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Chapter 1

Introduction

This document comprises the report for the Deliverable Bnjplementation, of
the SecSPeer project. The purpose of this document is toildeshe implemen-
tation of the system described in Deliverable 2.1: DesighR2B system designed
to be scalable and secure. The structure of this documesffidlaws:

Chapter 1 provides an overview of the implementation.

Chapter 2 provides details on the implementation of therdlgua for reduction of
duplicate messages, as described in Deliverable 2.1: DeSlmppter 3.

Chapter 3 provides details on the Coloring algorithm désctin Chapter 4 of the
Deliverable 2.1.

Chapter 4 describes the implementation of a policing meshamo protect the
system against spam traffic and exploiting it to stage iotliEDoS attacks. The
design of this mechanism was described in Chapter 5 of Dralile 2.1.

Chapter 5 provides some conclusional remarks. The docuemgist with the Bib-
liography.
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Chapter 2

Overview

In this Chapter, we present an overview of the implememnatibthe algorithms
proposed in Deliverable 2.1: System Design [8]. Each of tilewing chapters
describes the implementation of each proposed idea, eaghtrimeaddress one of
the most important problems P2P systems face today. EagecHzegins with
some introduction and continues with a summary of the protdad the proposed
solution. Then follows the description of the implemertatalong with details
on the implementation choices and the code itself. All ssipf code presented
in the chapters are in C++-like pseudocode and can be eatglgrated into most
unstructured P2P clients today. Each chapter ends withradisoussion, to sum-
marize its contents.

Great care has been taken in both the design and especalinfiementation
phases, to ensure that the proposed modifications are @#sitlyated in the code
of the unstructured peer-to-peer (P2P) systems used tedely,as Gnutella [12]
clients, transforming them into SecSPeer compliant diertlot only that, but
also we have tried to ensure that components of our systenm@aroperate with
components without the modifications we have proposed aptemented, albeit
of course with some reduction to the efficiency of our aldwn$, compared to a
system where all components use our modifications. Theliattour clients can
operate in legacy networks and other clients can easily ldifrad to operate in
our network will ease the deployment of SecSPeer. The imgheation changes
do change the Gnutella communication protocol, in such aheswever that clients
with legacy code can operate in our system and vice versa.

Recall that an unstructured P2P system is comprised of a ewpflclients,
called servents. Each servent is usually aware of (and ctesh#n) a small number
of other servents. As was done in Deliverable 2.1, we modeinstructured P2P
system as an undirected graph, where each node is a serekpheln edge is a
direct connection between neighbours. Throughout theofefte document, we
shall use the terms node, servent and client interchangabtiiree of them having
the same meaning.

It should be noted that in this document, we only describartipementation

9



10 CHAPTER 2. OVERVIEW

of the modifications in the already existant P2P systemsth&drreason, there is
no code presented here of the algorithms used in today’suatsted P2P systems
that we also use. For instance, we have not inlcuded the tad& fclient uses to
connect to the network, which is the same for our system, fas svery Gnutella
client.



Chapter 3

Implementation of Duplicate
Elimination Algorithm

3.1 Introduction

This chapter contains the description of the implemematiothe duplicate elim-
ination algorithm described in Chapter 3 of Deliverable, 2rtitled "A feedback-
based approach to reduce duplicate messages”. One cahfregaDeliverable
2.1 that the lookup mechanism used in unstructured P2Prsysieday, called
flooding, can generate a large number of redundant mességedroadcast of a
message in the network can result to each node receivingthe message multi-
ple times, due to cycles in the network graph. In order toatisevhich messages
will be redundant and which won't, the proposed solutiortates that each node
distinguishes each incoming message based on the dirdtimravelling (ex-
pressed as the neighbour the node received the messageaindrti)e distance the
message has already travelled (expressed as the numbeiesfttiis message has
already been propagated through the network, i.e.: the boptk Each different
neighbour-hop count pair defines a different message agteg@ch node stops
forwarding to its neighbours those kind of messages (caegjahat have a high
ratio of redundant messages (duplicates).

3.2 Implementation

What follows is a detailed explation of the implementatidrihe algorithm. The

implementation described here assumes a horizon valueegfsimce in Deliver-

able 2.1 we showed this horizon value to be the most efficiem.code we present
here can be easily modified to support higher horizon valhesafgn variable used
in the code presented below can be modified to representsthef Inodes in the

messages path, instead of a single node).

11



12 CHAPTER 3. DUPLICATE ELIMINATION

Msg

{
u D
type
TTL
hops
frm
orgn
payl oad

Figure 3.1: Message. This collection of data representgtbemation contained
in a message.

3.2.1 Message format

Figure 3.1 shows the format of the messages exchanged etwedes. Informa-
tion needed to be exchanged as part of our algorithm, is edeoeid the normal
flood messages. We only define a new message3ygemessage) which can be
formated as a normal message, with specific values in itssfielthus, the same
format is used for all messages. As is the case in most utistegcsystems today,
each message is assigned some globally uniquélid)( However, messages that
belong to the same flood, are all assigned the same UID. TidgdJlsed, among
other things, to recognize duplicate messages. typeof the message defines
whether the message is a querystop)’ message, as described below, or any other
type defined by the individual protocol of each unstructup@® system. Th&€TL
field defines the number of times this message can be forwaigach time it is
forwarded, it is forwarded with its TTL value reduced by ofée hops field con-
tains the number of times the message has already been @&uvain contrast to
the TTL field, the hops field in incremented each time the ngs&aforwarded.
This of course means that the sum of those two fields is alwaystant. Thdrm
field contains some unique tag to identify the node that demintessage to the
node that received it, whereas thegn field contains the identity of the node that
sent the message to the frm node. Finally,ghgloadfield is added for complete-
ness and contains the actuall information of the messagendtance, the query
strings). Apart from the orgn field, all other fields are athgpart of the Gnutella
messages. The reason for the orgn field is explained beloghdrt, the data for
each node’s categories (figure 3.2) are not maintained bgdtle itself but rather
by the edge corresponding to each category. This is so thet th no need for
each node to send a duplicate notification back, each tineedives a duplicate
message but rather a singldp message.
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Cat egory
{
orgn
hops
edge
good
dups

