Improving the Performance of Passive Network
Monitoring Applications using Locality Buffering

Antonis Papadogiannakis, Demetres Antoniades, MichallgdRronakis, and Evangelos P. Markatos
Institute of Computer Science
Foundation for Research & Technology — Hellas
{papadog, dant on, m kepo, nmarkatos}@cs. forth. gr

Abstract—In this paper, we present a novel approach for large data structure that holds the active network flows doun
improving the performance of a large class of CPU and memory in the monitored traffic at any given time. Thus, for packets
intensive passive network monitoring applications, such &intru- belonging to the same network flow, the process accesses

sion detection systems, traffic characterization applicabns, and
NetFlow export probes. Our approach, calledlocality buffering, the same part of the data structure that corresponds to the

reorders the captured packets by clustering packets with te particular flow.

same destination port, before they are delivered to the motoring In all above cases, we can identifylacality of executed
application, resulting to improved code and data locality,and jnstructions and data references for packets of the sanee typ
consequently to an overall increase in the packet procesgn In this paper, we present a novel technique for improving

throughput and to a decrease in the packet loss rate. We have ket . f by taki dvant f thi
implemented locality buffering within the widely used | i bpcap PacKel processing periormance by laking advantage ot this

packet capturing library, which allows existing monitoring appli- locality property found in many passive monitoring applica

cations to transparently benefit from the reordered packet 'eam tions. In practice, the captured packet stream is a mix of
without the need to change application code. Our experimeal nterleaved packets corresponding to hundreds or thossand
evaluation shows that locality buffering improves signifi@antly of different packet types, depending on the monitored link.

the performance of popular applications, such as the Snort
IDS, which exhibits a 40% increase in the packet processing OUr @approach, calledbcality buffering, is based on adapting

throughput and a 60% improvement in packet loss rate. the packet Stream in a Way that enhances the |0ca|ity Of the
application’s code and memory access, and thus accelgratin
|. INTRODUCTION overall packet processing performance.

Passive network monitoring is the basis for a multitude of We have implemented locality buffering ini bpcap [4],
systems that support the robust, efficient, and secure tperathe most widely used packet capturing library, which allows
of modern computer networks. While passive monitoring hdsr improving the performance of a wide range of passive
been traditionally used for relatively simple network fiaf monitoring applications written on top dfi bpcap in a
measurement and analysis applications, or just for gatberitransparent way, without the need to alter their code. The
packet traces that are analyzed off-line, in recent yeansst experimental evaluation of our prototype implementatiothw
also become vital for a wide class of more CPU and memorgal-world applications shows that locality buffering csig-
intensive applications, such as Network Intrusion Detecti nificantly improve packet processing throughput and reduce
Systems (NIDS) [1], accurate traffic categorization [2]danthe packet loss rate. For instance, the popular Snort IDS
NetFlow export probes [3]. The complex analysis operatioexhibited a 40% increase in the packet processing throughpu
of such demanding applications are translated into anase® and a 60% improvement in packet loss rate.
number of CPU cycles spent on each captured packet, whichiThe rest of the paper is organized as follows: in Section Il
reduces the overall processing throughput that the agjgita we describe the overall approach of locality buffering, hevtin
can sustain without dropping incoming packets. At the san8ection Il we present in detail our implementation of ldtyal
time, as the speed of modern network links increases, teréuffering within thel i bpcap packet capture library. Sec-

a growing demand for more efficient packet processing usitign IV presents the experimental evaluation of our prgtety
commodity hardware that can keep up with higher traffic loadsnplementation using three popular passive monitorindstoo

A common characteristic that is often found in such morinally, Section V summarizes related work and Section VI
itoring applications is that they usually perform diffetenconcludes the paper.
operations to different types of packets. For example, aNID
applies a certain subset of attack signatures to packets wit
destination port 80, i.e., it applies the web-attack sigre The starting point of our work is the observation that
to packets destined to web servers, it applies a different several widely used passive network monitoring applicetjo
of signatures to packets destined to database servers,oandueh as intrusion detection systems, perform almost idahnti
on. Furthermore, NetFlow probes [3], traffic categorizatio operations for a certain class of packets, while differextiet
as well as TCP stream reassembly, which has becomelasses result to the execution of different code paths and
mandatory function of modern NIDS, all need to maintain # data accesses to different memory locations. Such packet

