
Improving the Performance of Passive Network
Monitoring Applications using Locality Buffering

Antonis Papadogiannakis, Demetres Antoniades, Michalis Polychronakis, and Evangelos P. Markatos
Institute of Computer Science

Foundation for Research & Technology – Hellas
{papadog,danton,mikepo,markatos}@ics.forth.gr

Abstract—In this paper, we present a novel approach for
improving the performance of a large class of CPU and memory
intensive passive network monitoring applications, such as intru-
sion detection systems, traffic characterization applications, and
NetFlow export probes. Our approach, calledlocality buffering,
reorders the captured packets by clustering packets with the
same destination port, before they are delivered to the monitoring
application, resulting to improved code and data locality, and
consequently to an overall increase in the packet processing
throughput and to a decrease in the packet loss rate. We have
implemented locality buffering within the widely used libpcap
packet capturing library, which allows existing monitoring appli-
cations to transparently benefit from the reordered packet stream
without the need to change application code. Our experimental
evaluation shows that locality buffering improves significantly
the performance of popular applications, such as the Snort
IDS, which exhibits a 40% increase in the packet processing
throughput and a 60% improvement in packet loss rate.

I. I NTRODUCTION

Passive network monitoring is the basis for a multitude of
systems that support the robust, efficient, and secure operation
of modern computer networks. While passive monitoring has
been traditionally used for relatively simple network traffic
measurement and analysis applications, or just for gathering
packet traces that are analyzed off-line, in recent years ithas
also become vital for a wide class of more CPU and memory
intensive applications, such as Network Intrusion Detection
Systems (NIDS) [1], accurate traffic categorization [2], and
NetFlow export probes [3]. The complex analysis operations
of such demanding applications are translated into an increased
number of CPU cycles spent on each captured packet, which
reduces the overall processing throughput that the application
can sustain without dropping incoming packets. At the same
time, as the speed of modern network links increases, there is
a growing demand for more efficient packet processing using
commodity hardware that can keep up with higher traffic loads.

A common characteristic that is often found in such mon-
itoring applications is that they usually perform different
operations to different types of packets. For example, a NIDS
applies a certain subset of attack signatures to packets with
destination port 80, i.e., it applies the web-attack signatures
to packets destined to web servers, it applies a different set
of signatures to packets destined to database servers, and so
on. Furthermore, NetFlow probes [3], traffic categorization,
as well as TCP stream reassembly, which has become a
mandatory function of modern NIDS, all need to maintain a

large data structure that holds the active network flows found
in the monitored traffic at any given time. Thus, for packets
belonging to the same network flow, the process accesses
the same part of the data structure that corresponds to the
particular flow.

In all above cases, we can identify alocality of executed
instructions and data references for packets of the same type.
In this paper, we present a novel technique for improving
packet processing performance by taking advantage of this
locality property found in many passive monitoring applica-
tions. In practice, the captured packet stream is a mix of
interleaved packets corresponding to hundreds or thousands
of different packet types, depending on the monitored link.
Our approach, calledlocality buffering, is based on adapting
the packet stream in a way that enhances the locality of the
application’s code and memory access, and thus accelerating
overall packet processing performance.

We have implemented locality buffering inlibpcap [4],
the most widely used packet capturing library, which allows
for improving the performance of a wide range of passive
monitoring applications written on top oflibpcap in a
transparent way, without the need to alter their code. The
experimental evaluation of our prototype implementation with
real-world applications shows that locality buffering cansig-
nificantly improve packet processing throughput and reduce
the packet loss rate. For instance, the popular Snort IDS
exhibited a 40% increase in the packet processing throughput,
and a 60% improvement in packet loss rate.

The rest of the paper is organized as follows: in Section II
we describe the overall approach of locality buffering, while in
Section III we present in detail our implementation of locality
buffering within thelibpcap packet capture library. Sec-
tion IV presents the experimental evaluation of our prototype
implementation using three popular passive monitoring tools.
Finally, Section V summarizes related work and Section VI
concludes the paper.