—~ A~~~
* %
— N

Figure 3.2: Category data. This collection of data defineatagory along with
the number of non-duplicates ("good”) and duplicate ("dypaessages of this
category. The starred fields comprise the triplet that wligidentifies the category
in that node.

3.2.2 Categories

Figure 3.2 shows the data structure used to define a catefongssages. Each
category is defined by a triplet. This triplet consists of tngginator(orgn), the
hop count(hopsiand theedge(edge)As explained above, each node distinguishes
each message it receives, based on the previous node andphmsbnt of the
message. Since, however, messages that belong to the sagmrgehave different
duplicate ratios for each neighbour the node forwards ieémh node subdivides
each category based on the edge. gbed and dupsfields represent the non-
duplicate and duplicate count of all messages of this cagegespectively. In
the code presented below, we assume the existance of andigtiof Category
items, called’Categories”. This dictionary stores Category items, based on the
key formed by the< orgn, hops,edge > triplet. In effect, each category tells
the node that, forwarding a message, received from mogle and coming from
hopsnodes away, to neighboedge has agooddupschance of being a redundant
message. Notice that, although this information is retatty some node X, it is
actually stored in the nodedge As mentioned before, this is because, in order
for node X to be aware of the number of redundant messalygs) (it has sent for
that category, nodedgeshould notify node X for each duplicate message node X
sends it. Instead, to avoid this steady stream of messdmgesategory is stored in
nodeedge However, since that node is not aware of the aforementiongal for
each message node X receives and forwards, node X includdsfibrmation in
each message propagated (henceotbafield in the message format).

3.2.3 Banned Categories

Figure 3.3 shows the data structure that defines a bannegboatd his structured
is similar to the Category structure of figure 3.2. Howevieige this data structure
defines an already "eliminated” category, which means toamessages of this
kind will be propagated by this node, there is not need for'tjoed” and "dups”
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BannedCat egory

{
orgn (*)
hops (*)
edge (*)

}

Figure 3.3: Banned Category data. This collection of dafaneea category of
messages that this node will not forward any more.

01 function onRecei veMessage(Msg N

02 {

03 if (mtype == "Query")

04 onRecei veQuer yMessage(m ;

05 if (mtype == "Stop")

06 onRecei veSt opMessage(Msg m ;
07 }

Figure 3.4: Function onReceiveMessage. This function ligadtdo process each
incoming message.

fields. As is the case of the Categories dictionary, the coesented also assumes
the existence of a BannedCategories dictionary. As is showviine code below,
each node will first check this dictionary. If the categorytiof message it has
just received exists in the dictionary, for some edge-r#gin the node does not
forward the message over that particular edge. In addidod,in contrast to the
normal categories, the BannedCategories informatiororegton the actual node
to whom they belong.

3.2.4 Function onReceiveMessage

FunctiononReceiveMessagigure 3.4) is used to distinguish between Query mes-
sages and Stop messages and to call the appropriate funéteodiscern between
those two cases, in order to make the code snipets presesreedrhaller and easier
to understand.

3.2.5 Function onReceiveQueryMessage

FunctiononReceiveQueryMessa@feggure 3.5) is used to process a query message.
It first checks to see whether the message received is a diglc not (Another
dictionary to hold the UIDs of messages already receivedssraed. Such a dic-
tionary, in some form or another, already exists in all ungtrred P2P systems in
use today, that we know of). If it is a duplicate, the appratericategory is located
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and itsdupsfield incremented. On the other case, if the message is nagiledie,
its UID is added to the corresponding dictionary of UIDs, dne good field of
the appropriate category is incremented. In both casescif a category does not
exist in the dictionary, the code of the dictionary creates at that time. Again
in both cases, the banCategories function is called to ctwbeither the measure-
ments the node has collected so far are sufficient for it tacddeshich categories
generate most duplicates, while at the same time havingmaintontribution to
the total number of the non-duplicates. When this procesernspleted, the node
starts forwarding the message to its neighbours. Howesenemtioned before, it
will not forward the message to some neighbour, if the categbthe message,
for that neighbour can be found in the BannedCategorietodaty. Finally, the
processQuery method implements the node’s processingteuery locally (for
instance to see if some of the data it holds match the queniyésia).

3.2.6 Function onReceiveStopMessage

Figure 3.6 shows the code of the function used wheneV8ta@” message is re-
ceived. The transmission of such a message is explaindwkefurh in this chapter.
The node may receive"&top” message from any of its neighbours. The message
notifies the node that most of the messages received fromighour defined in the
orgn field and which originated a number of hops away from theerequal to the
hops field of the message, are mostly duplicates when foegaiathe neighbour
that sends th&Stop” message. This means that the node should stop forward-
ing those kind of messages to that neighbour, and thus adtisdtegory, for that
edge-neighbour in the BannedCategories dictionary. Sime@ode defined in the
orgn field is a neighbour of the node that receives'8tep” message (and not of
the node that sends it), this explains the need for an orgm ifiethe Msg format
(figure 3.1), where the node that forwards a message incthdgsevious node in
the message.