Il. LOCALITY BUFFERING

TABLE |

---- SNORT'S PERFORMANCE USING A SORTED TRACE
- : | Performance metric | Original trace | Sorted trace |
Throughput (Mbit/sec) 188.39 286.18
Fig. 1. The effect of locality buffering on the incoming patlstream. Cache Misses (per packet) 18.86 2.79
Clock Cycles (per packet) 48,978.76 30,846.89

classes include the packets of a particular network flow, i.e

packets with the same protocol, source and destination @Rch bucket at once, either whenever it gets full, or aftareso
addresses, and source and destination port numbers, or gu&aglefined timeout since the arrival of the first packet of the
wider classes such as all packets of the same applicatieh-léoucket. For instance, if we assume that packets with the same
protocol, e.g., all HTTP, FTP, or BitTorrent packets. destination port number correspond to the same class, then a

Consider for example a NIDS like Snort [1]. Each arrivin%‘ete”eaVEd packets destined to different network ses/iog
packet is first decoded according to its Layer 2—4 protocoRe rearranged so that packets to the same service are eelliver
then it passes through sevegkprocessors, which perform bfick-to-back to the monitoring application, as depicted in
various types of processing according to the packet type, anigure 1.
finally it is delivered to the main inspection engine, which Choosing the destination port number as a class identifier
checks the packet protocol headers and payload against asgékes a good balance between the number of required baicket
of attack signatures. According to the packet type, difiereand the achieved locality. Indeed, choosing a more fineagthi
preprocessors may be triggered. For instance, IP packetsagssification scheme, such as a combination of the deistinat
through the IP defragmentation preprocessor, which merd&s address and port number, would require a tremendous
fragmented IP packets, TCP packets go through the T@mount of buckets, and would probably just add overhead,
stream reassembly preprocessor, which reconstructs the $iice most of the applications of interest to this work perfo
directional application level network stream, while HTTH5-tuple) flow-based classification anyway. At the same time
packets go through the HTTP preprocessor, which decodes @agkets destined to the same port usually correspond to the
normalizes the HTTP protocol fields. Similarly, the inspect Same application-level protocol, so they will trigger traee
engine will check each packet only against a subset of tB@ort signatures and preprocessors, or will belong to theesa
available attack signatures, according to its type. Thaskets or “neighboring” entries in a network flow hash table.
destined to a Web server will be checked against the subseTo get an estimation of the feasibility and the magnitude of
of signatures tailored to Web attacks, FTP packets will bmprovement that locality buffering can offer, we performine
checked against FTP attack signatures, and so on. preliminary experiment whereby we sorted off-line the petek

When checking a newly arrived packet, the correspondid a network trace based on the destination port number, and
preprocessor(s) code, signature subset, and data seaaetilt fed it to a passive monitoring application. This correspond
be fetched into the CPU cache. Since packets of many differé® applying locality buffering using buckets of infinite siz
types will likely be highly interleaved in the monitoredfiia Details about the trace and the experimental environment
mix, different data structures and code will be constant§re discussed in Section IV. We ran Snort [1] using both
alternating in the cache, resulting to cache misses andeetluthe sorted, as well as the original trace, and measured the
performance. The same effect occurs in other monitorifocessing throughput (trace size divided by the measured
applications, such as NetFlow collectors or traffic clasatfon user plus system time), L2 cache misses, and CPU cycles
applications, in which arriving packets are classified adicy 0f the application. Snort was configured with all the default
to the network flow in which they belong to, which resultreprocessors and signature sets enabled (2833 rules and 11
to updates in a corresponding entry of a hash table. If mapgeprocessors). The L2 cache misses and CPU clock cycles
concurrent flows are active in the monitored link, their petsk were measured using the PAPI library [5], which utilizes the
will arrive interleaved, and thus different portions of thash hardware performance counters.
table will be constantly being transferred in and out of the Table | summarizes the results (each measurement was
cache, resulting to poor performance. repeated 100 times, and we report the average values). We

