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Abstract. Network-level emulation has recently been proposed as haddor
the accurate detection of previously unknown polymorpladecinjection at-
tacks. In this paper, we extend network-level emulatiom@ltwo lines. First,
we present an improved execution behavior heuristic thables the detection
of a certain class of non-self-contained polymorphic sloeles that are currently
missed by existing emulation-based approaches. Seconghasent two generic
algorithmic optimizations that improve the runtime penfiance of the detec-
tor. We have implemented a prototype of the proposed teaknéapd evaluated
it using off-the-shelf non-self-contained polymorphieBtode engines and be-
nign data. The detector achieves a modest processing tipatgwvhich how-
ever is enough for decent runtime performance on actuabgemnts, while it
has not produced any false positives. Finally, we reposgcltactivity statistics
from a seven-month deployment of our prototype in a produaatietwork, which
demonstrate the effectiveness and practicality of ourcaagr.

1 Introduction

Along with the phenomenal growth of the Internet, the nundettacks against Inter-
net-connected systems continues to grow at alarming retesa “one hostile action
a week” 15 years ago [7], Internet hosts today confront amilli of intrusion attempts
every day [34]. Besides the constantly increasing numbseaofirity incidents, we are
also witnessing a steady increase in attack sophisticaflanng the last few years,
there has been a decline in the number of massive easy-tgigpal epidemics, and a
shift towards more targeted and evasive attacks.

For example, attackers have been increasingly using tgabasilike polymorphism
and metamorphism [28] to evade network-level detectorsndJpolymorphism, the
code in the attack vector —which is usually referred tostastlcode— is mutated so
that each instance of the same attack acquires a unique agtag thereby making
fingerprinting of the whole breed very difficult. In its mostive form, the shellcode is
encrypted using a simple algorithm, such as XOR-ing blodkke@original shellcode
—which is also known as thpayload— with a random key, and is prepended with a
decryption routine that on runtime unveils and executegttueypted payload.

Nowadays, the large and diverse number of polymorphiceb@dl engines [1,4, 9,
11,13, 20, 23, 27, 33], along with their increased soplastn, makes imperative the



need for effective and robust detection mechanisms. Aloitly the several research
efforts towards this goal, we have recently proposed nétherel emulation [22], a
passive network monitoring approach for the detection efjpusly unknown poly-
morphic shellcode, which is based on the actual executioretfork data on a CPU
emulator. The principle behind network-level emulatiothiat the machine code inter-
pretation of arbitrary data results to random code, whidiemit is attempted to run on
an actual CPU, usually crashes soon, e.g., due to the earafitan illegal instruction.
In contrast, if some network request actually contains grpolphic shellcode, then the
shellcode runs normally, exhibiting a certain detectakledvior.

Network-level emulation does not rely on any exploit or \arkbility specific signa-
tures, which allows the detection of previously unknowaelts. Instead, network-level
emulation uses a generic heuristic that matches the rurigghavior of polymorphic
shellcode. At the same time, the actual execution of thelattade on a CPU em-
ulator makes the detector robust to evasion techniques asittighly obfuscated or
self-modifying code. Furthermore, each input is inspeeaigdnomously, which makes
the approach effective against targeted attacks.

In this paper, we extend network-level emulation with anrioaved behavioral heur-
istic that allows the detection of a new class of polymorpshiellcodes, which are cur-
rently missed by the existing approach. The existing neitvievel emulation technique
can detect only self-contained shellcode, which does néeraay assumptions about
the state of the vulnerable process. In this work, we endigdedetection of a certain
class ofnon-self-contained polymorphic shellcodes, which take advantage of a certain
register that happens to hold the base address of the idjshtdlcode upon hijack-
ing the instruction pointer. We also present two generiomtlgmic optimizations that
improve the runtime performance of the detector, and carppéeal to network-level
emulation irrespectively of the behavioral heuristic usadally, we report attack statis-
tics from a real-world deployment of our prototype implenaion, which we believe
demonstrate the effectiveness and practicality of neti@rkl emulation.

2 Redated Work

The constant increase in the amount and sophisticatiomudtebinary code injection
attacks, and the consequent increase in the deploymentandaay of defenses, have
led to a coevolution of attack detection methods and evasitimiques.

Early approaches to network-level detection of zero-dagmeorelied on the iden-
tification of common byte sequences that are prevalent ammutigple worm instances
for the automated generation of NIDS signatures [14, 24thSapproaches are ef-
fective only for fast spreading worms that do not use any fofmpayload obfus-
cation. As more tools for shellcode encryption and polyrhism became publicly
available [1,4,9,11, 13,20, 23, 27, 33], subsequent au&umsignature generation
approaches [16, 18] focused on the detection of polymorploians by identifying
multiple common invariants among different worm instand¢éswever, the first-level
classifier on which such methods rely can result to evastacka [19].

