magnitude in terms of the number of download requests to the victim
site. We believe that this is sufficient to downgrade the threat of Gnutella-based
DoS attacks to the level of mere nuisance for the majority of potential victims.

4.5.4 Conclusions

In this chapter we presented the implementation of two different algorithms, which
aim to prevent a P2P system to perform DoS attacks to computermachines, part of
the P2P system infrastructure, or to computer machines thatare not even aware of
the existance of the P2P system.

The first algorithm tries to identify malicious nodes insidethe P2P system, by
forcing a node to periodically send random Queries, that should not generate any
QueryHits, to its immedient neighbors. A node that replies to a random Query with
a QueryHit is considered as malicious and it connection to the system is dropped.
That is, our algorithm aims on preventing malicious nodes tohave strong connec-
tivity with the P2P system.

Our second algorithm focuses on preventing a P2P system to perform a DoS
to a third party. This is acomplished by forcing every peer tovalidate that a node
which advertizes a Service in the P2P system (for example it advertizes that it has
files in a P2P file sharing system) is actually part of the P2P system. We evaluated
our algorithm, SEALING, in a real world P2P system, Gnutella, and the results, as
we see in??, are quite impressive and promissing.

4.5. IMPLEMENTATION 29

Figure 4.1: Unicode-based categories and the corresponding Unicode alphabets

30 CHAPTER 4. COLORING

Figure 4.2: Hierarchies of the categories defined in figure 4.1

01 List getCategories(FileIndex)

Figure 4.3: Function getCategories. Returns the categories a node belongs to.

01 void SecSPeerBootstrap(webcaches[], int D)
02 {
03 List catList = getCategories(FileIndex);
04 foreach (Category c in catList)
05 {
06 int deg = D/catList.size();
07 if (mode[c] == "Leaf")
08 deg = max(deg, 3);
09 else
10 deg = min(deg, 3);
11 GnutellaBootstrap(webcache[c], deg);
12 }
13 pruneConnections();
14 }

Figure 4.4: Function SecSPeerBootstrap. Used to insert a node in the network.

4.5. IMPLEMENTATION 31

01 void onLeafConnect(Node n)
02 {
03 List nodeList = getCategories(n.getFileIndex());
04 List catList = getCategories(this.getFileIndex());
05
06 List diff = catList.compare(nodeList);
07 if (catList.size() + diff.size() <= expLimit)
09 LeafConnect(n);
10 if (diff.size() > 0)
11 foreach (Category c in diff)
12 {
13 catList.add(c);
14 deg = min(D/catList.size(), 3);
15 GnutellaBootstrap(webcache[c], deg);
16 }
17 pruneConnections();
18 }

Figure 4.5: Function onLeafConnect. Used by an Ultrapeer whenever it receives a
request for connection by a new Leaf node

01 Node findSubNetwork(Category c, int TTL)
02 {
03 if (this.catList.exists(c)) return this;
04 foreach (Node n in Neighbours)
05 {
06 if (n.catList.exists(c)) return n;
07 }
08 foreach (Node n in Neighbours)
09 {
10 Node result = n.findSubNetwork(c, TTL-1);
11 if (result != NULL) return result;
12 }
13 return NULL;
14 }

Figure 4.6: Function findSubNetwork. Used to locate a node belonging to some
subnetwork.

32 CHAPTER 4. COLORING

01 #define MALICIOUS_DETECTOR_INTERVAL 255 /* Seconds. */
02
03 function SendRndQuery(Node n) {
04 Query q;
05 String str;
06
07 str = String.new(Rand(64));
08 str.shuffle();
09 q = new Query(str);
10 q.TTL = 1;
11 q.hops = Rand(3);
12 n.SendQuery(q);
13 }
14
15 function MaliciousDetector(void) {
16 foreach (Neighbour n in Neighbours) {
17 FakeQueries.push(SendRndQuery(n));
18 }
19
20 alarm(Rand(MALICIOUS_DETECTOR_INTERVAL);
21 }
22
23 function onQueryHitReceive(Node n, QueryHit qh) {
24 GUID g;
25
26 g = QueryHitExtractGUID(qh);
27 /* Check if it is a QueryHit for a random Query. */
28 if (FakeQueries.exists(g)) {
29 ConnectionDrop(n);
30 } else {
31 QueryHitProcess(n, qh);
32 }
33 }
34
35 int main(void) {
36 MainApp.AddSignalHandler(MaliciousDetector, SIG_ALARM);
37 alarm(1);
38 }

Figure 4.7:

4.5. IMPLEMENTATION 33

0 SafeListLifeTime = 30 mins;
1 function if (GnutellaPacket(pkt) == QueryHitPacket) {
2 GnutellaExtractNode(pkt, &GnutellaNode);
3 if (SafeListContains(GnutellaNode)) {
4 if (CurrentTime() -
5 SafeListGetTimeOfNode(GnutellaNode) <
6 SafeListLifeTime)
7 GnutellaDropPacket(pkt);
8 }
9 else
10 GnutellaParseHits(pkt);
11 }
12 ...
13 function onDownloadAttempt(node, file) {
14 if (GnutellaHandShake(node))
15 GnutellaDownload(node, file);
16 else
17 SafeListAdd(node);
18 }
19 ...