The above observations motivated us to explore whetrgge that sorting results to a significant improvement of more
changing the order in which packets are delivered from ttigan 50% in Snort’s packet processing throughput, L2 cache
OS to the monitoring application improves packet procesgtsses are reduced by more than 6 times, and 40% less CPU
ing performance. Specifically, we speculated that reairang cycles are consumed.
the captured traffic stream in such a way that packets ofFrom the above experiment, we see that there is a significant
the same class are delivered to the application in “batchgsjtential of improvement in packet processing throughput
would improve the locality of memory accesses, and thwsing locality buffering. However, in practice, rearramgithe
reduce the overall cache miss ratio. This rearrangement qaackets of a continuous packet stream can only be done in
be conceptually achieved by buffering arriving packet® intshort intervals, since we cannot indefinitely wait to gataer
separate “buckets,” one for each packet class, and emptyarbitrarily large number of packets of the same class before

delivering them to the monitoring application—the captlre ingexing structure
packets have to be eventually delivered to the application [astpor
within a short time interval (in our implementation, in the £
orders of milliseconds). Note that slightly relaxing the in

order delivery of the captured packets results to a delay [D—0
between capturing the packet, and actually delivering it to G

the monitoring application. However, such a sub-secondydel % F"®—"®—’® W‘

does not actually affect the correct operation of the maimitp po— ‘ e I
applications that we consider in this work (delivering aartl | | i | 1|

or reporting a flow record a few milliseconds later is totally [, | ’__:L___I | |
acceptable). Furthermore, packet timestamps are computed %% v+ ' ¥ + :
before locality buffering, and are not altered in any way, so BN S - dstport: | dStport ﬂ

any inter-packet time dependencies remain intact.
Packet Buffer

IIl. | MPLEMENTATION WITHIN L1 BPCAP
. Fig. 2. Using an indexing table with a linked list for each tpthe packets
We have chosen to implement locality buffering withirare delivered to the application sorted by their destimaport.

I i bpcap, the most widely used packet capturing library,

which is the basis for a multitude of passive monitoring

applications. Typically, applications read the capturadkets ther ecv call, until the buffer is full, or a certain timeout has
through a call such ggcap_next , one at a time, in the sameexpired.

order as they arrive to the network interface. By incorpiogit Instead of arranging the packets into different buckets,
locality buffering withingl i bpcap, monitoring applications which requires an extra copy operation for each packet, we
continue to operate as before, taking advantage of localityaintain an indexing structure that specifies the order in
buffering in a transparent way, without the need to alteirthewhich the packets in the buffer will be delivered to the
code or linking them with extra libraries. Indeed, the onlpapplication during the delivering phase. This indexingsture
difference is that consecutive calls pgap_next or similar is illustrated in Figure 2. The index consists of a table with
functions will most of the time return packets with the sam@4K entries, one for each port number. Each entry of the
destination port number, depending on the availability thed table points to the beginning of a linked list that holds
time constraints, instead of highly interleaved packetthwireferences to all packets within the buffer with the pattcu

different destination port numbers. destination port. In the packet delivery phase, traversiach
o) list sequentially, starting from the first non-empty portmher
A. Periodic Packet Sream Sorting entry, allows for delivering the packets of the buffer ortér

In 1'i bpcap, whenever the application attempts to read according to their destination port. In this way we achieve
new packet, e.g., through a call prap_next, the library the desired packet sorting, while, at the same time, all @sck
reads a packet from the kernel throughracv call, and remain in place, in the initial memory location where theglha
delivers it to the application. That is, the packet is copiggeen written byr ecv, avoiding extra costly copy operations.
from kernel space to user space, in a small buffer equal to ttmethe following, we discuss the two phases in more detail.
maximum packet size, and theesap_next returns a pointer In the beginning of each packet gathering phase the indexing
to the beginning of the new packet. table is zeroed usingenset . For each arriving packet, we