3.2.7 Function banCategories

The warm-up period of the algorithm is defined as the time th@erspends ob-
serving the traffic patterns, in order to make the necesserisions later on. The
banCategoriesunction of figure 3.7 is used to first determine whether thasuee-
ments collected so far are sufficient to decide which categ@re more harmful to
the system than useful. If that is the case,dbefunction described below is used
to do the actual elimination of the harmful categories, bsidiag which is which.
ThebanCategoriegunction declares the warm-up period over when the ratidlof a
the duplicates over all the messages received by that nodeontess stabilizes to
some value. The value is assumed to have stabilized wheattielhange over the
last (thirty in this case) changes in its value are less th@h &nd the average of the
absolute of each change is less than 0.02. Those thresimgddsedahat not only the
changes in the ratio value are small, but also that the valoetislowly increasing
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or decreasing constantly over time. If the value in quedtias stabilized, theut
function is called. TheldPercvariable is used so that the ratio value computed
by one call of thebanCategoriedunction is retained in the next call of the same
function, in order to compute the difference. Finally théueaof thecgoodvari-
able is checked. If it is positive, this means that not only Warm-up phase was
over and thecut finction was called, but theut function also banned some of the
categories, as explained below. If this is the case, theotladlr measurements are
purged and the process starts anew, in the warm-up phaseldPercvariable is
re-initialized, as are the rest of the variables that cdim stabilization process).
This is done because the traffic patterns will change, duleetdeict that some cat-
egories have been banned. If the value ofdgeodvariable remains zero, either
the warm-up period is not over, or no categories were elitathaln either case,
the measurements continue until we are able to ban someodateg

3.2.8 Function cut

The last function presented in this chapter is used whertebanCategories
function declares the warm-up phase over. This means thdrbwledge of the
traffic patterns of the network is sufficient to allow us to idecwhich messages
should not be forwarded. Theut function (figure 3.8) iterates through all cate-
gories. As is shown, for each category, the function congtite current ratio
of all duplicate messages over all messages (line 18). it toenputes the same
ratio with the duplicate messages quantity reduced by tipfichte messages of
the category considered. However, if that category is bantie non-duplicate
messages as well as the duplicate ones are eliminated. iBare#son, line 27
computes the ratio of the remaining non-duplicate messagesthe total non-
duplicate messages. The same ratio, when the category whamuwed is one (line
19). Having two D and C pairs, the algorithm has to decide tvbite is more effi-
cient. The efficiency function used is defined as the prodiieach C and D pair.
This efficiency function can easily be modified to adapt teesashere increased
coverage of the flood is required, even at the cost of mordahiplmessages, by
using, for instance(C? * D)'/3. Should the efficiency rating value of the C and
D pair that corresponds to the case where the consideredocats banned be
higher, the node sends’&top” message to the appropriate neighbour, to notify it
not to forward certain messages to itself. Finally ¢geodandcdupsvariables are
used to count the total number of non-duplicate and duglicassages of all the
categories that were banned.

3.3 Conclusions

In this chapter, we presented the implementation of theichkiel elimination al-
gorithm, designed in Deliverable 2.1. The code we presentse written in C++
with only some small parts of pseudo-code to facilitate iiderstanding and fo-
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cus on the important parts of the implementation. The exrsimilarity of the
code to C++ enables the code to be easily imported to anyuatsted P2P sys-
tem client, especially any Gnutella client, such as LimeM&i, BearShare [3] and
Gtk-Gnutella [4], to make them compatible with SecSPeeaddition, since dur-
ing the initialization of a connection between two servemtrmation regarding
the version of the software of each client is exchanged, éaisy for any client
incorporating our code, to behave as a legacy client ovenaxiions with other
legacy clients. This means that not only legacy clients @ailyebe enhanced to
be able to work in our system, but also clients of the SecS&extem can easily
be integrated in the existing unstructured P2P networke. riibre clients partici-
pating in the network use our code, the better the efficieNofice that inside the
implementation, a number of dictionaries are used. Theotiaty is a well-known
data structure and different and efficient implementatiofrthis data structure are
abudant. In our case, for instance, we used red-black tt&gs [
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01 function onRecei veQueryMessage(Msg m

02 {

03

04 if (mis duplicate)

05 {

06 Category ¢ = Categories.find(morgn, mhops-1, mfrm;
07 c. dups++;

08 banCat egori es();

09 }

10 el se

11 {

12 Category ¢ = Categories.find(morgn, mhops-1, mfrm;
13 C. good++;

14

15 processQuery(nj;

16 banCat egori es();

17

18 foreach (Nei ghbour n in Nei ghbours)

19 {

20 i f (BannedCat egori es.exists(frm m hops, n))

21 {

22 Msg nm = new Msg(m U D, mtype,

23 m TTL-1, m hops+1l, mfrm m paylo
24 sendMessage(nm n);

25 }

26 }

27 }

28 }

Figure 3.5: Function onReceiveQueryMessage. This fungiimcesses a query
message

01 function onRecei veSt opMessage(Msg m

02 {

03 BannedCat egori es. add( new BannedCat egory(m orgn, m hops, mfrnm)
04 }

Figure 3.6: Function onReceiveStopMessage. This fungiionesses a stop mes-
sage
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functi on banCat egori es()

{

int msgs, good, dups, cgood = 0, cdups = 0;
static float oldPerc = -1;
static int change = 0;

foreach(Category c in Categories)
{

good += c. good;
dups += c. dups;