Figure 4.8: SEALING Algorithm.

 1

 10

 100

 1000

 10000

 100000

22/11:12 22/11:14 22/11:16 22/11:18 22/11:20 22/11:22 23/11:00 23/11:02 23/11:04

D
ow

nl
oa

d
R

eq
ue

st
s

(p
er

 h
ou

r)

Time

SEALING Evaluation

DoS Attack
SEALING

Figure 4.9: The evaluation graph of the SEALING algorithm. The solid curve rep-
resents the amount of download requests during a DoS attack using Gnutella. The
dashed curve represents the amount of download requests that will be eventually
exposed to a Web Server, if Gnutella nodes utilize the SEALING algorithm.

34 CHAPTER 4. COLORING

Chapter 5

Conclusions

This document presents the implementation of the SecSPeer system, a scalable
and secure peer-to-peer system, which meets the requirements outlined in Deliver-
able 1.1: SYstem Requirements [6]. The work described in this and the previous
deliverable (Deliverable 2.1) addresses both problems, namely the scalability and
security of a global-scale P2P system. We have adopted an unstructured archi-
tecture, which makes the system robust in the face of arbitrary failures and more
secure. This is because in unstructured P2P systems peers are trully ”expendable”,
meaning that the arbitrary loss of any of them will not affectthe functionality of the
network in any way. In structured systems [10], [11], [7] however, although P2P
systems themselves and as such, there is no peer with centralresponsibilities, still
each peer depends on some other peers to store its information. This increased de-
pendability among peers makes those systems less robust andmore susceptible to
attacks that can exploit the structure of the system. Additional security algorithms
have been implemented to reduce the impact of the most important security threats
in unstructured systems, namely spam and reflective DDos attacks. The increased
robustness of an unstructured P2P system comes at the cost ofincreased number
of messages required to perform a lookup in the system. This problem has also
been addressed with the proposals outlined in chapters 3 and4 of the Deliverable
2.1: System Design and implemented in the same chapters of Deliverable 3.1: Sys-
tem Implementation. Finally the system implemented in thisdocument was made
to easily inter-operate with existing unstructured P2P systems, thus facilitating its
deployment and use.

35

36 CHAPTER 5. CONCLUSIONS

References

[1] Guess specification. http://groups.yahoo.com/group/the
gdf/files/proposals/guess/guess 01.txt. Technical report.

[2] Christopher Rohrs Anurag Singla. Ultrapeers: An-
other step towards gnutella scalability, http://rfc-
gnutella.sourceforge.net/proposals/ultrapeer/ultrapeers.htm. Technical
report, Limewire LLC.

[3] BearShare. Bearshare, http://www.bearshare.com.

[4] Gtk-Gnutella. Gtk-gnutella, http://www.gtk-gnutella.com.

[5] LimeWire LLC. Limewire llc, http://www.limewire.com.

[6] E. P. Markatos. Secspeer deliverable 1.1: System requirements. 2005.

[7] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peerinformation
system based on the xor metric. InProceedings of IPTPS02, Cambridge,
USA, March 2002. http://www.cs.rice.edu/Conferences/IPTPS02/, 2002.

[8] H. Papadakis. Secspeer deliverable 2.1: System design.2005.

[9] Christopher Rohrs. Query routing for the gnutella network. Technical report,
Limewire LLC.

[10] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet appli-
cations. InProceedings of the 2001 conference on applications, technologies,
architectures, and protocols for computer communications, pages 149–160.
ACM Press, 2001.

[11] Mark Handley Richard Karp Sylvia Ratnasamy, Paul Francis and Scott
Shenker. A scalable content addressable network. InProceedings of ACM
SIGCOMM 2001, 2001.

[12] R. Manfredi T. Klingberg. Gnutella 0.6 specification, http://rfc-
gnutella.sourceforge.net/src/rfc-06-draft.html.

37

38 REFERENCES

[13] Ronald L. Rivest Clifford Stein Thomas H. Cormen, Charles E. Leiserson.
Introduction to Algorithms, Second Edition. The MIT Press, 2nd edition
(September 1, 2001), 2001.