So far, we have conceptually described locality bufferingerform a simple protocol decoding for determining whether
as a set of buckets, with packets with the same destinatibris a TCP or UDP packet, and consequently extract its
port ending up into the same bucket. One straightforwadgstination port number. Then, a new reference for the gacke
implementation of this approach would be to actually mamtais added to the corresponding linked list. For non-TCP or-non
a separate buffer for each bucket, and copy each arrivibpP packets, a reference is added into a separate list. The
packet to its corresponding buffer. However, this has theformation that we keep for every packet in each node of the
drawback that an extra copy is required for storing each @iackinked lists includes the packet’s length, the precise sitaep
to the corresponding bucket, right after it has been fetchedl the time when the packet was captured, and a pointer to
from the kernel through ecv. the actual packet data in the buffer.

In order to avoid extra packet copy operations, which Instead of dynamically allocating memory for new nodes in
incur significant overhead, we have chosen an alternatitree linked lists, which would be an overkill, we pre-alloea
approach. We distinguish between two different phases: tla@ge enough number of spare nodes, equal to the maximum
packetgathering phase, and the packetlivery phase. We number of packets that can be stored in the buffer. Whenever
have modified the single-packet-sized bufferl éfopcap to a new reference has to be added to a linked list, a spare node
hold a large number of packets, instead of just one. During picked. Also, for fast insertion of new nodes at the end of
the packet gathering phase, newly arrived packets areenritthe linked list, we keep a table with 64K pointers to the tail
sequentially into the buffer, by increasing the buffer effen of each list.

The system continues to gather packets until the buffswapping two pointers, while semaphore operations enkere t
becomes full, or a certain timeout has elapsed. The timedhtead-safe exchange of the two buffers.
ensures that if packets arrive with a low rate, the applicati
will not wait too long for receiving the next batch of packets
We use 100ms as the default timeout in our prototype im-In this section, we present the experimental evaluation
plementation, but both the timeout and the buffer size can b& our prototype implementation of locality buffering. Our
defined by the user. The buffer size and the timeout are twaperimental environment consists of two PCs intercoretect
significant parameters of our approach, since they influenteough a Gigabit switch. The first PC is used for traffic
the number of sorted packets that can be delivered to theneration, which is achieved by replaying real networHitra
application in each batch. Depending on how intensive eathces at different rates usirtgcpr epl ay [6]. We used a
application is, this number of packets determines the biginefi full payload trace captured at the access link that conreatts
its performance. In Section IV we examine the effect that theglucational network with thousands of hosts to the Internet
number of packets in each batch has on overall performaniee trace contains 1,698,902 packets, corresponding 6284,
using three different passive monitoring applications. different network flows, totaling more than 1 GB in size.

Upon the end of the packet gathering phase, packets can bBy rewriting the source and destination MAC addresses in
delivered to the application following the order imposednfr all packets, the generated traffic can be sent to the second
the indexing structure. For that purpose, we keep a poinfe€, the passive monitoring sensor, which captures thedraffi
to the list node of the most recently delivered packet. Btgrt and processes it using different monitoring applicatiorise
from the beginning of the index table, whenever the appboat passive monitoring sensor is equipped with an Intel Xeo0 2.4
requests a new packet, e.g., throyghap_next, we return GHz processor with 512 KB L2 cache and 512 MB RAM
the packet pointed either by the next node in the list, or,af wunning Debian Linux (kernel version 2.6.18). The kernel
have reached the end of the list, by the first node of the nesdcket buffer size was set to 16 MB, in order to minimize
non-empty list. The latter happens when all the packets®f thacket loss due to packet bursts.
same destination port have been delivered (i.e., the budet We tested the performance of the monitoring applications
been emptied), so conceptually the system continues wéth t#n top of three different versions ¢fi bpcap: the original
next non-empty group. version, our modified version that employs locality buffey;

