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Abstract. Network-level emulation has recently been proposed as a method for
the accurate detection of previously unknown polymorphic code injection at-
tacks. In this paper, we extend network-level emulation along two lines. First,
we present an improved execution behavior heuristic that enables the detection
of a certain class of non-self-contained polymorphic shellcodes that are currently
missed by existing emulation-based approaches. Second, wepresent two generic
algorithmic optimizations that improve the runtime performance of the detec-
tor. We have implemented a prototype of the proposed technique and evaluated
it using off-the-shelf non-self-contained polymorphic shellcode engines and be-
nign data. The detector achieves a modest processing throughput, which how-
ever is enough for decent runtime performance on actual deployments, while it
has not produced any false positives. Finally, we report attack activity statistics
from a seven-month deployment of our prototype in a production network, which
demonstrate the effectiveness and practicality of our approach.

1 Introduction

Along with the phenomenal growth of the Internet, the numberof attacks against Inter-
net-connected systems continues to grow at alarming rates.From “one hostile action
a week” 15 years ago [7], Internet hosts today confront millions of intrusion attempts
every day [34]. Besides the constantly increasing number ofsecurity incidents, we are
also witnessing a steady increase in attack sophistication. During the last few years,
there has been a decline in the number of massive easy-to-spot global epidemics, and a
shift towards more targeted and evasive attacks.

For example, attackers have been increasingly using techniques like polymorphism
and metamorphism [28] to evade network-level detectors. Using polymorphism, the
code in the attack vector —which is usually referred to asshellcode— is mutated so
that each instance of the same attack acquires a unique byte pattern, thereby making
fingerprinting of the whole breed very difficult. In its most naive form, the shellcode is
encrypted using a simple algorithm, such as XOR-ing blocks of the original shellcode
—which is also known as thepayload— with a random key, and is prepended with a
decryption routine that on runtime unveils and executes theencrypted payload.

Nowadays, the large and diverse number of polymorphic shellcode engines [1,4,9,
11, 13, 20, 23, 27, 33], along with their increased sophistication, makes imperative the



need for effective and robust detection mechanisms. Along with the several research
efforts towards this goal, we have recently proposed network-level emulation [22], a
passive network monitoring approach for the detection of previously unknown poly-
morphic shellcode, which is based on the actual execution ofnetwork data on a CPU
emulator. The principle behind network-level emulation isthat the machine code inter-
pretation of arbitrary data results to random code, which, when it is attempted to run on
an actual CPU, usually crashes soon, e.g., due to the execution of an illegal instruction.
In contrast, if some network request actually contains a polymorphic shellcode, then the
shellcode runs normally, exhibiting a certain detectable behavior.

Network-level emulation does not rely on any exploit or vulnerability specific signa-
tures, which allows the detection of previously unknown attacks. Instead, network-level
emulation uses a generic heuristic that matches the runtimebehavior of polymorphic
shellcode. At the same time, the actual execution of the attack code on a CPU em-
ulator makes the detector robust to evasion techniques suchas highly obfuscated or
self-modifying code. Furthermore, each input is inspectedautonomously, which makes
the approach effective against targeted attacks.

In this paper, we extend network-level emulation with an improved behavioral heur-
istic that allows the detection of a new class of polymorphicshellcodes, which are cur-
rently missed by the existing approach. The existing network-level emulation technique
can detect only self-contained shellcode, which does not make any assumptions about
the state of the vulnerable process. In this work, we enable the detection of a certain
class ofnon-self-contained polymorphic shellcodes, which take advantage of a certain
register that happens to hold the base address of the injected shellcode upon hijack-
ing the instruction pointer. We also present two generic algorithmic optimizations that
improve the runtime performance of the detector, and can be applied to network-level
emulation irrespectively of the behavioral heuristic used. Finally, we report attack statis-
tics from a real-world deployment of our prototype implementation, which we believe
demonstrate the effectiveness and practicality of network-level emulation.

2 Related Work

The constant increase in the amount and sophistication of remote binary code injection
attacks, and the consequent increase in the deployment and accuracy of defenses, have
led to a coevolution of attack detection methods and evasiontechniques.

Early approaches to network-level detection of zero-day worms relied on the iden-
tification of common byte sequences that are prevalent amongmultiple worm instances
for the automated generation of NIDS signatures [14, 24]. Such approaches are ef-
fective only for fast spreading worms that do not use any formof payload obfus-
cation. As more tools for shellcode encryption and polymorphism became publicly
available [1, 4, 9, 11, 13, 20, 23, 27, 33], subsequent automated signature generation
approaches [16, 18] focused on the detection of polymorphicworms by identifying
multiple common invariants among different worm instances. However, the first-level
classifier on which such methods rely can result to evasion attacks [19].

An inherent limitation of the above approaches is that they are effective only af-
ter several instances of the same worm have reached the detector, which makes them
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Fig. 1. A typical execution of a polymorphic shellcode using network-level emulation.

ineffective against targeted attacks. Content-based anomaly detection can also identify
worms that employ a certain degree of polymorphism by alerting on traffic with anoma-
lous content distributions [30,31], although it is prone toblending attacks [12].

In face of extensive polymorphism, slow propagating worms,and targeted attacks,
several research efforts turned to static binary code analysis on network traffic for iden-
tifying the presence of polymorphic shellcode. Initial approaches focused on the iden-
tification of the sled component that often precedes the shellcode [2,29]. Recent works
aim to detect the polymorphic shellcode itself using various approaches, such as the
identification of structural similarities among differentworm instances [15], control
and data flow analysis [8,32], or neural networks [21].