II. L OCALITY BUFFERING

The starting point of our work is the observation that
several widely used passive network monitoring applications,
such as intrusion detection systems, perform almost identical
operations for a certain class of packets, while different packet
classes result to the execution of different code paths and
to data accesses to different memory locations. Such packet



FTPWeb p2p Web p2p Packet Capturing 

Library using LB
ApplicationFTP Web Web p2p p2p

Fig. 1. The effect of locality buffering on the incoming packet stream.

classes include the packets of a particular network flow, i.e.,
packets with the same protocol, source and destination IP
addresses, and source and destination port numbers, or even
wider classes such as all packets of the same application-level
protocol, e.g., all HTTP, FTP, or BitTorrent packets.

Consider for example a NIDS like Snort [1]. Each arriving
packet is first decoded according to its Layer 2–4 protocols,
then it passes through severalpreprocessors, which perform
various types of processing according to the packet type, and
finally it is delivered to the main inspection engine, which
checks the packet protocol headers and payload against a set
of attack signatures. According to the packet type, different
preprocessors may be triggered. For instance, IP packets go
through the IP defragmentation preprocessor, which merges
fragmented IP packets, TCP packets go through the TCP
stream reassembly preprocessor, which reconstructs the bi-
directional application level network stream, while HTTP
packets go through the HTTP preprocessor, which decodes and
normalizes the HTTP protocol fields. Similarly, the inspection
engine will check each packet only against a subset of the
available attack signatures, according to its type. Thus, packets
destined to a Web server will be checked against the subset
of signatures tailored to Web attacks, FTP packets will be
checked against FTP attack signatures, and so on.

When checking a newly arrived packet, the corresponding
preprocessor(s) code, signature subset, and data structures will
be fetched into the CPU cache. Since packets of many different
types will likely be highly interleaved in the monitored traffic
mix, different data structures and code will be constantly
alternating in the cache, resulting to cache misses and reduced
performance. The same effect occurs in other monitoring
applications, such as NetFlow collectors or traffic classification
applications, in which arriving packets are classified according
to the network flow in which they belong to, which results
to updates in a corresponding entry of a hash table. If many
concurrent flows are active in the monitored link, their packets
will arrive interleaved, and thus different portions of thehash
table will be constantly being transferred in and out of the
cache, resulting to poor performance.

The above observations motivated us to explore whether
changing the order in which packets are delivered from the
OS to the monitoring application improves packet process-
ing performance. Specifically, we speculated that rearranging
the captured traffic stream in such a way that packets of
the same class are delivered to the application in “batches”
would improve the locality of memory accesses, and thus
reduce the overall cache miss ratio. This rearrangement can
be conceptually achieved by buffering arriving packets into
separate “buckets,” one for each packet class, and emptying

TABLE I
SNORT’ S PERFORMANCE USING A SORTED TRACE

Performance metric Original trace Sorted trace
Throughput (Mbit/sec) 188.39 286.18

Cache Misses (per packet) 18.86 2.79
Clock Cycles (per packet) 48,978.76 30,846.89

each bucket at once, either whenever it gets full, or after some
predefined timeout since the arrival of the first packet of the
bucket. For instance, if we assume that packets with the same
destination port number correspond to the same class, then any
interleaved packets destined to different network services will
be rearranged so that packets to the same service are delivered
back-to-back to the monitoring application, as depicted in
Figure 1.

Choosing the destination port number as a class identifier
strikes a good balance between the number of required buckets
and the achieved locality. Indeed, choosing a more fine-grained
classification scheme, such as a combination of the destination
IP address and port number, would require a tremendous
amount of buckets, and would probably just add overhead,
since most of the applications of interest to this work perform
(5-tuple) flow-based classification anyway. At the same time,
packets destined to the same port usually correspond to the
same application-level protocol, so they will trigger the same
Snort signatures and preprocessors, or will belong to the same
or “neighboring” entries in a network flow hash table.