. . and a third version with the optimized locality buffering
B. Using a Separate Thread for Packet Gathering approach that uses a separate thread for storing incoming

A drawback of the above implementation is that during theackets. For each setting, we measured the applicatioris us
packet gathering phase, the CPU remains idle most of the tiragd system time using the UNIXi ne utility. Furthermore,
since no packets are delivered to the application for pings we measured the L2 cache misses and the CPU clock cycles
in the meanwhile. Reversely, during the processing of tl®y reading the CPU performance counters through the PAPI
packets that were captured in the previous packet gatheriitgary [5]. Finally, an important metric that was measuied
period, no packets are stored in the buffer. In case that tle percentage of packets being dropped bypcap, which
kernel's socket buffer is small and the processing time farsually happens when replaying the traffic in high rates, due
the current batch of packets is increased, it is possibleahato high CPU utilization.
significant number of packets may get lost by the application Traffic generation begins after the application has beia ini
in case of high traffic load. ated. The application is terminated immediately after capg

Although in practice this effect does not degrade perfothe last packet of the replayed trace. All measurements were
mance due to the very short timeouts used (e.g. 100ms), asreypeated 10 times, and we report the average values. Due to
show in Section IV, we can improve further the performancspace constraints, we focus mostly on the discussion of our
of locality buffering by employing a separate thread for thexperiments using Snort, which is the most resource-intens
packet gathering phase, combined with the usage of twimong the tested applications. However, we also brieflyntepo
buffers instead of a single one. The separate packet gathemur experiences with Fprobe and Appmon.
thread receives the packets from the kernel and stores them
to the write buffer, and also updates its index. In parallel® Short
the application receives packets for processing from thenma We ran Snort using its default configuration, in which almost
thread ofl i bpcap, which returns the already sorted packetall of the available rule sets and preprocessors are enabled
of the secondead buffer. Each buffer has its own indexing Snort loaded 2833 rules, while 11 preprocessors were active
table. Initially, we examine the effect that the size of the buffer

Upon the completion of both the packet gathering phase,which the packets are sorted has on the overall applicatio
i.e., after the timeout expires or when the write buffer bmes performance. We vary the size of the buffer from 100 to 16000
full, and the parallel packet delivery phase, the two bufieie packets while replaying the network trace at a constant rate
swapped. The write buffer, which now is full of packets, wirnof 100 Mbit/sec. Using a 100 Mbit/sec rate, no packets were
to a read buffer, while the now empty read buffer becomesopped. We do not use any timeout in these experiments for
a write buffer. The whole swapping process is as simple packet gathering. As long as we send traffic at constant rate,

IV. EXPERIMENTAL EVALUATION

50 4
= 26 \
5] = K
0 A < 1 g 4s000 it
8 4 ,\ —— pcap g g &
[©— pcap+LB 9] B = ©
£ R o peap 8% pcap 2 41000 ,\ pcap
= +—= pcap+LB+thread > ©—0 pcap+LB = . O peap+LB
(o] A 4 A A
gu_)) 40 I ~— pcap+LB+thread § pcap+LB+thread
@ E 169 & 36000 -
[} x
fa < 8
o
Q o =2
4 35 5t S
~ 11 Z 31000 -
- O N
30 T T T T T T T T 6 T T T T T T T T 26000 . T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Locality Buffer size (# packets) Locality Buffer size (# packets) Locality Buffer size (# packets)

Fig. 3. Snort’s user plus system time as a functiokig. 4. Snort’'s L2 cache misses as a function dfig. 5. Snort's CPU cycles as a function of the

of the buffer size for 100 Mbit/s traffic. the buffer size for 100 Mbit/s traffic. buffer size for 100 Mbit/s traffic.
the buffer size determines how long the packet gathering®ha | —— pcap

will last. Figure 3 shows the user plus system time of Snart fo O peap+LB X

processing the replayed traffic using the differémtbpcap 50 1 peap*LB+thread

versions. Figures 4 and 5 present the per-packet L2 cac
misses and clock cycles respectively.