Static analysis, however, cannot effectively handle code that employs advanced ob-
fuscation methods, such as indirect jumps and self-modifications, so carefully crafted
polymorphic shellcode can evade detection methods based onstatic analysis. Dynamic
code analysis using network-level emulation [22] is not hindered by such obfuscations,
and thus can detect even extensively obfuscated shellcodesbut is currently able to de-
tect only self-contained polymorphic shellcode. Zhang et al. [35] propose to combine
network-level emulation with static and data flow analysis for improving runtime detec-
tion performance. However, the proposed method requires the presence of a decryption
loop in the shellcode, and thus will miss any polymorphic shellcodes that use unrolled
loops or linear code, such as those presented in Sec. 3.

2.1 Network-level Emulation Overview

We briefly describe some aspects of the network-level emulation detection technique.
The interested reader is referred to our previous work [22] for a thorough description of
the approach and its implementation details.

The detector inspects the client-initiated data of each network flow, which may con-
tain malicious requests towards vulnerable services. Any server-initiated data, such as
the content served by a web server, are ignored. For TCP packets, the application-level
stream is reconstructed using TCP stream reassembly. In case of large client-initiated
streams, e.g., due to file uploads, only the first 64KB of the stream are inspected. Each
input is mapped to a random memory location in the virtual address space of the emu-
lator, as shown in Fig. 1. Since the exact location of the shellcode in the input stream is
not known in advance, the emulator repeats the execution multiple times, starting from
each and every position of the stream. We refer to complete executions from different
positions of the input stream asexecution chains. Before the beginning of a new execu-
tion, the state of the CPU is randomized, while any accidental memory modifications in



the addresses where the attack vector has been mapped to are rolled back after the end
of each execution. Since the execution of random code sometimes may not stop soon,
e.g., due to the accidental formation of loop structures that may execute for a very large
number of iterations, if the number of executed instructions in some execution chain
reaches a certainexecution threshold, then the execution is terminated.

The execution of polymorphic shellcode is identified by two key behavioral char-
acteristics: the execution of some form of GetPC code, and the occurrence of several
read operations from the memory addresses of the input stream itself, as illustrated in
Fig 1. The GetPC code is used to find the absolute address of theinjected code, which
is mandatory for subsequently decrypting the encrypted payload, and involves the exe-
cution of some instruction from thecall or fstenv instruction groups.

3 Non-self-contained Polymorphic Shellcode

The execution behavior of the most widely used type of polymorphic shellcode involves
some indispensable operations, which enable network-level emulation to accurately
identify it. Some kind of GetPC code is necessary for finding the absolute memory
address of the injected code, and, during the decryption process, the memory locations
where the encrypted payload resides will necessarily be read. However, recent advances
in shellcode development have demonstrated that in certaincases, it is possible to con-
struct a polymorphic shellcode which i) does not rely on any form of GetPC code, and
ii) does not read its own memory addresses during the decryption process. A shellcode
that uses either or both of these features will thus evade current network-level emulation
approaches [22,35]. In the following, we describe examplesof both cases.

3.1 Absence of GetPC Code

The primary operation of polymorphic shellcode is to find theabsolute memory ad-
dress of its own decryptor code. This is mandatory for subsequently referencing the
encrypted payload, since memory accesses in the IA-32 architecture can be made only
by specifying an absolute memory address in a source or destination operand (except
instructions likepop , call , or fstenv , which implicitly read or modify the stack).
Although the IA-64 architecture supports an addressing mode whereby an operand can
refer to a memory address relatively to the instruction pointer, such a functionality is
not available in the IA-32 architecture.

The most common way of finding the absolute address of the injected shellcode is
through the use of some form of GetPC code [22]. However, there exist certain exploita-
tion cases in which none of the available GetPC codes can be used, due to restrictions
in the byte values that can be used in the attack vector. For example, some vulnera-
bilities can be exploited only if the attack vector is composed of characters that fall
into the ASCII range (or sometimes in even more limited groups such as printable-only
characters), in order to avoid being modified by conversion functions liketoupper or
isprint . Since the opcodes of bothcall andfstenv have bytes that fall into these
ranges, they cannot take part in the shellcode. In such cases, a possible workaround is
to retrieve the address of the injected code through a register that during exploitation



0 60000000 6A20 push 0x20 ; ecx points here
1 60000002 6B3C240B imul edi,[esp],0xb ; edi = 0x160
2 60000006 60 pusha ; push all registers
3 60000007 030C24 add ecx,[esp] ; ecx = 0x60000160
4 6000000a 6A11 push 0x11
5 6000000c 030C24 add ecx,[esp] ; ecx = 0x60000171
6 6000000f 6A04 push 0x4 ; encrypted block size
7 60000011 6826191413 push 0x13141926
8 60000016 5F pop edi ; edi = 0x13141926
9 60000017 0139 add [ecx],edi ; [ 60000171] = "ABCD"

10 60000019 030C24 add ecx,[esp] ; ecx = 0x60000175
11 6000001c 6817313F1E push 0x1e3f3117
12 60000021 5F pop edi ; edi = 0x1E3F3117
13 60000022 0139 add [ecx],edi ; [ 60000175] = "EFGH"
14 60000024 030C24 add ecx,[esp] ; ecx = 0x60000179

...

Fig. 2. Execution trace of a shellcode produced by the “Avoid UTF8/tolower” encoder. When the
first instruction is executed,ecx happens to point to address0x60000000 .
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Fig. 3. Schematic representation of the decryption process for “Avoid UTF8/tolower” shellcode.

happens to point at the beginning of the buffer where the shellcode resides. If such a
register exists, then the decoder can use it to calculate theaddress of the encrypted body.

Skape has recently published an alphanumeric shellcode engine that uses this tech-
nique [27]. Fig. 2 shows the execution trace of a shellcode generated using the imple-
mentation of the engine contained in Metasploit Framework v3.0 [1]. In this example,
the register that is assumed to hold the base address of the shellcode isecx . The shell-
code has been mapped to address0x60000000 , which corresponds to the beginning
of the vulnerable buffer. When the control flow of the vulnerable process is diverted to
the shellcode, theecx register already happens to hold the value0x60000000 . In-
structions 0–5 calculate the starting address of the encrypted payload (0x60000171 )
based on its length and the absolute address contained inecx .