To get an estimation of the feasibility and the magnitude of
improvement that locality buffering can offer, we performed a
preliminary experiment whereby we sorted off-line the packets
of a network trace based on the destination port number, and
fed it to a passive monitoring application. This corresponds
to applying locality buffering using buckets of infinite size.
Details about the trace and the experimental environment
are discussed in Section IV. We ran Snort [1] using both
the sorted, as well as the original trace, and measured the
processing throughput (trace size divided by the measured
user plus system time), L2 cache misses, and CPU cycles
of the application. Snort was configured with all the default
preprocessors and signature sets enabled (2833 rules and 11
preprocessors). The L2 cache misses and CPU clock cycles
were measured using the PAPI library [5], which utilizes the
hardware performance counters.

Table I summarizes the results (each measurement was
repeated 100 times, and we report the average values). We
see that sorting results to a significant improvement of more
than 50% in Snort’s packet processing throughput, L2 cache
misses are reduced by more than 6 times, and 40% less CPU
cycles are consumed.

From the above experiment, we see that there is a significant
potential of improvement in packet processing throughput
using locality buffering. However, in practice, rearranging the
packets of a continuous packet stream can only be done in
short intervals, since we cannot indefinitely wait to gatheran
arbitrarily large number of packets of the same class before



delivering them to the monitoring application—the captured
packets have to be eventually delivered to the application
within a short time interval (in our implementation, in the
orders of milliseconds). Note that slightly relaxing the in-
order delivery of the captured packets results to a delay
between capturing the packet, and actually delivering it to
the monitoring application. However, such a sub-second delay
does not actually affect the correct operation of the monitoring
applications that we consider in this work (delivering an alert
or reporting a flow record a few milliseconds later is totally
acceptable). Furthermore, packet timestamps are computed
before locality buffering, and are not altered in any way, so
any inter-packet time dependencies remain intact.

III. I MPLEMENTATION WITHIN LIBPCAP

We have chosen to implement locality buffering within
libpcap, the most widely used packet capturing library,
which is the basis for a multitude of passive monitoring
applications. Typically, applications read the captured packets
through a call such aspcap_next, one at a time, in the same
order as they arrive to the network interface. By incorporating
locality buffering withinglibpcap, monitoring applications
continue to operate as before, taking advantage of locality
buffering in a transparent way, without the need to alter their
code or linking them with extra libraries. Indeed, the only
difference is that consecutive calls topcap_next or similar
functions will most of the time return packets with the same
destination port number, depending on the availability andthe
time constraints, instead of highly interleaved packets with
different destination port numbers.

A. Periodic Packet Stream Sorting

In libpcap, whenever the application attempts to read a
new packet, e.g., through a call topcap_next, the library
reads a packet from the kernel through arecv call, and
delivers it to the application. That is, the packet is copied
from kernel space to user space, in a small buffer equal to the
maximum packet size, and thenpcap_next returns a pointer
to the beginning of the new packet.

So far, we have conceptually described locality buffering
as a set of buckets, with packets with the same destination
port ending up into the same bucket. One straightforward
implementation of this approach would be to actually maintain
a separate buffer for each bucket, and copy each arriving
packet to its corresponding buffer. However, this has the
drawback that an extra copy is required for storing each packet
to the corresponding bucket, right after it has been fetched
from the kernel throughrecv.

In order to avoid extra packet copy operations, which
incur significant overhead, we have chosen an alternative
approach. We distinguish between two different phases: the
packet gathering phase, and the packetdelivery phase. We
have modified the single-packet-sized buffer oflibpcap to
hold a large number of packets, instead of just one. During
the packet gathering phase, newly arrived packets are written
sequentially into the buffer, by increasing the buffer offset in

dst port

0

1

…

21

…

80

…

65536

dst port: 

21

dst port: 

80

dst port: 

2217

dst port: 

80

dst port: 

2217

dst port: 

21

dst port: 

80

Packet Buffer 

Indexing Structure

Fig. 2. Using an indexing table with a linked list for each port, the packets
are delivered to the application sorted by their destination port.

therecv call, until the buffer is full, or a certain timeout has
expired.