An inherent limitation of the above approaches is that theyedfective only af-
ter several instances of the same worm have reached theatetebich makes them
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Fig. 1. A typical execution of a polymorphic shellcode using netwiavel emulation.

ineffective against targeted attacks. Content-based alyathetection can also identify
worms that employ a certain degree of polymorphism by agin traffic with anoma-
lous content distributions [30, 31], although it is prondtending attacks [12].

In face of extensive polymorphism, slow propagating woramg] targeted attacks,
several research efforts turned to static binary code aisabyy network traffic for iden-
tifying the presence of polymorphic shellcode. Initial epgches focused on the iden-
tification of the sled component that often precedes thdcgitd [2, 29]. Recent works
aim to detect the polymorphic shellcode itself using vasiapproaches, such as the
identification of structural similarities among differewbrm instances [15], control
and data flow analysis [8, 32], or neural networks [21].

Static analysis, however, cannot effectively handle cbdeémploys advanced ob-
fuscation methods, such as indirect jumps and self-motiifics, so carefully crafted
polymorphic shellcode can evade detection methods bassthtio analysis. Dynamic
code analysis using network-level emulation [22] is noteired by such obfuscations,
and thus can detect even extensively obfuscated shelldndés currently able to de-
tect only self-contained polymorphic shellcode. Zhanglef3b] propose to combine
network-level emulation with static and data flow analysisifproving runtime detec-
tion performance. However, the proposed method requieeprissence of a decryption
loop in the shellcode, and thus will miss any polymorphidisbees that use unrolled
loops or linear code, such as those presented in Sec. 3.

2.1 Network-level Emulation Overview

We briefly describe some aspects of the network-level enoulatetection technique.
The interested reader is referred to our previous work [@2hfthorough description of
the approach and its implementation details.

The detector inspects the client-initiated data of eaclvadt flow, which may con-
tain malicious requests towards vulnerable services. Anyes-initiated data, such as
the content served by a web server, are ignored. For TCP zathe application-level
stream is reconstructed using TCP stream reassembly. énatdarge client-initiated
streams, e.g., due to file uploads, only the first 64KB of theash are inspected. Each
input is mapped to a random memory location in the virtualreslslspace of the emu-
lator, as shown in Fig. 1. Since the exact location of thelsbéé in the input stream is
not known in advance, the emulator repeats the executiotipteutimes, starting from
each and every position of the stream. We refer to completewtions from different
positions of the input stream asecution chains. Before the beginning of a new execu-
tion, the state of the CPU is randomized, while any accideméanory modifications in



the addresses where the attack vector has been mapped tileddack after the end
of each execution. Since the execution of random code sorestinay not stop soon,
e.g., due to the accidental formation of loop structuresttiey execute for a very large
number of iterations, if the number of executed instruionsome execution chain
reaches a certaiexecution threshold, then the execution is terminated.

The execution of polymorphic shellcode is identified by tvay lbehavioral char-
acteristics: the execution of some form of GetPC code, aadtturrence of several
read operations from the memory addresses of the inpuinstitsalf, as illustrated in
Fig 1. The GetPC code is used to find the absolute address ofjgtaéed code, which
is mandatory for subsequently decrypting the encryptetbpaly and involves the exe-
cution of some instruction from thaall orfstenv instruction groups.

3 Non-sdf-contained Polymor phic Shellcode

The execution behavior of the most widely used type of polgghix shellcode involves
some indispensable operations, which enable network-tavelation to accurately
identify it. Some kind of GetPC code is necessary for finding absolute memory
address of the injected code, and, during the decryptiocgssy the memory locations
where the encrypted payload resides will necessarily kb Hawever, recent advances
in shellcode development have demonstrated that in ceréaies, it is possible to con-
struct a polymorphic shellcode which i) does not rely on anyrf of GetPC code, and
i) does not read its own memory addresses during the deoryptocess. A shellcode
that uses either or both of these features will thus evadectmetwork-level emulation
approaches [22, 35]. In the following, we describe exampfdmth cases.