The decryption process begins with instruction 7. An interesting characteristic of
the decryptor is that it does not use any loop structure. Instead, separate transformation
blocks comprising four instructions each (7–10, 11–14, ...) handle the decryption of
different 4-byte blocks of the encrypted payload, as illustrated in Fig. 3. This results to
a completely sequential flow of control for the whole decryption process. At the same
time, however, the total size of the shellcode increases significantly, since for each four
bytes of encrypted payload, an 11-byte transformation instruction block is needed.

3.2 Absence of Self-references

Another common characteristic of polymorphic shellcodes is that they carry the en-
crypted payload within the same attack vector, right after the decryptor code, as shown
in Fig. 1. During execution, the decryptor necessarily makes several memory reads from



0 bfff0000 54 push esp ; esp points here
1 bfff0001 58 pop eax ; eax = BFFF0000
2 bfff0002 2D6C2D2D2D sub eax,0x2d2d2d6c ; eax = 92D1D294
3 bfff0007 2D7A555858 sub eax,0x5858557a ; eax = 3A797D1A
4 bfff000c 2D7A7A7A7A sub eax,0x7a7a7a7a ; eax = BFFF02A0
5 bfff0011 50 push eax
6 bfff0012 5C pop esp ; esp = BFFF02A0
7 bfff0013 252D252123 and eax,0x2321252d ; eax = 20012020
8 bfff0018 2542424244 and eax,0x44424242 ; eax = 00000000
9 bfff001d 2D2D2D2D2D sub eax,0x2d2d2d2d ; eax = D2D2D2D3

10 bfff0022 2D2D252D25 sub eax,0x252d252d ; eax = ADA5ADA6
11 bfff0027 2D61675E65 sub eax,0x655e6761 ; eax = 48474645
12 bfff002c 50 push eax ; [ BFFF029C] = "EFGH"
13 bfff002d 2D2D2D2D2D sub eax,0x2d2d2d2d ; eax = 1B1A1918
14 bfff0032 2D5E5E5E5E sub eax,0x5e5e5e5e ; eax = BCBBBABA
15 bfff0037 2D79787878 sub eax,0x78787879 ; eax = 44434241
16 bfff003c 50 push eax ; [ BFFF0298] = "ABCD"

...

Fig. 4. Execution trace of a shellcode produced by the “Encode” engine. The shellcode is assumed
to be placed on the stack, andesp initially points to the first instruction.
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Fig. 5. Schematic representation of the decryption process for the“Encode” engine.

the addresses of the encrypted payload in order to decrypt it. These self-references can
be used as a strong indication of the execution of polymorphic shellcode [22]. However,
it is possible to construct a shellcode that, although it carries an encrypted payload, will
not result to any memory reads from its own memory addresses.

Figure 4 shows the execution trace of a shellcode produced byan adapted version
of the “Encode” shellcode engine [26], developed by Skape according to a previous
description of Riley Eller [11]. In this case, the vulnerable buffer is assumed to be
located on the stack, soesp happens to point to the beginning of the shellcode. In-
structions 0–6 are used to setesp to point far ahead of the decryptor code (in higher
memory addresses). Then, after zeroingeax (instructions 7–8), the decryption process
begins, again using separate decryption blocks (9–12, 13–16, ...) for each four bytes
of the encrypted payload. However, in this case, each decryption block consists only
of arithmetic instructions with a register and an immediateoperand, and ends with a
push instruction. Each group of arithmetic instructions calculates the final value of
the corresponding payload block, which is then pushed on thestack. In essence, the
data of the encrypted payload are integrated into the immediate values of the arithmetic
instructions, so no actual encrypted data exist in the initial attack vector.

Due to the nature of the stack, the decrypted payload is produced backwards, start-
ing with its last four bytes. When the final decrypted block ispushed on the stack, the
flow of control of the decryptor will “meet” the newly built payload, and the execution
will continue normally, as depicted in Fig. 5. Notice that during the whole execution of
the shellcode, only two memory reads are performed by the twopop instructions, but
not from any of the addresses of the injected code.



4 Non-self-contained Polymorphic Shellcode Detection

4.1 Approach

Achieving the effective detection of a certain class of polymorphic shellcodes using
network-level emulation requires the fulfillment of two basic requirements. First, the
detector should be able to accurately reproduce the execution of the shellcode in exactly
the same way as if it would run within the context of the vulnerable process. Second, it
should be possible to identify a certain execution behaviorpattern that can be used as
a strict heuristic for the effective differentiation between the execution of polymorphic
shellcode and random code. In this section, we discuss thesetwo dimensions regarding
the detection of non-self-contained shellcode.

Enabling Non-self-contained Shellcode Execution As discussed in the previous sec-
tion, some shellcodes rely on a register that happens to contain the base address of the
injected code, instead of using some form of GetPC code. Suchshellcodes cannot be
executed properly by the existing network-level emulationapproach, since before each
execution, all general purpose registers are set to random values. Thus, the register that
is assumed to hold the base address will not have been set to the correct value, and the
decryption process will fail. Therefore, our first aim is to create the necessary condi-
tions that will allow the shellcode to execute correctly. Inessence, this requires to set
the register that is used by the shellcode for finding its baseaddress to the proper value.

The emulator maps each new input stream to an arbitrary memory location in its
virtual memory. Thus, it can know in advance the absolute address of the hypothetical
buffer where the shellcode has been mapped, and as a corollary, the address of the
starting position of each new execution chain. For a given position in the buffer that
corresponds to the beginning of a non-self-contained shellcode, if the base register has
been initialized to point to the address of that position, then the shellcode will execute
correctly. Since we always know the base address of each execution chain, we can
always set the base register to the proper value.