Instead of arranging the packets into different buckets,
which requires an extra copy operation for each packet, we
maintain an indexing structure that specifies the order in
which the packets in the buffer will be delivered to the
application during the delivering phase. This indexing structure
is illustrated in Figure 2. The index consists of a table with
64K entries, one for each port number. Each entry of the
table points to the beginning of a linked list that holds
references to all packets within the buffer with the particular
destination port. In the packet delivery phase, traversingeach
list sequentially, starting from the first non-empty port number
entry, allows for delivering the packets of the buffer ordered
according to their destination port. In this way we achieve
the desired packet sorting, while, at the same time, all packets
remain in place, in the initial memory location where they had
been written byrecv, avoiding extra costly copy operations.
In the following, we discuss the two phases in more detail.

In the beginning of each packet gathering phase the indexing
table is zeroed usingmemset. For each arriving packet, we
perform a simple protocol decoding for determining whether
it is a TCP or UDP packet, and consequently extract its
destination port number. Then, a new reference for the packet
is added to the corresponding linked list. For non-TCP or non-
UDP packets, a reference is added into a separate list. The
information that we keep for every packet in each node of the
linked lists includes the packet’s length, the precise timestamp
of the time when the packet was captured, and a pointer to
the actual packet data in the buffer.

Instead of dynamically allocating memory for new nodes in
the linked lists, which would be an overkill, we pre-allocate a
large enough number of spare nodes, equal to the maximum
number of packets that can be stored in the buffer. Whenever
a new reference has to be added to a linked list, a spare node
is picked. Also, for fast insertion of new nodes at the end of
the linked list, we keep a table with 64K pointers to the tail
of each list.



The system continues to gather packets until the buffer
becomes full, or a certain timeout has elapsed. The timeout
ensures that if packets arrive with a low rate, the application
will not wait too long for receiving the next batch of packets.
We use 100ms as the default timeout in our prototype im-
plementation, but both the timeout and the buffer size can be
defined by the user. The buffer size and the timeout are two
significant parameters of our approach, since they influence
the number of sorted packets that can be delivered to the
application in each batch. Depending on how intensive each
application is, this number of packets determines the benefit in
its performance. In Section IV we examine the effect that the
number of packets in each batch has on overall performance
using three different passive monitoring applications.

Upon the end of the packet gathering phase, packets can be
delivered to the application following the order imposed from
the indexing structure. For that purpose, we keep a pointer
to the list node of the most recently delivered packet. Starting
from the beginning of the index table, whenever the application
requests a new packet, e.g., throughpcap_next, we return
the packet pointed either by the next node in the list, or, if we
have reached the end of the list, by the first node of the next
non-empty list. The latter happens when all the packets of the
same destination port have been delivered (i.e., the buckethas
been emptied), so conceptually the system continues with the
next non-empty group.

B. Using a Separate Thread for Packet Gathering

A drawback of the above implementation is that during the
packet gathering phase, the CPU remains idle most of the time,
since no packets are delivered to the application for processing
in the meanwhile. Reversely, during the processing of the
packets that were captured in the previous packet gathering
period, no packets are stored in the buffer. In case that the
kernel’s socket buffer is small and the processing time for
the current batch of packets is increased, it is possible that a
significant number of packets may get lost by the application,
in case of high traffic load.

Although in practice this effect does not degrade perfor-
mance due to the very short timeouts used (e.g. 100ms), as we
show in Section IV, we can improve further the performance
of locality buffering by employing a separate thread for the
packet gathering phase, combined with the usage of two
buffers instead of a single one. The separate packet gathering
thread receives the packets from the kernel and stores them
to the write buffer, and also updates its index. In parallel,
the application receives packets for processing from the main
thread oflibpcap, which returns the already sorted packets
of the secondread buffer. Each buffer has its own indexing
table.