3.1 Absence of GetPC Code

The primary operation of polymorphic shellcode is to find #isolute memory ad-
dress of its own decryptor code. This is mandatory for subsetly referencing the
encrypted payload, since memory accesses in the 1A-32tacthiie can be made only
by specifying an absolute memory address in a source omdésth operand (except
instructions likepop, call , orfstenv , which implicitly read or modify the stack).
Although the IA-64 architecture supports an addressingawdtereby an operand can
refer to a memory address relatively to the instruction f@sjrsuch a functionality is
not available in the IA-32 architecture.

The most common way of finding the absolute address of thetegeshellcode is
through the use of some form of GetPC code [22]. Howeverethgist certain exploita-
tion cases in which none of the available GetPC codes candik dse to restrictions
in the byte values that can be used in the attack vector. Fampbe, some vulnera-
bilities can be exploited only if the attack vector is comgab®f characters that fall
into the ASCII range (or sometimes in even more limited gsosych as printable-only
characters), in order to avoid being modified by conversimefions liketoupper or
isprint . Since the opcodes of botlall andfstenv have bytes that fall into these
ranges, they cannot take part in the shellcode. In such cagEssible workaround is
to retrieve the address of the injected code through a exdisat during exploitation



0 60000000 6A20 push 0x20 ; ecx points here

1 60000002 6B3C240B imul edi,[esp],0xb  ; edi = 0x160

2 60000006 60 pusha ; push all registers

3 60000007 030C24 add ecx,[esp] ; ecx = 0x60000160

4 6000000a 6A11 push 0x11

5 6000000c 030C24 add ecx,[esp] ; ecx = 0x60000171

6 6000000f 6A04 push Ox4 ; encrypted block size

7 60000011 6826191413 push 0x13141926

8 60000016 5F pop edi ; edi = 0x13141926

9 60000017 0139 add [ecx],edi L 60000171] = "ABCD"
10 60000019 030C24 add ecx,[esp] ; ecx = 0x60000175

11 6000001c 6817313F1E push 0x1e3f3117

12 60000021 5F pop edi ; edi = Ox1E3F3117

13 60000022 0139 add [ecx],edi L 60000175] = "EFGH"
14 add ecx,[esp] ; ecx = 0x60000179

60000024 030C24

Fig. 2. Execution trace of a shellcode produced by the “Avoid UT8ier” encoder. When the
first instruction is execute@cx happens to point to addre8s60000000 .
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Fig. 3. Schematic representation of the decryption process fonithWTF8/tolower” shellcode.

happens to point at the beginning of the buffer where thelabag resides. If such a
register exists, then the decoder can use it to calculatedthesss of the encrypted body.

Skape has recently published an alphanumeric shellcodeestitat uses this tech-
nique [27]. Fig. 2 shows the execution trace of a shellcodegeed using the imple-
mentation of the engine contained in Metasploit Framew@&K y1]. In this example,
the register that is assumed to hold the base address ofdéteoste isecx . The shell-
code has been mapped to addr@s80000000 , which corresponds to the beginning
of the vulnerable buffer. When the control flow of the vuli#esprocess is diverted to
the shellcode, thecx register already happens to hold the valx&0000000 . In-
structions 0-5 calculate the starting address of the etexlypayload (x60000171 )
based on its length and the absolute address contairesckin

The decryption process begins with instruction 7. An irdéng characteristic of
the decryptor is that it does not use any loop structureeatstseparate transformation
blocks comprising four instructions each (7-10, 11-1% handle the decryption of
different 4-byte blocks of the encrypted payload, as itastd in Fig. 3. This results to
a completely sequential flow of control for the whole deciyptprocess. At the same
time, however, the total size of the shellcode increasesfaigntly, since for each four
bytes of encrypted payload, an 11-byte transformatiomutbn block is needed.

3.2 Absence of Self-references

Another common characteristic of polymorphic shellcodebat they carry the en-
crypted payload within the same attack vector, right afterdecryptor code, as shown
in Fig. 1. During execution, the decryptor necessarily nsaeveral memory reads from



bfff003c

0 Dbfffo000 54 push esp ; esp points here

1 bfff0001 58 pop eax ; eax = BFFFO000

2 bfffd002 2D6C2D2D2D sub eax,0x2d2d2d6c ; eax = 92D1D294

3 bfffd007 2D7A555858 sub eax,0x5858557a  ; eax = 3A797D1A

4 Dbfffd00c 2D7A7A7ATA sub eax,0x7a7a7a7a ; eax = BFFFO02A0

5 bfffd011 50 push eax

6 Dbfffd012 5C pop esp ; esp = BFFF02A0

7 Dbfffd013 252D252123 and eax,0x2321252d ; eax = 20012020

8 bfff0018 2542424244 and eax,0x44424242  ; eax = 00000000

9 bfffd01d 2D2D2D2D2D sub eax,0x2d2d2d2d ; eax = D2D2D2D3

10 bfff0022 2D2D252D25 sub eax,0x252d252d  ; eax = ADA5ADA6

11 Dbfff0027 2D61675E65 sub eax,0x655e6761 ; eax = 48474645

12 bfff002c 50 push eax L BFFF029C] = "EFGH"
13 Dbfffd02d 2D2D2D2D2D sub eax,0x2d2d2d2d ; eax = 1B1A1918