}

nmsgs = good+dups;

if (!'negs) return;

if (oldPerc !'= -1)

{ fl oat newPerc = (dups+100.0)/ nsgs;

if (change < 30)

{
change++;
percdi ff += ol dPerc - newPerc;
percabs += fabs(ol dPerc - newPerc);
}
el se
{
percdiff -= percdiff /30;
percdi ff += ol dPerc - newPerc;
percabs -= percabs /30;
percabs += fabs(ol dPerc - newPerc);
if (percdiff < 1 && (percabs/30) < 2)
cut ();
}
}
if (cgood > 0)
{

Cat egories. purgeA | ();
ol dPerc = -1;
percdi ff = percabs = change = 0;
}
el se
ol dPerc = ((dups-cdups)*100. 0)/ (good+dups- cdups-cgood);

Figure 3.7: Function banCategories. This function cheok#hie conclusion of the
warm-up phase.
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01 function cut()

02 {

03 foreach(Category ¢ in Categories)
04 {

05 int oldg, oldd, newg, newd,

06 doubl e ol dRate, newRate, D, C
07

08 ol dg = good - cgood;

09 ol dd = dups - cdups;

10 newg = oldg - c.good;

11 newd = oldd - c.dups;

12

13 if (ol dg+ol dd == 0)

14 ol dRate = 0;

15 el se

16 {

18 D = ((oldg+1.0)/ (ol dg+ol dd)) ;
19 C = ((oldg+1.0)/o0ldg);

20 ol dRate = D+C;

21 }

22 i f (newg+newd == 0)

23 newRate = O;

24 el se

25 {

26 D = ((newg*1. 0)/ (newg+newd) ) ;
27 C = ((newg*1.0)/o0l dg);

28 newRate = D+C ;

29 }

30

31 if (newRate > ol dRat e)

32 {

33 Msg nm = new Msg(m U D, STOP, 0, c.hops, c.orgn, "");
34 sendMessage(nm c,frm;

35 Cat egori es. renmove(c. orgn, c.hops, c.edge);
36 cgood += (c.nmsgs - c.dups);
37 cdups += c. dups;

38 }

39 }

47 }

Figure 3.8: Function cut. This function performs the acfilidring on the cate-
gories.



Chapter 4

Implementation of the Coloring
algorithm

4.1 Introduction

This chapter contains the description of the implementatibthe algorithm de-
scribed in Chapter 4 of Deliverable 2.1, entitled "Floodvidrg algorithms - Di-

vide and Conquer”. The purpose of the algorithms implentimehe previous
chapter was to reduce the cost (in messages) of flooding ensydtN nodes with

d average degree, from (d-1)*N to N, thus making it indepahdéd the average
degree. The purpose of the algorithms implemented in theptehn is to further

reduce that cost to less than N. If possible, the cost shaeilich the order of the
number of results requested in each query. As one may recallDeliverable 2.1,

the main idea behind this scheme is to create subnetworlke afrtginal network.

Each subnetwork corresponds to some type of content and sodgemay join in

any subnetwork only if it contains data of that type. Eachrgug also assigned
a type in the same manner and is directed only to the corregmpsubnetwork.

This way, the flood is directed only to nodes that have a chahcentaining some
result. If the node that initiates the query is not aware of mode participating

in the subnetwork to be flooded, a flood on all its neighbounsalbsubnetworks)

can be conducted to locate such a node. Since, by definiiennamber of the
nodes participating in some subnetwork is larger than tke laizing looked up, the
search for a node will be less costly. The criterion we useategorize the data
and the queries is the character set used in the names oftthardhthe strings of
the query. All possible character sets are sorted accotdihgw widespread their
use is. In cases where a query contains more than one chasattéhe one used
less often is used to direct the query. The implementatidheo§cheme summarily
outlined above, which we calColoring” , is described below.

21



22 CHAPTER 4. COLORING

4.2 Implementation

This section presents, in detail, the implementation ofGbkoring algorithm. The
algorithm (and its implementation) is divided into two sabg, the bootstrapping
procedure and the actual searching. The bootstrappin@guoe is used to connect
the node in the system, by connecting it to the appropridteetworks, depending
on the types of data it shares. Each node should not connewrig subnetworks.
Not only the opposite would require a lot of connections, darinecting to many
subnetworks means that this node will receive many quexikeish beats the reason
for using the Coloring scheme. Thus, the criterion used tegmize the content
of each node should define a few categories which describeghti®e content of
the node. The character set criterion we have used exHilgtprtoperty, since it is
quite rare that some user’s client will contain data thatalseharacter sets (in a
sense, it is quite rare that a user speaks all languages)mayaote that almost
every user may posses data that use the english characteowever, on the other
hand, not all users contain data that use other characterseth as chinese or
cyrillic. Using this criterion, it is also easy to charadétera query even without
the help of the requesting user. We use the Unicode Char@ctee for many
reasons. Not only is it the current standard, containingtmlsfor all languages
(even ancient or fantastical ones) but also the code fordtire letters is the same
as in ASCII code, making it possible to categorize data winasees are in ASCII
code.