We observe that increasing the size of the buffer result§ s
to lower user time, fewer cache misses and clock cycless
and generally to an overall performance improvement. Téis i5
because using a larger packet buffer offers better posgbil
for effective packet sorting, and thus to better memorylibca
However, increasing the size from 4000 to 16000 packetsgive o
only a slight improvement. Based on this result, we consider
4000 packets as optimum buffer size in our experiments. For
a rate of 100 Mbit/sec, 4000 packets roughly correspond to Big. 6. Packet loss ratio of the passive monitoring senscerwiunning
160 millisecond period at average. Snort, as a function of the traffic speed.

We can also notice that using locality buffering we achieve
a significant reduction on the L2 cache misses from 23.7 per
packet to 10.5, when using a 4000 packets buffer, which @&opped while replaying the trace with speeds ranging from
an improvement of 2.26 times against Snort with the origind0 to 300 Mbit/sec. We used 4000 packets size for the locality
| i bpcap library. Also, Snort's user time and clock cycles ar®uffer, which was found to be the optimal size for Snort when
significantly reduced, making it faster by more than 40%. replaying this traffic at any rate.

Comparing our two different implementations, they resiltt Using the unmodified i bpcap, Snort cannot process all
similar performance in all the metrics measured. The madlifiggackets in rates higher than 125 Mbit/sec, so a significant
version ofl i bpcap that uses a separate thread for storingercentage of packets is being lost. On the other hand, using
packets to the buffer seems to perform slightly better tin tlocality buffering, the packet processing time is accetsta
simple implementation. and the system is able to process more packets in the same

We replayed the trace in different rates, from 10 to 30@me interval. As shown in Figure 6, when deploying our
Mbit/sec, trying different buffer sizes as before for eaaler locality buffering implementations in Snort, it becomesahu
and we concluded to the same findings. In all rates, 400®re resistant in packet loss. It begins to loose packets
packets was found as the optimum buffer size. Using th# 200 Mbit/sec instead of 125 Mbit/sec, which is a 60%
optimum buffer size, locality buffering results in all ratéo improvement. Also, at 250 Mbit/sec, our implementationudro
a significant reduction on Snort’s cache misses and user tirded times less packets than the origihalbpcap. The two
similar to the improvement observed in 100 Mbit/sec againgifferent implementations of the locality buffering tecthue
the originall i bpcap. The two implementations have almos&chieve almost the same performance, with the thread-based
equal performance in all cases, with the one using a thre@plementation having slightly less dropped packets.
performing a little better. We do not observe any significant improvement with the

Another important metric for evaluating the improvementread-based implementation, compared to the simpleitgcal
of our technique is the percentage of the packets that dmaffering implementation, because the major benefit of our
being dropped in high rates by the kernel because Snorttéshnique is the acceleration of packet processing due to
not able to process all of the them in these rates. In FigureérBproving memory access locality. Moreover, in the constan
we plot the average percentage of packets that are beargl high traffic rates that we generated in our experiments,

40

acketg%)

20 +

10 +

T T
50 100 150 200 250 300
Replay rate (Mbit/sec)

I — peap
2 ’\ 137 ©—0 pcap+LB

-— pcap+LB+thread

s s

(7] (7]

o o

o 201 o 111

£ — pcap £

£ ©0—5 pcap+LB £

2 18- “— pcap+LB+thread 2 o1

> >

[%] [%]

Fa fa

b " g

3 16 — 3 74

14 T T T T T T T T 5 T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Locality Buffer size (# packets) Locality Buffer size (# packets)

Fig. 7. Appmon’s user plus system time as a Fig. 8. Fprobe’s user plus system time as a
function of the buffer size for 100 Mbit/s traffic. function of the buffer size for 100 Mbit/s traffic.