The problem is that it is not possible to know in advance whichone of the eight
general purpose registers will be used by the shellcode for getting a reference to its
base address. For instance, it might beecx or esp , as it was the case in the two ex-
amples of the previous section, or in fact any other register, depending on the exploit.
To address this issue, we initialize all eight general purpose registers to hold the abso-
lute address of the first instruction of each execution chain. Except the dependence on
the base register, all other operations of the shellcode will not be affected from such
a setting, since the rest of the code is self-contained. For instance, going back to the
execution trace of Fig. 2, when the emulator begins executing the code starting with the
instruction at address0x60000000 , all registers will have been set to0x60000000 .
Thus, the calculations for settingecx to point to the encrypted payload will proceed
correctly, and the 9th instruction will indeed decrypt the first four bytes of the payload
at address0x60000171 . Note that the stack grows downwards, towards lower mem-
ory addresses, in the opposite direction of code execution,so settingesp to point to
the beginning of the shellcode does not affect its correct execution, e.g. due topush
instructions that write on the stack.



Behavioral Heuristic Having achieved the correct execution of non-self-contained
shellcode on the network-level emulator, the next step is toidentify a strict behavioral
pattern that will be used as a heuristic for the accurate discrimination between malicious
and benign network data. Such a heuristic should rely to as few assumptions about the
structure of the shellcode as possible, in order to be resilient to evasion attacks, while
at the same time should be specific enough so as to minimize therisk of false positives.

Considering the execution behavior of the shellcodes presented in the previous sec-
tion, we can make the following observations. First, the absence of any form of GetPC
code precludes the reliance on the presence of specific instructions as an indication of
non-self contained shellcode execution, as was the case with thecall or fstenv
groups of instructions, which are a crucial part of the GetPCcode. Indeed, all opera-
tions of both shellcodes could have been implemented in manydifferent ways, using
various combinations of instructions and operands, especially when considering ex-
ploits in which the use of a broader range of byte values is allowed in the attack vector.
Second, we observe that the presence of reads from the memorylocations of the input
buffer during the decryption process is not mandatory, as demonstrated in Sec. 3.2, so
this also cannot be used as an indication of non-self-contained shellcode execution.

However, it is still possible to identify some indispensable behavioral characteris-
tics that are inherent to all such non-self-contained polymorphic shellcodes. An essen-
tial characteristic of polymorphic shellcodes in general is that during execution, they
eventually unveil their initially concealed payload, and this can only be done by writing
the decrypted payload to some memory area. Therefore, the execution of a polymor-
phic shellcode will unavoidably result to several memory writes todifferent memory
locations. We refer to such write operations to different memory locations as “unique
writes.” Additionally, after the end of the decryption process, the flow of control will in-
evitably be transferred from the decryptor code to the newlyrevealed code. This means
that the instruction pointer will moveat least once from addresses of the input buffer
that have not been altered before (the code of the decryptor), to addresses that have
already been written during the same execution (the code of the decrypted payload).
For the sake of brevity, we refer to instructions that correspond to code at any memory
address that has been written during the same execution chain as “wx-instructions.”

It is important to note that the decrypted payload may not be written in the same
buffer where the attack vector resides [20]. Furthermore, one could construct a shellcode
in which the unique writes due to the decryption process willbe made to non-adjacent
locations. Finally, wx-instructions may be interleaved with non-wx-instructions, e.g.,
due to self-modifications before the actual decryption, so the instruction pointer may
switch several times between unmodified and modified memory locations.

Based on the above observations, we derive the following detection heuristic:if at
the end of an execution chain the emulator has performed W unique writes and has ex-
ecuted X wx-instructions, then the execution chain corresponds to a non-self-contained
polymorphic shellcode. The intuition behind this heuristic is that during the execution
of random code, although there will probably be a lot of random write operations to
arbitrary memory addresses, we speculate that the probability of the control flow to
reach such a modified memory address during the same execution will be low. In the
following, we elaborate on the details behind this heuristic.



Unique memory writes. The number of unique writes (W ) in the heuristic serves just as
a hint for the fact that at least a couple of memory locations have been modified during
the same execution chain—a prerequisite for the existence of any wx-instructions. The
parameterW cannot be considered as a qualitatively strong detection heuristic because
the execution of random code sometimes exhibits a large number of accidental memory
writes. The emulator does not have a view of the vulnerable process’ memory layout,
and thus cannot know which memory addresses are valid and writable, so it blindly
accepts all write operations to any location, and keeps track of the written values in its
own virtual memory. The decryption process of a polymorphicshellcode will too result
to tens or even hundreds of memory writes. This makes the number of unique writes
per se a weak indication for the execution of polymorphic shellcode, since random code
sometimes results to a comparable number of writes.

Although this does not allow us to derive a threshold value for W that would be
reached only during the execution of polymorphic shellcode, we can derive a lower
bound forW , given that any regularly sized encrypted payload will require quite a few
memory writes in order to be decrypted. Considering that thedecryption of a 32-byte
payload —a rather conservatively small size for a meaningful payload, as discussed
in Sec. 5.2— would require at least 8 memory writes (using instructions with 4-byte
operands), we setW = 8. This serves as a “negative” heuristic for deciding quicklythe
absence of shellcode, which effectively filters out a lot of execution chains with very
few memory writes that cannot correspond to any functional polymorphic shellcode.

Execution of decrypted instructions. Although the number of unique writes alone can-
not provide a strong positive indication for shellcode detection, we expected that the
number of wx-instructions in random code would be very low, which would allow for
deriving a definite detection threshold that would never be reached by random code. A
prerequisite for the execution of code from a recently modified memory address is that
the instruction pointer should first be changed to point to that memory address. Intu-
itively, the odds for this to happen in random code are quite low, given that most of the
modified locations will be dispersed across the whole virtual address space of the emu-
lator, due to the random nature of memory writes. Even if the control flow ever lands on
such a memory address, most probably it will contain just a few valid instructions. In
contrast, self-decrypting shellcode will result to the execution of tens or even hundreds
of wx-instructions, due to the execution of the decrypted payload.