Upon the completion of both the packet gathering phase,
i.e., after the timeout expires or when the write buffer becomes
full, and the parallel packet delivery phase, the two buffers are
swapped. The write buffer, which now is full of packets, turns
to a read buffer, while the now empty read buffer becomes
a write buffer. The whole swapping process is as simple as

swapping two pointers, while semaphore operations ensure the
thread-safe exchange of the two buffers.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation
of our prototype implementation of locality buffering. Our
experimental environment consists of two PCs interconnected
through a Gigabit switch. The first PC is used for traffic
generation, which is achieved by replaying real network traffic
traces at different rates usingtcpreplay [6]. We used a
full payload trace captured at the access link that connectsan
educational network with thousands of hosts to the Internet.
The trace contains 1,698,902 packets, corresponding to 64,628
different network flows, totaling more than 1 GB in size.

By rewriting the source and destination MAC addresses in
all packets, the generated traffic can be sent to the second
PC, the passive monitoring sensor, which captures the traffic
and processes it using different monitoring applications.The
passive monitoring sensor is equipped with an Intel Xeon 2.40
GHz processor with 512 KB L2 cache and 512 MB RAM
running Debian Linux (kernel version 2.6.18). The kernel
socket buffer size was set to 16 MB, in order to minimize
packet loss due to packet bursts.

We tested the performance of the monitoring applications
on top of three different versions oflibpcap: the original
version, our modified version that employs locality buffering,
and a third version with the optimized locality buffering
approach that uses a separate thread for storing incoming
packets. For each setting, we measured the application’s user
and system time using the UNIXtime utility. Furthermore,
we measured the L2 cache misses and the CPU clock cycles
by reading the CPU performance counters through the PAPI
library [5]. Finally, an important metric that was measuredis
the percentage of packets being dropped bylibpcap, which
usually happens when replaying the traffic in high rates, due
to high CPU utilization.

Traffic generation begins after the application has been initi-
ated. The application is terminated immediately after capturing
the last packet of the replayed trace. All measurements were
repeated 10 times, and we report the average values. Due to
space constraints, we focus mostly on the discussion of our
experiments using Snort, which is the most resource-intensive
among the tested applications. However, we also briefly report
our experiences with Fprobe and Appmon.

A. Snort

We ran Snort using its default configuration, in which almost
all of the available rule sets and preprocessors are enabled.
Snort loaded 2833 rules, while 11 preprocessors were active.

Initially, we examine the effect that the size of the buffer
in which the packets are sorted has on the overall application
performance. We vary the size of the buffer from 100 to 16000
packets while replaying the network trace at a constant rate
of 100 Mbit/sec. Using a 100 Mbit/sec rate, no packets were
dropped. We do not use any timeout in these experiments for
packet gathering. As long as we send traffic at constant rate,



Locality Buffer size (# packets)

0 2000 4000 6000 8000 10000 12000 14000 16000

U
se

r+
S

ys
te

m
 ti

m
e 

(s
ec

)

30

35

40

45

50

pcap
pcap+LB
pcap+LB+thread

Fig. 3. Snort’s user plus system time as a function
of the buffer size for 100 Mbit/s traffic.

Locality Buffer size (# packets)

0 2000 4000 6000 8000 10000 12000 14000 16000

L2
 c

ac
he

 m
is

se
s 

(p
er

 p
ac

ke
t)

6

11

16

21

26

pcap
pcap+LB
pcap+LB+thread

Fig. 4. Snort’s L2 cache misses as a function of
the buffer size for 100 Mbit/s traffic.

Locality Buffer size (# packets)

0 2000 4000 6000 8000 10000 12000 14000 16000

C
P

U
 c

lo
ck

 c
yc

le
s 

(p
er

 p
ac

ke
t)

26000

31000

36000

41000

46000

pcap
pcap+LB
pcap+LB+thread

Fig. 5. Snort’s CPU cycles as a function of the
buffer size for 100 Mbit/s traffic.

the buffer size determines how long the packet gathering phase
will last. Figure 3 shows the user plus system time of Snort for
processing the replayed traffic using the differentlibpcap
versions. Figures 4 and 5 present the per-packet L2 cache
misses and clock cycles respectively.