the CPU time was not idle during the packet gathering phase We notice a speedup of about 30% when locality buffering
since packets were continuously arriving. In case of bursiy enabled. The buffer size that optimizes overall perforosa
traffic, however, the separate thread would be more registésagain around 8000 packets. We notice that in Appmon and

to dropping packets. Fprobe tools the optimum buffer size is about 8000 packets,
while in Snort 4000 packets size is enough to optimize the
B. Appmon performance. This happens because Appmon and Fprobe are

Appnon [2] is a passive network monitoring applicationnot so CPU-intensive as Snort, so they require a larger atmoun
for accurate per-application traffic identification anderai- of packets to be sorted in order to achieve a significant
rization. It uses deep-packet inspection and packet filgeriperformance improvement. Finally, we observe that theigars
for attributing flows to the applications that generate thgva of | i bpcap that uses a separate thread for storing packets
ran Appmon on top of our modified versionsldfbpcap and gives better performance in Fprobe for some of the buffer
examined the improvement that they can offer using differesizes, but it is not clear which of these two versions is
buffer sizes that vary from 100 to 16000 packets. Figure preferable in this case. Similar results were observed lin al
presents the Appmon’s user plus system time measured whidges of the replayed traffic.
replaying the trace at a constant rate of 100 Mbit/sec.

The results show that the Appmon’s performance can be im-
proved using the locality buffering implementations. l&cke The concept of locality buffering for improving passive
misses are reduced from 8.4 to 7.1 misses per packet, wigtwork monitoring applications, and, in particular, irgion
used buffer size of 8000 packets, that is a 18% improvemedétection and prevention systems, was first introduced by
Thus, the user plus system time is reduced by more than 30%nidis et al. [7], as part of a load balancing traffic splitte
compared width the origindli bpcap. The optimum buffer for multiple network intrusion detection sensors that aper
size in the case of Appmon, based on the these results, se@mparallel. In this work, the load balancer splits the taffi
to be around 8000 packets. Our different implementations multiple intrusion detection sensors, so that similarkeds
resulted again to very close performance, with the first orfe.g. packets destined to the same port) are processed by the
giving a little better results this time. same sensor. However, in this approach the splitter uses a

We were also running Appmon when replaying traffic ifimited number of locality buffers and copies each packet to
rates varying from 10 to 300 Mbit/sec, observing always sinthe appropriate buffer based on hashing on its destinaton p
ilar results. Since Appmon does significantly less proecgssinumber. Our approach differs in two major aspects. First, we
than snort, no packets were dropped in these rates. Thetoutpave implemented locality buffering within a packet cajstgr
of Appmon remains identical in all cases, which means thibrary, instead of a separate network element. To the best
the periodic packet stream sorting does not affect the corref our knowledge, our prototype implementation within the
operation of Appmon’s classification process. libpcap library is the first attempt for providing memory

locality enhancements for accelerating packet processing
C. Fprobe a generic and transparent way for existing passive moniori

Fpr obe [3] is a passive monitoring application that collectspplications. Second, the major improvement of our apgroac
traffic statistics for each active flow and exports corresliog is that packets are not actually copied into separate kycali
NetFlow records. We ran Fprobe with our modified versiorfauffers. Instead, we maintain a separate index which allows
of | i bpcap and performed the same measurements as withr scaling the number of locality buffers up to 64K.

Appmon. Figure 8 plots the user plus system time of the Locality enhancing techniques for improving server perfor
Fprobe variants per buffer sizes from 100 up to 16000 packetsance have been widely studied. For instance, Markatos et
while replaying the trace at 100 Mbit/sec rate. al. [8] present techniques for improving request locality &

V. RELATED WORK

Web cache, which results to significant improvements in the
file system performance. [1]
Finally, several research efforts [9], [10], [11] have feed
on improving the performance of packet capturing througrﬂz]
kernel and library modifications which reduce the number
of memory copies required for delivering a packet to the
application. In contrast, our approach aims to improve th%]
packet processing performance of the monitoring appbcati
itself, by exploiting the inherent locality of the in-menyor [4]
workload of the application.