We conducted some preliminary experiments using real network traces and ran-
domly generated data in order to explore the behavior of random code in terms of
wx-instructions. The percentage of instruction chains with more than 8 unique writes
and at least one wx-instruction was in the order of 0.01% for artificial binary data,
while it was negligible for artificial ASCII data and real network traces. However, there
were some rare cases of streams in which some execution chaincontained as much as
60 wx-instructions. As we discuss in Sec. 5.2, the executionof the decrypted payload
may involve less than 60 wx-instructions, so the range in which an accurate detection
threshold value forX could exist is somehow blurred. Although one could considerthe
percentage of these outlying streams as marginal, and thus the false positive ratio as
acceptable, it is still possible to derive a stricter detection heuristic that will allow for
improved resilience to false positives.
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Fig. 6. An example of accidental occurrence of wx-instructions in random code.

Second-stage execution. The existence of some execution chains with a large number
of wx-instructions in random code is directly related to theinitialization of the general
purpose registers before each new execution. Setting all registers to point to the address
of the first instruction of the execution chain facilitates the accidental modification of
the input stream itself, e.g., in memory addresses farther (in higher memory addresses)
from the starting position of the execution chain. An example of this effect is presented
in Fig. 6. Initially (Fig. 6a), when the flow of control reaches the instruction starting
with byte01 , ecx happens to point to the same instruction, andeax holds the value
0x04030201 . The effective address calculation inadd [ecx+0x3],eax (Fig. 6b)
involvesecx , and its execution results to a 4-byte memory write within the buffer, right
after theadd instruction. This simple self-modification causes the execution of four wx-
instructions (Fig. 6c). Note that after the execution of these four wx-instructions, the
flow of control will continue normally with the subsequent instructions in the buffer, so
the same effect may occur multiple times.

In order to mitigate this effect, we introduce the concept ofsecond-stage execution.
For a given position in the input stream, if the execution chain that starts from this posi-
tion results to more than 8 unique writes and has at least 14 wx-instructions,3 then it is
ignored, and the execution from this position is repeated eight times with eight different
register initializations. Each time, only one of the eight general purpose registers is set
to point to the starting location. The remaining seven registers are set to random values.

The rationale is that a non-self-contained shellcode that uses some register for find-
ing its base address will run correctly both in the initial execution, when all registers
point to the starting position, as well as in one of the eight subsequent second-stage
executions—the one in which the particular base register being used by the decryp-
tor will have been properly initialized. At the same time, ifsome random code enters
second-stage execution, the chances for the accidental occurrence of a large number of
wx-instructions in any of the eight new execution chains aresignificantly lower, since
now only one of the eight registers happens to point within the input buffer.

3 As discussed in Sec. 5.2, a functional payload results to at least 14 wx-instructions.



dec edi

xor al,0x25

and eax,0x6e424104

add al,0x41

inc ecx

inc edx

outsb

4F 34 25 04 41 42 6E

0 1 2 3 4 5 6

Fig. 7. Example of an illegal instruction path.

Although second-stage execution incurs an eight times increase in the emulation
overhead, its is only triggered for a negligible fraction ofexecution chains, so it does
not incur any noticeable runtime performance degradation.At the same time, it results
to a much lower worst-case number of accidental wx-instructions in benign streams, as
shown in Sec. 5.1, which allows for deriving a clear-cut threshold forX .

4.2 Performance Optimizations

Skipping Illegal Paths The main reason that network-level emulation is practically
feasible and achieves a decent processing throughput is because, in the most common
case, the execution of benign streams usually terminates early, after the execution of
only a few instructions. Indeed, arbitrary data will resultto random code that usually
contains illegal opcodes or privileged instructions, which cannot take part in the exe-
cution of a functional shellcode. Although there exist onlya handful of illegal opcodes
in the IA-32 architecture, there exist 25 privileged instructions with one-byte opcodes,
and several others with multi-byte opcodes. In the rest of this section, we use the term
illegal instruction to refer to both privileged and actually illegal instructions.

A major cause of overhead in network-level emulation is thatfor each input stream,
the emulator starts a new execution from each and every position in the stream. How-
ever, since the occurrence of illegal instructions is common in random code, there may
be some instruction chains which all end to the same illegal instruction. After the ex-
ecution of the first of these chains terminates (due to the illegal instruction), then any
subsequent execution chains that share the same final instruction path with the first one
will definitely end up to the same illegal instruction, if i) the path does not contain any
control transfer instructions, ii) none of the instructions in the path was the result of
a self-modification, and iii) the path does not contain any instruction with a memory
destination operand. The last requirement is necessary in order to avoid potential self-
modifications on the path that may alter its control flow. Thus, whenever the flow of
control reaches any of the instructions in the path, the execution can stop immediately.

Consider for example the execution chain that starts at position 0 in the example
of Fig. 7. Upon its termination, the emulator backtracks theinstruction path and marks
each instruction until any of the above requirements is violated, or the beginning of the
input stream is reached. If any subsequent execution chain reaches a marked instruction,
then the execution ceases immediately. Furthermore, the execution chains that would
begin from positions 1, 3, 5, and 6, can now be skipped altogether.



Name Port Number Number of streams Total size
HTTP 80 6511815 5.6 GB
NetBIOS 137–139 1392679 1.5 GB
Microsoft-ds 445 2585308 3.8 GB
FORTH-ICS all 668754 821 MB

Table 1. Details of the client-initiated network traffic traces usedin the experimental evaluation.