We observe that increasing the size of the buffer results
to lower user time, fewer cache misses and clock cycles,
and generally to an overall performance improvement. This is
because using a larger packet buffer offers better possibilities
for effective packet sorting, and thus to better memory locality.
However, increasing the size from 4000 to 16000 packets gives
only a slight improvement. Based on this result, we consider
4000 packets as optimum buffer size in our experiments. For
a rate of 100 Mbit/sec, 4000 packets roughly correspond to an
160 millisecond period at average.

We can also notice that using locality buffering we achieve
a significant reduction on the L2 cache misses from 23.7 per
packet to 10.5, when using a 4000 packets buffer, which is
an improvement of 2.26 times against Snort with the original
libpcap library. Also, Snort’s user time and clock cycles are
significantly reduced, making it faster by more than 40%.

Comparing our two different implementations, they result to
similar performance in all the metrics measured. The modified
version oflibpcap that uses a separate thread for storing
packets to the buffer seems to perform slightly better than the
simple implementation.

We replayed the trace in different rates, from 10 to 300
Mbit/sec, trying different buffer sizes as before for each rate
and we concluded to the same findings. In all rates, 4000
packets was found as the optimum buffer size. Using this
optimum buffer size, locality buffering results in all rates to
a significant reduction on Snort’s cache misses and user time,
similar to the improvement observed in 100 Mbit/sec against
the originallibpcap. The two implementations have almost
equal performance in all cases, with the one using a thread
performing a little better.

Another important metric for evaluating the improvement
of our technique is the percentage of the packets that are
being dropped in high rates by the kernel because Snort is
not able to process all of the them in these rates. In Figure 6
we plot the average percentage of packets that are being

Replay rate (Mbit/sec)

0 50 100 150 200 250 300

D
ro

pp
ed

 p
ac

ke
ts

 (
%

)

0

10

20

30

40

50

60 pcap
pcap+LB
pcap+LB+thread

Fig. 6. Packet loss ratio of the passive monitoring sensor when running
Snort, as a function of the traffic speed.

dropped while replaying the trace with speeds ranging from
10 to 300 Mbit/sec. We used 4000 packets size for the locality
buffer, which was found to be the optimal size for Snort when
replaying this traffic at any rate.

Using the unmodifiedlibpcap, Snort cannot process all
packets in rates higher than 125 Mbit/sec, so a significant
percentage of packets is being lost. On the other hand, using
locality buffering, the packet processing time is accelerated
and the system is able to process more packets in the same
time interval. As shown in Figure 6, when deploying our
locality buffering implementations in Snort, it becomes much
more resistant in packet loss. It begins to loose packets
at 200 Mbit/sec instead of 125 Mbit/sec, which is a 60%
improvement. Also, at 250 Mbit/sec, our implementation drops
2.6 times less packets than the originallibpcap. The two
different implementations of the locality buffering technique
achieve almost the same performance, with the thread-based
implementation having slightly less dropped packets.

We do not observe any significant improvement with the
thread-based implementation, compared to the simple locality
buffering implementation, because the major benefit of our
technique is the acceleration of packet processing due to
improving memory access locality. Moreover, in the constant
and high traffic rates that we generated in our experiments,



Locality Buffer size (# packets)

0 2000 4000 6000 8000 10000 12000 14000 16000

U
se

r+
S

ys
te

m
 ti

m
e 

(s
ec

)

14

16

18

20

22

pcap
pcap+LB
pcap+LB+thread

Fig. 7. Appmon’s user plus system time as a
function of the buffer size for 100 Mbit/s traffic.

Locality Buffer size (# packets)

0 2000 4000 6000 8000 10000 12000 14000 16000

U
se

r+
S

ys
te

m
 ti

m
e 

(s
ec

)

5

7

9

11

13
pcap
pcap+LB
pcap+LB+thread

Fig. 8. Fprobe’s user plus system time as a
function of the buffer size for 100 Mbit/s traffic.

the CPU time was not idle during the packet gathering phase,
since packets were continuously arriving. In case of bursty
traffic, however, the separate thread would be more resistant
to dropping packets.