(5]
[6]
(7]
In this paper, we presented a technique for improving the
performance of packet processing in a wide class of passive
network monitoring applications by enhancing the locality[s]
of memory access. Our approach is based on reordering the
captured packets before delivering them to the monitorin
application, by grouping together packets with the same des
tination port. This results to improved locality for codedan

VI. CONCLUSION

data accesses, and consequently to an increase in the pa%%

processing throughput and to a decrease in the packet lkess razi]

We described in detail the design and the implementation
of locality buffering withinl i bpcap, and presented our ex-
perimental evaluation using three representative CPehBite
passive monitoring applications. The evaluation restitsved
that all applications gain a significant performance improv
ment, while the system can keep up with higher traffic speeds
without dropping packets. Specifically, locality buffegime-
sulted to a 40% increase in the processing throughput of
the Snort IDS, while the packet loss rate was decreased by
60%. Using the original i bpcap implementation, the Snort
sensor begins loosing packets when the monitored traffiecspe
reaches 125 Mbit/sec, while using locality buffering, peick
loss is exhibited when exceeding 200 Mbit/sec. Fprobe, a
NetFlow export probe, and Appmon, an accurate traffic clas-
sification application, also exhibited a significant thrbpgt
improvement, up to 30%, even though they do not perform as
CPU-intensive processing as Snort.

Overall, we believe that implementing locality buffering
within | i bpcap is an attractive performance optimization,
since it offers significant performance improvements to dewi
range of passive monitoring applications, while at the same
time its operation is completely transparent, without niegd
to modify existing applications.

ACKNOWLEDGMENTS

This work was supported in part by the IST project LOB-
STER funded by the European Union under contract number
004336, and in part by the project CyberScope funded by the
Greek General Secretariat for Research and Technologyrunde
contract number PENED 03ED440. A. Papadogiannakis, D.
Antoniades, M. Polychronakis and Evangelos P. Markatos are
also with the University of Crete.

REFERENCES

M. Roesch, “Snort: Lightweight intrusion detection faretworks,”
in Proceedings of the 1999 USENIX LISA Systems Administration
Conference, November 1999. [Online]. Available: http://www.snorgo
D. Antoniades, M. Polychronakis, S. Antonatos, E. P. kétos, S. Ubik,
and A. Oslebo, “Appmon: An application for accurate per agpion
traffic characterization,” ifProceedings of IST Broadband Europe 2006
Conference, December 2006.

“fprobe: Netflow probes.” [Online]. Available:
http://fprobe.sourceforge.net/
S. McCanne, C. Leres, and V. Jacobson, “libpcap,” laween

Berkeley Laboratory, Berkeley, CA.
http://www.tcpdump.org/).

“Performance application programming interface.” [@B]. Available:
http://icl.cs.utk.edu/papi/

“Tcpreplay.” [Online]. Available: http://tcpreplagynfin.net/trac/

K. Xinidis, I. Charitakis, S. Antonatos, K. G. Anagnosig and E. P.
Markatos, “An active splitter architecture for intrusioretdction and
prevention,”| EEE Transactions on Dependable and Secure Computing,
vol. 03, no. 1, pp. 31-44, 2006.

E. P. Markatos, D. N. Pnevmatikatos, M. D. Flouris, and @l H.
Katevenis, “Web-conscious storage management for web igmdx
IEEE/ACM Trans. Netw., vol. 10, no. 6, pp. 735-748, 2002.

(software available onfr

] L. Deri, “ncap: Wire-speed packet capture and transioigsin Proceed-

ings of the IEEE/IFIP Workshop on End-to-End Monitoring Techniques
and Services (E2EMON), 2005.
P. Wood, “libpcap-mmap,” Los Alamos National Labs. [Dg].

‘Available: http://public.lanl.gov/cpw/

L. Deri, “Improving passive packet capture:beyond idevpolling,” in
Proceedings of SANE, 2004.