4.2.1 Unicode-based Categories

Figure 4.1 shows the categories we have defined in the impiati@n, using the
available Unicode character scripts. The subnetworksvtfiabe formed in the
system correspont to the middle column of the figure. Somegoaies may also
function as a super-category for other categories. Thisatdihy, shown in fig-
ure 4.2, reflects the fact that some languages share margcodrar (usually be-
cause they evolved from the same base language).This dfiaralr information,
however, is only used when querying the system and is notteflén the struc-
ture of the subnetworks. Since characters of a parent agtagealso used by each
of its children, as shown in figure 4.2, one needs a priotibmascheme to define
unambiguously the category each data belongs to. It is the tbet all characters
of some piece of data can only be categorized to one categoeach level of the
tree shown in figure 4.2, since the character sets that gisth each category on
the same level, are distict. For instance, in the level of' tRerman-bas€etcate-
gory, the other two categories on the same levBpg@nish and "Portugues® do
not use umlauted characters. However, one needs to disaatbipetween cate-
gories of different levels. In thieatin super-category for instance, should the word
"f orsiljningsframgang” be assigned to thatin, the German-basear the Scan-
dinaviancategory? The rule used to solve this problem is that sonte medata
is assigned to the category lowest in hierarchy tree. Thuthe example above
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the word will be assigned to th8candinavian Any node containing this word
will only connect to that category and not any "parent” catégs. Using the same
scheme, each query assigned to some category, should bt gbat category
and all its "children” in the tree. For instance, any quergttls assigned to the
German-baseaategory should be also sent to theandinavianDannish - Nor-
wegianandFinnish categories.In the code presented in the rest of this chapeer
assume the existence of a function which returns a datatsteug.ist) containing
all the categories defined by the contents of a node. (Fig3je 4

4.2.2 Bootstrapping

As mentioned before, each subnetwork corresponds to oegargtand vice versa.
Bootstrapping in the appropriate character sets can be iddahe same way that
a Gnutella client connects to the network today. This is dasirg webcaches to
learn of some other nodes already in connected in the netavatkise those nodes
to connect. Since there is a known number of character seésyaebcache can
be used for each category/subnetwork. Assuming a fundtianGnutella uses to-
day to bootstrap in the system, given a webcache and the mwhbennections
to initiate, we can use it to implement our bootstrappingcfiom as is shown in
Figure 4.4. Parametevebcaches[Js assumed to be an array containing the web-
caches for all categories, indexed on a per-category bHs&sizefunction returns
the number of categories in thast. Thus, we divide all available connections
equally among the subnetworks the node should join.

Ultrapeers

Notice that theGnutellaBootstragunction differs when a node is irL&af’ mode
from when itis in 'Ultrapeer’ node. We assume the reader is familiar with thi-"
trapeerarchitecture [2], which was also described in Deliverable This means
that in the case of Leaves, the result of this function wilthoe for each category it
is invoked, at most three connections will be made to Ulteapdelonging to that
category/subnetwork. This is the standard behaviour sfftmction in Gnutella-
compliant clients and it has almost the same behaviour inrplementation. It
only differs in one aspect. This difference explains thestexice of arraynode
This array contains information regarding the status ofrtbée in each category
it belongs to. Notice that the same node can be a Leaf in sotegarg and an
Ultrapeer in another. In standard GnutellaBootstrap fongteach node sends a
Bloom filter [9] of its content to all neighbours. If the nodeiin Ultra-peer node,
that bloom filter includes the contents of its Leaves. In thsecof SecSPeer, a
Leaf sends to each Ultrapeer it connects to, only the comtetbelongs to that
subnetwork. Similarly, an Ultrapeer of category A (for mrste), will send to its
Ultrapeer neighbours in subnetwork A a Bloom filter of itsegmiry A content,
including the content of its category A Leaves. What it mdrajng the handshak-
ing of a new connection, the two participating nodes shoxtthange information
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regarding all the subnetworks each is part of, regardlessioincluding if they
are Leaves or Ultrapeers in each one of them. Since the nghibmir Y of some
node X may be also part of some other subnetwork that node Kagpart of, this
means that this connection can be used as a connection fosbbhetworks, re-
ducing the total number of connections required. For ircganodes than belong
to the Scandinaviancategory will more likely also belong to th@erman-based
category, since they will most likely contain words with @uis but without the
acharacter. ThpruneConnectionfunction computes the available connections for
each subnetwork and disconnects any of them which are irsgxafethe number
of connections required for each subnetwork, in order tadryeduce the num-
ber of connections to D, if the bootstrapping procedurelredito more than D
connections. Another approach that can be used in the Bbrdpeaf connectivity
scheme can be used to even more reduce the number of comse@itd work-
load) of Leaves, at the same time of course, placing moresswa Ultrapeers.
Each Leaf can use only one Ultrapeer to connect to the nejwwtead of one per
category it belongs to. This means however that all the ooiied any type) of that
Leaf should be sent to the Ultrapeer. In turn, the Ultrapéaaspts” that content
and thus connects to any appropriate catefories. This sehasithe drawback that
the content of each Ultrapeer becomes more diverse, thamdothe Ultrapeer to
connect to more subnetworks. As we mentioned before, therdne conjuctions
between any two subnetworks, the less efficient the Col@aigme is. One way
to still use this Ultrapeer-Leaf connectivity scheme antdngt jeopardize the effi-
ciency of the algorithm is to make the Ultrapeer reject angMes that will expand
its range of categories over some limit. For instance, if lilh@t is two categories,
then the Ultrapeer will reject any Leaves that differ in mtran two categories.
If the Ultrapeer already has its categories expanded byitwall not accept any
Leaves with even one category not already part of the Uladpepanded list of
categories. According to this scheme, the bootstrappirmptf Leaves and Ultra-
peers is the same as in Gnutella. The difference with thePsmSootstrap is that
now, the categories of the Ultrapeer can change every tinsevd_raf is connected,
while in the previous scheme, each Ultrapeer received ftemogaves only appro-
priate content. Thus, we now need amLeafConnect{)function, illustrated in
figure 4.5. ThenodeListdictionary corresponds to the Leaf’s categories, whereas
thecomparefunction used returns a dictionary of the categoriesanfeListthat are
not already incatlList, in this case. ThexpLimitvariable contains the maximum
number of categories this Ultrapeer can accept.