Kernel Memory Accesses The network-level detector does not have any information
about the vulnerable process targeted by a particular attack. As already discussed, the
emulator assumes that all accesses to any memory address arevalid. In reality, only a
small subset of these memory accesses would have succeeded,since the hypothetical
vulnerable process would have mapped only a small subset of pages from the whole
4GB virtual memory space. Thus, memory writes outside the input buffer or the stack
proceed normally and the emulator tracks the written values, while memory reads from
previously unknown locations are executed without returning any meaningful data,
since their contents are not available to the network-leveldetector. The execution can-
not stop on such unknown memory references, since otherwisean attacker could hinder
detection by interspersing instructions that read arbitrary data from memory locations
known in advance to belong to the address space of the vulnerable process [22].

The network-level emulation approach assumes that the whole 4GB of virtual mem-
ory may be accessible by the shellcode. However, user-levelprocesses cannot access
the address space of the OS kernel. In Linux, the kernel address space begins at address
0xC0000000 and takes up the whole upper 1GB of the 4GB space. In Windows, the
upper half of the 4GB space is allocated for kernel use. A functional shellcode would
never try to access a memory address in the kernel address space, so any instructions in
random code that accidentally try to access some kernel memory location can be con-
sidered illegal. For simplicity, the emulator assumes as legal all memory accesses up
to 0xBFFFFFFF, i.e., excludes only the common kernel space of both OSes, since it
cannot know in advance which OS is being targeted.

5 Experimental Evaluation

5.1 Deriving a Robust Detection Threshold

The detection algorithm is based on a strict behavioral pattern that matches some execu-
tion characteristics of non-self-contained polymorphic shellcode. In order to be effec-
tive and practically applicable, a heuristic based on such abehavioral pattern should not
falsely identify benign data as polymorphic shellcode. In this section, we explore the
resilience of the detector to false positives using a large and diverse attack-free dataset.

We accumulated full payload packet traces of frequently attacked ports captured
at FORTH-ICS and the University of Crete across several different periods. We also
captured a two hour long trace of all the TCP traffic of the access link that connects
FORTH-ICS to the Internet. Since we are interested in client-initiated traffic, which
contains requests to network services, we keep only the packets that correspond to the
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client-side stream of each TCP flow. For large flows, which forexample may corre-
spond to file uploads, we keep the packets of the first 64KB of the stream. Trace details
are summarized in Table 1. Note that the initial size of the FORTH-ICS trace, before ex-
tracting the client-initiated only traffic, was 106GB. We also generated a large amount
of artificial traces using three different kinds of uniformly distributed random content:
binary data, ASCII-only data, and printable-only characters. For each type, we gener-
ated four million streams, totaling more than 160GB of data.

We tested our prototype implementation of the detection heuristic with second-stage
execution enabled using the above dataset, and measured themaximum number of acci-
dental wx-instructions among all execution chains of each stream. The execution thresh-
old of the emulator was set to 65536 instructions. Figure 8 presents the results for the
different types of random data, as well as for the real network streams (the category
“network traces” refers collectively to all network traceslisted in Table 1). We see that
random binary data exhibit the largest number of wx-instructions, followed by printable
data and real network traffic. From the four million random binary streams, 0.8072%
contain an execution chain with one wx-instruction, while in the worst case, 0.00014%
of the streams resulted to seven wx-instructions. In all cases, no streams were found to
contain an execution chain with more than seven wx-instructions.

Based on the above results, we can derive a lower bound for thenumber of wx-
instructions (parameterX of the detection heuristic) that should be found in an execu-
tion chain for flagging the corresponding code as malicious.SettingX=8 allows for no
false positives in the above dataset. However, larger values are preferable since they are
expected to provide even more improved resilience to false positives.

5.2 Non-self-contained Shellcode Detection

CPU execution threshold As discussed in Sec. 4.1, the execution of non-self-contained
shellcode will exhibit several wx-instructions, due to theexecution of the decrypted
payload. However, a crucial observation is that most of these wx-instructions will occur
after the end of the decryption process, except perhaps any self-modifications during
the bootstrap phase of the decryptor [22, 33]. Thus, the emulator should execute the
shellcode for long enough in order for the decryption to complete, and then for the



decrypted payload to execute, for actually identifying thepresence of wx-instructions.
This means that the CPU execution threshold should be large enough to allow for the
complete execution of the shellcode.

The number of executed instructions required for the complete decryption of the
payload is directly related to i) the decryption approach and its implementation (e.g.,
decrypting one vs. four bytes at a time), and ii) the size of the encrypted payload.
We used off-the-shelf polymorphic shellcode engines that produce non-self-contained
shellcode to encrypt payloads of different sizes. We generated mutations of a hypo-
thetical payload ranging in size from 64 to 576 bytes, in 64-byte increments, using
the Avoid UTF8/tolower [1, 27], Encoder [11, 26], and Alpha2[33] shellcode engines.
The size of the largest IA-32 payload contained in the Metasploit Framework v3.0,
windows/adduser/reverse http , is 553 bytes, so we chose a slightly larger
value of 576 bytes as a worst case scenario.

Figure 9 shows the number of executed instructions for the complete decryption
of the payload, for different payload sizes. As expected, the number of instructions
increases linearly with the payload size, since all enginesspend an equal amount of
instructions per encrypted byte during decryption. Alpha2executes considerably more
instructions compared to the other two engines, and in the worst case, for a 576-byte
payload, takes 6374 instructions to complete. Thus, we should choose an execution
threshold significantly larger than the 2048 instructions that is suggested in the existing
network-level emulation approach [22].

Setting a threshold value for X A final dimension that we need to explore is the
minimum number of wx-instructions (X) that should be expected during shellcode ex-
ecution. As we have already mentioned, this number is directly related to the size of
the encrypted payload: the smaller the size of the concealedcode, the fewer the number
of wx-instructions that will be executed. As shown in the previous section, the thresh-
old value forX should be set to at least 8, in order to avoid potential false positives.
Thus, if the execution of the decrypted payload would resultto a comparable number
of wx-instructions, then we would not be able to derive a robust detection threshold.