B. Appmon

Appmon [2] is a passive network monitoring application
for accurate per-application traffic identification and catego-
rization. It uses deep-packet inspection and packet filtering
for attributing flows to the applications that generate them. We
ran Appmon on top of our modified versions oflibpcap and
examined the improvement that they can offer using different
buffer sizes that vary from 100 to 16000 packets. Figure 7
presents the Appmon’s user plus system time measured while
replaying the trace at a constant rate of 100 Mbit/sec.

The results show that the Appmon’s performance can be im-
proved using the locality buffering implementations. Its cache
misses are reduced from 8.4 to 7.1 misses per packet, when
used buffer size of 8000 packets, that is a 18% improvement.
Thus, the user plus system time is reduced by more than 30%
compared width the originallibpcap. The optimum buffer
size in the case of Appmon, based on the these results, seems
to be around 8000 packets. Our different implementations
resulted again to very close performance, with the first one
giving a little better results this time.

We were also running Appmon when replaying traffic in
rates varying from 10 to 300 Mbit/sec, observing always sim-
ilar results. Since Appmon does significantly less processing
than snort, no packets were dropped in these rates. The output
of Appmon remains identical in all cases, which means that
the periodic packet stream sorting does not affect the correct
operation of Appmon’s classification process.

C. Fprobe

Fprobe [3] is a passive monitoring application that collects
traffic statistics for each active flow and exports corresponding
NetFlow records. We ran Fprobe with our modified versions
of libpcap and performed the same measurements as with
Appmon. Figure 8 plots the user plus system time of the
Fprobe variants per buffer sizes from 100 up to 16000 packets,
while replaying the trace at 100 Mbit/sec rate.

We notice a speedup of about 30% when locality buffering
is enabled. The buffer size that optimizes overall performance
is again around 8000 packets. We notice that in Appmon and
Fprobe tools the optimum buffer size is about 8000 packets,
while in Snort 4000 packets size is enough to optimize the
performance. This happens because Appmon and Fprobe are
not so CPU-intensive as Snort, so they require a larger amount
of packets to be sorted in order to achieve a significant
performance improvement. Finally, we observe that the version
of libpcap that uses a separate thread for storing packets
gives better performance in Fprobe for some of the buffer
sizes, but it is not clear which of these two versions is
preferable in this case. Similar results were observed in all
rates of the replayed traffic.

V. RELATED WORK

The concept of locality buffering for improving passive
network monitoring applications, and, in particular, intrusion
detection and prevention systems, was first introduced by
Xinidis et al. [7], as part of a load balancing traffic splitter
for multiple network intrusion detection sensors that operate
in parallel. In this work, the load balancer splits the traffic
to multiple intrusion detection sensors, so that similar packets
(e.g. packets destined to the same port) are processed by the
same sensor. However, in this approach the splitter uses a
limited number of locality buffers and copies each packet to
the appropriate buffer based on hashing on its destination port
number. Our approach differs in two major aspects. First, we
have implemented locality buffering within a packet capturing
library, instead of a separate network element. To the best
of our knowledge, our prototype implementation within the
libpcap library is the first attempt for providing memory
locality enhancements for accelerating packet processingin
a generic and transparent way for existing passive monitoring
applications. Second, the major improvement of our approach
is that packets are not actually copied into separate locality
buffers. Instead, we maintain a separate index which allows
for scaling the number of locality buffers up to 64K.

Locality enhancing techniques for improving server perfor-
mance have been widely studied. For instance, Markatos et
al. [8] present techniques for improving request locality on a



Web cache, which results to significant improvements in the
file system performance.

Finally, several research efforts [9], [10], [11] have focused
on improving the performance of packet capturing through
kernel and library modifications which reduce the number
of memory copies required for delivering a packet to the
application. In contrast, our approach aims to improve the
packet processing performance of the monitoring application
itself, by exploiting the inherent locality of the in-memory
workload of the application.