4.2.3 Searching

Searching in SecSPeer is divided into two, distinct phasqdained below, in de-
tail. Even before those two phases, however, the query t@ibeis assigned to
some category (using thgetCategories(function, which in this case will return
one result/category). The purpose of this is that that qakould only be propa-
gated across the nodes of the subnetwork that correspohdttodtegory. Notice
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that if the category of the query is not a leaf node in the tifdegare 4.2, then the
query will have to be propagated to more than one categsulesétworks. To be
able to do that, the node has to be (or become) aware of atdeastode in each
of these subnetworks. At this point, tlearching for the subnetwogkocess is
invoked, for each subnetwork we need to contact.

Searching for the subnetwork

The pseudo-code for locating a node of a subnetwork is iidtesti in figure 4.6.
The node initiating the subnetwork search first checks waraths itself a part of
that subnetwork. If that is the case, the first phase of thkeup@Searching for the
subnetwork is already complete, and the node moves to the second ptdke.
erwise, it checks to see if at least one of its neighboursrisgiahat subnetwork.
This process requires no communication, since during tineldteake procedure,
when a node first connects to a neighbour, information altmuhbdes, including
the subnetworks they belong to, is exchanged. Finally|ifa$ failed, the node
asks its neighbours if they are aware of any node of that $wlone. The neigh-
bours will check whether some of their neighbours are pati@bsub-network and
may or may not also propagate the request, according to theva@ilie. If the
node receives some positive replies, it caches them formgy b half the average
lifetime of a node it has observed so far. This information ba used to answer
queries of other nodes, themselves looking for nodes ofdhbhetwork. This
means that the reply of the neighbours we mentioned just&etan either be be-
cause at least one of their own neighbours belongs to theg@at, or their cache
contained some entry for that subnetwork. Given the numbdistinct categories,
the fact that each node may belong to more than one of themhanaverage de-
gree of the connections (around thirty) it is highly unptaleathat this algorithm
will fail to locate the necessary nodes, even with a TTL of.dnehe pseudo-code
of figure 4.6,catListis assumed to contain all the categories the node belongs to
and its exists function is assumed to return a boolean vdkpgending on whether
the category-argument exists in tbaListor not.

Searching for data

After all appropriate nodes have been located, the quenyatlg sends a standard
Gnutella request to each node. The query is sent by firstlesttizig) a TCP con-
nection with that node, which remains active until the resgjng client receives
enough results, or up to some timeout. If GUESS [1] is usesh the query can be
sent via UDP.

Routing

Each node that receives a query, routes it in the standardetBntashion. How-
ever, it does so only after it has itself categorized the yjaed then forwards it
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only to those neighbours that belong to the category cooretipg to the query.
Notice that, as mentioned before, each connection can ssove than one cate-
gories, if both nodes at the end of the connection share nhare dne common
categories-subnetworks.

4.3 Conclusions

In this chapter, we presented the implementation of a schbataims to reduce
the cost of flooding in messages, by better directing the ftoasbdes with appro-
priate content and avoiding to contact nodes without the typinformation we
want. One should notice that the low level functions usedreetandard Gnutella
protocol functions, making this scheme very easy to implgnamd integrate to
the Gnutella network. In addition, the categorization scheve used can easily
be modified to include more or less categories, to improveetfieiency of the
system. However, this task is part of the Evaluation phashigfroject.

4.4 |Introduction

This chapter contains the description of the implementatibtwo different so-
lutions to prevent malicious action in an unstructured P&ftesn. As has been
described in Chapter 5 of Deliverable 2.1, entitled "Systeecurity”, there is a
number of issues regarding Security in unstructured P2fermgs The most im-
portant among them is the ability to insert malicious noadsch can instrument
the whole system to perform Denial of Service attacks taltharties.

In this chapter we describe the implementation of the allgorifor the de-
tection of malicious nodes of a P2P system, which we analyzaéction 5.6 of
Deliverable 2.1, as well as the implementation of SEALINGARING is a val-
idation algorithm, which focuses on preventing Denial ofV@® attacks to third
parties.

4.5 Implementation

45.1 Detection of Malicious Nodes

A malicious node of a P2P system is considered as the nodss thiale to provide

service for every incoming request. For example, in a P2Resysledicated to
file sharing, a malicious node will respond to every incom8earch Query and
will redirect queriers to a victim node. This is the fundarta¢mproperty, which

is used in our algorithm in order to detect malicious nodetiaalate them from
the system. Our strategy forces a legal peer to issue a Qutryamdom search
criteria and TTL=1, at a random time period upon handshatiitly a new node,

the new node it handshaked with. If it receives a reply forrtrelom Query then
it should drop the connection.
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The algorithm is depicted in Fig. 4.7. We have implementea ftimction
MaliciousDetector() (line 15), which is called during ramd time intervals. The
largest time interval is 255 seconds (defined in line 1). WiherMaliciousDetec-
tor() function is called, all neighbors are queried by gating Query packets with
random search criteria (SendRndQuery(), line 3). EachamnQuery is stored in
a dictionary (FakeQueries). When a QueryHit is receiveslfitst checked in order
to investigate if it is a QueryHit generated by one of our @ndQueries. If this is
the case, we drop the connection (line 29) of the node whaire the QueryHit,
since it is considered as a malicious one.