Fortunately, typical payloads found in remote exploits usually consist of much more
than eight instructions. In order to verify the ability of our prototype implementation to
execute the decrypted payload upon the end of the decryptionprocess, we tested it with
the IA-32 payloads available in Metasploit. Note that although the network-level em-
ulator cannot correctly execute system calls or follow memory accesses to addresses
of the vulnerable process, whenever such instructions are encountered, the execution
continues normally (e.g., in case of anint 80 instruction, the code continues as if
the system call had returned). In the worst case, thelinux/x86/exec family of
payloads, which have the smallest size of 36 bytes, result tothe execution of 14 instruc-
tions. All other payloads execute a larger number of instructions. Thus, based on the
number of executed instructions of the smallest payload, wesetX=14. This is a rather
conservative value, given that in practice the vast majority of remote exploits in the wild
are targeting Windows hosts, so in the common case the numberof wx-instructions of
the decrypted payload will be much higher.



Payloads targeting Linux hosts usually have a very small size due to the direct invo-
cation of system calls through theint 80 instruction. In contrast, payloads for Win-
dows hosts usually involve a much higher number of instructions. Windows shellcode
usually does not involve the direct use of system calls (although this is sometimes pos-
sible [5]), since their mapping often changes across different OS versions, and some
crucial operations, e.g., the creation of a socket, are not readily offered through system
calls. Instead, Windows shellcode usually relies on systemAPI calls that offer a wide
range of advanced functionality (e.g., the ability to download a file from a remote host
through HTTP using just one call). This, however, requires to first locate the necessary
library functions, which involves finding the base address of kernel32.dll , then
resolving symbol addresses, and so on. All these operationsresult to the execution of a
considerable number of instructions.

In any case, even a conservative value forX=14, which effectively detects both
Linux and Windows shellcode, is larger enough than the sevenaccidental wx-instructions
that were found in benign data, and thus allows for a strong heuristic with even more
improved resilience to false positives.

5.3 Processing Throughput

In this section, we evaluate the raw processing throughput of the proposed detection
algorithm. We have implemented the new detection heuristicon our existing prototype
network-level detector [22], which is based on a custom IA-32 CPU emulator that uses
interpretive emulation. We measured the user time requiredfor processing the network
traces presented in Table 1, and computed the processing throughput for different values
of the CPU execution threshold. The detector was running on aPC equipped with a
2.53GHz Pentium 4 processor and 1GB RAM, running Debian Linux (kernel v2.6.18).
Figure 10 presents the results for the four different network traces.

As expected, the processing throughput decreases as the CPUexecution thresh-
old increases, since more cycles are spent on streams with very long execution chains
or seemingly endless loops. We measured that in the worst case, for port 445 traffic,
3.2% of the streams reach the CPU execution threshold due to some loop when using a
threshold higher than 8192. This percentage remains almostthe same even when using
a threshold as high as 131072 instructions, which means thatthese loops would require
a prohibitively large number of iterations until completion.

Overall, the runtime performance has been slightly improved compared to our pre-
vious network-level emulation prototype. Although the algorithmic optimizations pre-
sented in Sec. 4.2 offer considerable runtime performance improvements, any gain is
compensated by the more heavy utilization of the virtual memory subsystem and the
need to frequently undo accidental self-modifications in the input stream.

Port 80 traffic exhibits the worst performance among all traces, with an almost con-
stant throughput that drops from 12 to 10 Mbit/s. The throughput is not affected by the
CPU execution threshold because i) the zero-delimited chunk optimization4 is not ef-
fective because HTTP traffic rarely contains any null bytes,and ii) the execution chains

4 Given that in the vast majority of exploits the attack vectorcannot contain a null byte, the
detector skips any zero-byte delimited regions smaller than 50 bytes, since they are too small
to contain a functional polymorphic shellcode [22].



Execution threshold (log scale)
4096 8192 16384 32768 65536 131072

T
hr

ou
gh

pu
t (

M
bi

t/s
)

0

10

20

30

40

50

60

70

80

90 ports 137−139
port 445
port 80
FORTH−ICS

Fig. 10. Raw processing throughput for differ-
ent execution thresholds.

Execution threshold (log scale)
4096 8192 16384 32768 65536 131072

T
hr

ou
gh

pu
t (

M
bi

t/s
)

0

200

400

600

800

1000

1200

1400 FORTH−ICS full 2h trace

Fig. 11. Raw processing throughput for the
complete 2-hour trace.

of port 80 traffic have a negligible amount of endless loops, so a higher CPU execution
threshold does not result to the execution of more instructions due to extra loop itera-
tions. However, ASCII data usually result to very long and dense execution chains with
many one or two byte instructions, which consume a lot of CPU cycles.

We should stress that our home-grown CPU emulator is highly unoptimized, and
the use of interpretive emulation results to orders of magnitude slowdown compared to
native execution. It is expected that an optimized CPU emulator like QEMU [6] would
boost performance, and we plan in our future work to proceed with such a change.

Nevertheless, the low processing throughput of the currentimplementation does not
prevent it from being practically usable. In the contrary, since the vast majority of the
traffic is server-initiated, the detector inspects only a small subset of the total traffic of
the monitored link. For example, web requests are usually considerably smaller than
the served content. Note that all client-initiated streamsare inspected, in both direc-
tions. Furthermore, even in case of large client-initiatedflows, e.g., due to file uploads,
the detector inspects only the first 64KB of the client stream, so again the vast amount
of the traffic will not be inspected. Indeed, as shown in Fig. 11, when processing the
complete 106GB long trace captured at FORTH-ICS, the processing throughput is or-
ders of magnitude higher. Thus, the detector can easily sustain the traffic rate of the
monitored link, which for this 2-hour long trace was on average around 120 Mbit/s.