VI. CONCLUSION

In this paper, we presented a technique for improving the
performance of packet processing in a wide class of passive
network monitoring applications by enhancing the locality
of memory access. Our approach is based on reordering the
captured packets before delivering them to the monitoring
application, by grouping together packets with the same des-
tination port. This results to improved locality for code and
data accesses, and consequently to an increase in the packet
processing throughput and to a decrease in the packet loss rate.

We described in detail the design and the implementation
of locality buffering withinlibpcap, and presented our ex-
perimental evaluation using three representative CPU-intensive
passive monitoring applications. The evaluation results showed
that all applications gain a significant performance improve-
ment, while the system can keep up with higher traffic speeds
without dropping packets. Specifically, locality buffering re-
sulted to a 40% increase in the processing throughput of
the Snort IDS, while the packet loss rate was decreased by
60%. Using the originallibpcap implementation, the Snort
sensor begins loosing packets when the monitored traffic speed
reaches 125 Mbit/sec, while using locality buffering, packet
loss is exhibited when exceeding 200 Mbit/sec. Fprobe, a
NetFlow export probe, and Appmon, an accurate traffic clas-
sification application, also exhibited a significant throughput
improvement, up to 30%, even though they do not perform as
CPU-intensive processing as Snort.

Overall, we believe that implementing locality buffering
within libpcap is an attractive performance optimization,
since it offers significant performance improvements to a wide
range of passive monitoring applications, while at the same
time its operation is completely transparent, without needing
to modify existing applications.

ACKNOWLEDGMENTS

This work was supported in part by the IST project LOB-
STER funded by the European Union under contract number
004336, and in part by the project CyberScope funded by the
Greek General Secretariat for Research and Technology under
contract number PENED 03ED440. A. Papadogiannakis, D.
Antoniades, M. Polychronakis and Evangelos P. Markatos are
also with the University of Crete.

REFERENCES

[1] M. Roesch, “Snort: Lightweight intrusion detection fornetworks,”
in Proceedings of the 1999 USENIX LISA Systems Administration
Conference, November 1999. [Online]. Available: http://www.snort.org

[2] D. Antoniades, M. Polychronakis, S. Antonatos, E. P. Markatos, S. Ubik,
and A. Oslebo, “Appmon: An application for accurate per application
traffic characterization,” inProceedings of IST Broadband Europe 2006
Conference, December 2006.

[3] “fprobe: Netflow probes.” [Online]. Available:
http://fprobe.sourceforge.net/

[4] S. McCanne, C. Leres, and V. Jacobson, “libpcap,” lawrence
Berkeley Laboratory, Berkeley, CA. (software available from
http://www.tcpdump.org/).

[5] “Performance application programming interface.” [Online]. Available:
http://icl.cs.utk.edu/papi/

[6] “Tcpreplay.” [Online]. Available: http://tcpreplay.synfin.net/trac/
[7] K. Xinidis, I. Charitakis, S. Antonatos, K. G. Anagnostakis, and E. P.

Markatos, “An active splitter architecture for intrusion detection and
prevention,”IEEE Transactions on Dependable and Secure Computing,
vol. 03, no. 1, pp. 31–44, 2006.

[8] E. P. Markatos, D. N. Pnevmatikatos, M. D. Flouris, and M.G. H.
Katevenis, “Web-conscious storage management for web proxies,”
IEEE/ACM Trans. Netw., vol. 10, no. 6, pp. 735–748, 2002.

[9] L. Deri, “ncap: Wire-speed packet capture and transmission,” in Proceed-
ings of the IEEE/IFIP Workshop on End-to-End Monitoring Techniques
and Services (E2EMON), 2005.

[10] P. Wood, “libpcap-mmap,” Los Alamos National Labs. [Online].
Available: http://public.lanl.gov/cpw/

[11] L. Deri, “Improving passive packet capture:beyond device polling,” in
Proceedings of SANE, 2004.