4.5.2 Short Term Safe Listing: the SEALING algorithm

This section describes the implementation of the SEALINg»athm, which has
been evaluated in a real P2P System (Gnutella).

Our SEALING algorithm mainly focuses on protecting innaceistims such
as non-Gnutella participants from DoS attacks originatechfGnutella. We con-
sider a hon-Gnutella participant as any host advertisedniatélla (i.e. with an IP
address and port number delivered in a Gnutella QueryHit) does not support
the Gnutella protocol. That is, the following Validationit€rion is used to distin-
guish between third parties that are potential victims ofo&@ttack from normal
Gnutella peers:

SEALING Validation Criterion: Any host advertised in a Gnutella QueryHit packet
which can not respond correctly to a Gnutella Handshake ggsds considered as
a non-Gnutella participant and a potential victim for a Galld-based DoS attack.

The SEALING algorithm is shown in Figure 4.8. The goal of thgoathm
is to place potential DoS victims in a Safe List based on thAlSEG Validation
Criterion. This Safe List keeps track of machines that sthawdt be contacted
for downloads. Each Gnutella node keeps a Safe List anddgeaity updates its
records. Each record has a lifetime of a fixed time intervat.the purposes of our
evaluation, we used a fixed time interval of 30 minutes.

45.3 SEALING Evaluation

We attempt to evaluate the SEALING algorithm using the tramiected from the
Middle DoS attack. We group the download requests by the thesd recorded
by the Web Server during the attack. We consider the first tmghrequest as
a download attempt that, according to SEALING, will fail sinthe Web Server
will not respond correctly to the Gnutella Handshake. Bage8EALING, all the
download requests following the first download and for thet 88 minutes will be
filtered out by the Gnutella peer and eventually will not mike the Web Server.
That is, we assume that the Gnutella peer that received teeyQil, will add the
Web Server to its Safe List after failing to Handshake with it
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For every download request we find in the trace we comparenisstamp
with the first one encountered in the trace, which serveseadsrie offset of the
SEALING algorithm. If the timestamp of a download requedibisnd to be over
30 minutes after the time offset, then we consider that tiventtmad request serves
as a new Handshake, which will also eventually fail. Agaie,filter out the next
download requests we encounter in the trace that haveveelatie difference less
than 30 minutes with the new time offset. The results of theduation, as shown in
Figure 4.9, indicate that SEALING reduces the effectiveregshe DoS by roughly
two orders of magnitude in terms of the number of downloadiests to the victim
site. We believe that this is sufficient to downgrade theaho# Gnutella-based
DoS attacks to the level of mere nuisance for the majorityodéptial victims.

45.4 Conclusions

In this chapter we presented the implementation of two idiffealgorithms, which
aim to prevent a P2P system to perform DoS attacks to comp#ehines, part of
the P2P system infrastructure, or to computer machinesateatot even aware of
the existance of the P2P system.

The first algorithm tries to identify malicious nodes insttie P2P system, by
forcing a node to periodically send random Queries, thatishoot generate any
QueryHits, to its immedient neighbors. A node that repleea tandom Query with
a QueryHit is considered as malicious and it connection eécststem is dropped.
That is, our algorithm aims on preventing malicious nodesaee strong connec-
tivity with the P2P system.

Our second algorithm focuses on preventing a P2P systemrfioripea DoS
to a third party. This is acomplished by forcing every peevdbdate that a node
which advertizes a Service in the P2P system (for exampldvigrtizes that it has
files in a P2P file sharing system) is actually part of the PZesy. We evaluated
our algorithm, SEALING, in a real world P2P system, Gnutedlad the results, as
we see in??, are quite impressive and promissing.
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Super — Category Categories Tnicode Character Scripts
i 5
Armenian Armenian -mem—an
Armentan Ligatures
o . Crrillic
Cyrillic Cyrillic —
Cyrillic Supplement
) ] Georgian
Gregorian Gregorian -
CGeorgian Supplement
Greek Greek Creele
Greek Extended
Basic Latin
Latin - Latin - 1
Latin Extended A&
Latin Extended B
. German — based Fe]
Latin - -
=candinavian A
Danish — Norwegian B &
Finnish 32
Zpanish i3
Portuguese AE, f’-‘l E 3
Arabic
Arshi Arabi Arabic Supplement
aie e Arabic Presentation Forms A
Arabic Presentation Forms B
Heb Heb Hebrew
EUIEw EOrEw Hebrew Presentation Forms
Tnified CIE Ideographs
Eastern Asian CJE Ideographs Ext &
CJE Ideographs Ext B
Chinese Bopomeofo Extended
Hiragana
] EKatalana
Eastern Asian Tapanese -
Eatalcana Phonetic Ext.
Halfwidth E atakana
Hangul Syllabes
Hangul JTamo
Eorean —
Hangul Compatibility JTameo
Halfwidth Jamo

Figure 4.1: Unicode-based categories and the correspphttiicode alphabets
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C ategorie 8

//

Armenian Cyrllic Gregonan Greel Latm Arabic  Hebrew Eastern Asian

Spanish German based Portuguese Chinese Japanese

Srandinawvian

/\

Danish — Norwegian Finnish

Figure 4.2: Hierarchies of the categories defined in figute 4.

01 List getCategories(Filelndex)

Figure 4.3: Function getCategories. Returns the categariede belongs to.