6 Real-world Deployment

In this section, we present some attack activity results from a real-world deployment of
our prototype detector implementation. The detector is installed on a passive monitoring
sensor that inspects the traffic of the access link that connects part of an educational
network with hundreds of hosts to the Internet. The detectorhas been continuously
operational since 7 November 2006, except a two-day downtime on January.

As of 14 June 2007, the detector has captured 21795 attacks targeting nine different
ports. An overall view of the attack activity during these seven months is presented in
Fig. 12. The upper part of the figure shows the attack activityaccording to the targeted
port. From the 21795 attacks, 14956 (68.62%) were launched from 5747 external IP
addresses (red dots), while the rest 6839 (31.38%) originated from 269 infected hosts in
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Fig. 12. Overall attack activity from a real-world deployment of ourprototype detector.

the monitored network (gray dots). Almost one third of the internal attacks came from a
single IP address, using the same exploit against port 445. The bottom part of the figure
shows the number of attacks per hour of day. There are occasions with hundreds of
attacks in one hour, mostly due to bursts from a single sourcethat horizontally attacks all
active hosts in local neighboring subnets. The vast majority of the attacks (88%) target
port 445. Interestingly, however, there also exist attacksto less commonly attacked ports
like 1025, 1051, and 5000. We should note that for all captured attacks the emulator was
able to successfully decrypt the payload, while so far has zero false positives.

For each identified attack, our prototype detector generates i) an alert file with
generic attack information and the execution trace of the shellcode, ii) a raw dump
of the reassembled TCP stream, iii) a full payload trace of all attack traffic (both direc-
tions) in libpcap format,5 and iv) the raw contents of the modified addresses in the
virtual memory of the emulator, i.e., the decrypted shellcode.

Although we have not thoroughly analyzed all captured attacks, we can get a rough
estimate on the diversity of the different exploitation tools, worms, or bots that launched
these attacks, based on a simple analysis of the decrypted payloads of the captured poly-
morphic shellcodes. Computing the MD5 hash of the decryptedpayload for all above
attacks resulted to 1021 unique payloads. However, grouping further these 1021 pay-
loads according to their size, resulted to 64 different payload size groups. By manu-
ally inspecting some of the shellcodes with same or similar lengths, but different MD5
hashes, we observed that in most cases the actual payload code was the same, but the
seeding URL or IP address from where the “download and execute” shellcode would
retrieve the actual malware was different. Our results are in accordance with previous
studies [17] and clearly show that polymorphic shellcodes are extensively used in the
wild, although in most cases they employ naive encryption methods, mostly for con-
cealing restricted payload bytes.

5 Anonymized full payload traces of some attacks are available from http://lobster.
ics.forth.gr/traces/



7 Limitations

The increasing complexity of polymorphic shellcodes results to a corresponding in-
crease in the processing time required for reasoning weather an input stream is mali-
cious. Indeed, while self-contained polymorphic shellcode can effectively be detected
using only 2K instructions per execution chain [22], non-self-contained shellcode, re-
quires a CPU execution threshold in the order of 8K instructions. However, shellcode
produced by advanced engines like TAPiON [4] sometimes requires up to 16K instruc-
tions for the complete decryption of an 128-byte payload [22], and can exceed 64K
instructions for 512-byte payloads. Although such shellcodes use some form of GetPC
code, and thus can be easily detected by the existing self-contained shellcode heuristic,
if they begin to adopt non-self-contained techniques as those presented in this paper,
then network-level emulation should be deployed with high execution thresholds, in the
order of 128K instructions.

Fortunately, even in case we have to spend so many cycles per inspected input,
network-level emulation is still practical, although witha reduced throughput, as we
showed in Sec. 5.3. However, in the extreme case, an attackercould construct a decryp-
tor that could spend millions of instructions, maybe even before the actual decryption
process has begun at all, just for reaching the execution threshold before revealing any
signs of polymorphic behavior [22]. Such “endless” loops are a well-known problem
in the area of dynamic code analysis, and we are not aware of any effective solution
so far. Fortunately, the percentage of benign streams that reach the execution threshold
is under 3.2%, as discussed in Sec. 5.3, so if attackers startto employ such evasion
techniques, network-level emulation can still be useful asa first-stage anomaly detector
for application-aware NIDS like shadow honeypots [3], by considering as suspicious all
streams that reach the execution threshold.

Finally, here we have considered only the class of non-self-contained shellcode that
takes advantage of some register to get a reference to the absolute address of the in-
jected code in order to decrypt. However, it could be possible to construct a shellcode
that during decryption uses some data or code from memory locations with a priori
known contents, which should remain constant across all vulnerable systems. Since the
network-level detector lacks any host-level information,it would not be able to execute
such shellcode properly. In general, however, the use of hard-coded addresses is avoided
because it results in more fragile code [25], especially since address space randomiza-
tion has become prevalent in popular OSes, and significantlycomplicates the imple-
mentation of polymorphic shellcode engines. In our future work, we plan to explore
ways to augment the network-level detector with host-levelcontext [10] for enabling
the detection of a broader class of non-self-contained shellcodes.

8 Conclusion

In this paper, we have presented a novel approach for the detection of a certain class of
non-self-contained polymorphic shellcodes using dynamiccode analysis of network-
level data. We have extended previous work on network-levelemulation to correctly
handle the execution and identify the behavior of polymorphic shellcodes that do not



use any form of GetPC code, but instead rely on some register that happens during
exploitation to contain the base address of the injected code. This demonstrates that in
certain cases where some certain host-level state is used bythe shellcode, detection at
the network level is still possible.

Such advanced analysis comes at the cost of spending more CPUcycles per input,
which reduces the runtime throughput of the detector, but still allows it to achieve a
decent performance on real-world deployments. However, certain evasion methods are
still possible, and the problem of effectively tackling them at the network-level remains
open. Nevertheless, we believe that the ability to accurately detect previously unknown
polymorphic shellcodes with virtually zero false positives, and the simplicity of its de-
ployment, make network-level emulation an effective and practical defense method.
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