01 void SecSPeerBoot strap(webcaches[], int D)
02 {

03 Li st catList = getCategories(Filelndex);
04 foreach (Category c in catlList)

05 {

06 int deg = D/catlList.size();

07 if (node[c] == "Leaf")

08 deg = nmax(deg, 3);

09 el se

10 deg = mn(deg, 3);

11 Gnut el | aBoot st rap(webcache[ c], deg);
12 }

13 pruneConnections();

14 }

Figure 4.4: Function SecSPeerBootstrap. Used to inserta imthe network.

Eoarean
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01
02
03
04
05
06
07
09
10
11
12
13
14
15
16
17
18

voi d onLeaf Connect ( Node n)

{

}

Li st nodeLi st = get Categories(n.getFil el ndex());
Li st catList = getCategories(this.getFilelndex());

List diff = catList.conpare(nodeList);

if (catList.size() + diff.size() <= expLinmt)
Leaf Connect (n);

if (diff.size() > 0)
foreach (Category ¢ in diff)

{

catLi st.add(c);

deg = min(D/ catList.size(), 3);

Gnut el | aBoot st rap(webcache[ c], deg);
}

pruneConnecti ons();

Figure 4.5: Function onLeafConnect. Used by an Ultrapeametier it receives a
request for connection by a new Leaf node

01
02
03
04
05
06
07
08
09
10
11
12
13
14

Node fi ndSubNetwork(Category c, int TTL)

{

if (this.catList.exists(c)) return this;
foreach (Node n in Nei ghbours)
{

if (n.catlList.exists(c)) return n;

}
foreach (Node n in Nei ghbours)

{
Node result

if (result !

}
return NULL;

n. fi ndSubNet wor k(c, TTL-1);
NULL) return result;

Figure 4.6: Function findSubNetwork. Used to locate a noderiging to some
subnetwork.
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01 #define MALI Cl OQUS_DETECTOR | NTERVAL 255 /* Seconds. x/
02

03 function SendRndQuery( Node n) {

04 Query q;

05 String str;

06

07 str = String. new Rand(64));

08 str.shuffle();

09 g = new Query(str);

10 g. TTL = 1;

11 g. hops = Rand(3);

12 n. SendQuery(q);

13 }

14

15 function MliciousDetector(void) {

16 foreach (Nei ghbour n in Neighbours) {

17 FakeQueri es. push( SendRndQuery(n));

18 }

19

20 al ar m Rand( MALI Cl OQUS_DETECTOR _| NTERVAL) ;

21 }

22

23 function onQueryH t Recei ve(Node n, QueryHt gh) {
24 GUI D g;

25

26 g = QueryHi t Extract GUl D(gh);

27 [+ Check if it is a QueryHit for a random Query. x/

28 i f (FakeQueries.exists(g)) {
29 Connecti onDrop(n);

30 } else {

31 QueryHi t Process(n, gh);
32 }

33}

34

35 int main(void) {

36 Mai nApp. AddSi gnal Handl er (Mal i ci ousDet ector, SI G ALARM ;
37 alarm(l);

38 }

Figure 4.7:



4.5. IMPLEMENTATION 33

0 Saf eListLifeTinme = 30 m ns;

1 function if (GhutellaPacket (pkt) == QueryHitPacket) {
2 Gnut el | aExtract Node( pkt, &Gnutel | aNode) ;

3 i f (SafeListContains(Ghutell aNode)) {

4 if (CurrentTime() -

5 Saf eLi st Get Ti meCX Node( Gnut el | aNode) <

6 Saf eLi stLifeTine)

7 Gnut el | aDr opPacket ( pkt);

8

}
9 el se
10 Ghut el | aPar seHi t s( pkt);
11 }
12 ...
13 function onDownl oadAttenpt (node, file) {
14 i f (Gautell aHandShake( node))
15 Gnut el | aDownl oad(node, file);
16 el se
17 Saf eLi st Add( node) ;
18 }
19
Figure 4.8: SEALING Algorithm.
SEALING Evaluation
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Figure 4.9: The evaluation graph of the SEALING algorithrheBolid curve rep-
resents the amount of download requests during a DoS attaog Gnutella. The
dashed curve represents the amount of download requestsithide eventually
exposed to a Web Server, if Gnutella nodes utilize the SEALWgorithm.
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Chapter 5

Conclusions

This document presents the implementation of the SecSRstans, a scalable
and secure peer-to-peer system, which meets the requitemettined in Deliver-
able 1.1: SYstem Requirements [6]. The work described mdhid the previous
deliverable (Deliverable 2.1) addresses both problenmehathe scalability and
security of a global-scale P2P system. We have adopted dructused archi-
tecture, which makes the system robust in the face of arpifedlures and more
secure. This is because in unstructured P2P systems pedrallr’expendable”,
meaning that the arbitrary loss of any of them will not affibet functionality of the
network in any way. In structured systems [10], [11], [7] lewer, although P2P
systems themselves and as such, there is no peer with cergpalnsibilities, still
each peer depends on some other peers to store its informatits increased de-
pendability among peers makes those systems less robust@edsusceptible to
attacks that can exploit the structure of the system. Awlttiti security algorithms
have been implemented to reduce the impact of the most iangsecurity threats
in unstructured systems, namely spam and reflective DDaskatt The increased
robustness of an unstructured P2P system comes at the dastedsed number
of messages required to perform a lookup in the system. Tbisigm has also
been addressed with the proposals outlined in chapters 3@ ahthe Deliverable
2.1: System Design and implemented in the same chapterdigéRdble 3.1: Sys-
tem Implementation. Finally the system implemented in tlisument was made
to easily inter-operate with existing unstructured P2Resys, thus facilitating its
deployment and use.

35
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