14 bfff0032 2D5E5E5ESE sub eax,0x5e5e5e5e  ; eax = BCBBBABA

15 Dbfff0037 2D79787878 sub eax,0x78787879 ; eax = 44434241

16 50 push eax L BFFF0298] = "ABCD"

Fig. 4. Execution trace of a shellcode produced by the “Encode’rendihe shellcode is assumed
to be placed on the stack, aedp initially points to the first instruction.
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Fig.5. Schematic representation of the decryption process fdtBheode” engine.

the addresses of the encrypted payload in order to decryfiiése self-references can
be used as a strong indication of the execution of polymargiintllcode [22]. However,
it is possible to construct a shellcode that, although itieaian encrypted payload, will
not result to any memory reads from its own memory addresses.

Figure 4 shows the execution trace of a shellcode produceshladapted version
of the “Encode” shellcode engine [26], developed by Skam®mm@ting to a previous
description of Riley Eller [11]. In this case, the vulnemltduffer is assumed to be
located on the stack, sesp happens to point to the beginning of the shellcode. In-
structions 0—6 are used to stp to point far ahead of the decryptor code (in higher
memory addresses). Then, after zeradag (instructions 7-8), the decryption process
begins, again using separate decryption blocks (9-12,6.3=] for each four bytes
of the encrypted payload. However, in this case, each d&oryplock consists only
of arithmetic instructions with a register and an immedigperand, and ends with a
push instruction. Each group of arithmetic instructions caétet the final value of
the corresponding payload block, which is then pushed orsthek. In essence, the
data of the encrypted payload are integrated into the imatedalues of the arithmetic
instructions, so no actual encrypted data exist in theaingtitack vector.

Due to the nature of the stack, the decrypted payload is pextibackwards, start-
ing with its last four bytes. When the final decrypted blockished on the stack, the
flow of control of the decryptor will “meet” the newly built poad, and the execution
will continue normally, as depicted in Fig. 5. Notice thatidg the whole execution of
the shellcode, only two memory reads are performed by theppoinstructions, but
not from any of the addresses of the injected code.



4 Non-self-contained Polymor phic Shellcode Detection

4.1 Approach

Achieving the effective detection of a certain class of patyphic shellcodes using
network-level emulation requires the fulfillment of two masequirements. First, the
detector should be able to accurately reproduce the exaonitthe shellcode in exactly
the same way as if it would run within the context of the vuli®e process. Second, it
should be possible to identify a certain execution behgvédtern that can be used as
a strict heuristic for the effective differentiation bewvethe execution of polymorphic
shellcode and random code. In this section, we discuss tivesg@imensions regarding
the detection of non-self-contained shellcode.

Enabling Non-self-contained Shellcode Execution As discussed in the previous sec-
tion, some shellcodes rely on a register that happens taicothie base address of the
injected code, instead of using some form of GetPC code. Shelcodes cannot be
executed properly by the existing network-level emulatipproach, since before each
execution, all general purpose registers are set to randtues. Thus, the register that
is assumed to hold the base address will not have been set totrect value, and the
decryption process will fail. Therefore, our first aim is t@ate the necessary condi-
tions that will allow the shellcode to execute correctlyeksence, this requires to set
the register that is used by the shellcode for finding its lbaskeess to the proper value.

The emulator maps each new input stream to an arbitrary melocation in its
virtual memory. Thus, it can know in advance the absoluteesidof the hypothetical
buffer where the shellcode has been mapped, and as a cgrtflaraddress of the
starting position of each new execution chain. For a givesitipm in the buffer that
corresponds to the beginning of a non-self-containedabayd], if the base register has
been initialized to point to the address of that positioentthe shellcode will execute
correctly. Since we always know the base address of eachuxeahain, we can
always set the base register to the proper value.

The problem is that it is not possible to know in advance witnok of the eight
general purpose registers will be used by the shellcodedtimg a reference to its
base address. For instance, it mightdo or esp, as it was the case in the two ex-
amples of the previous section, or in fact any other regispending on the exploit.
To address this issue, we initialize all eight general psepegisters to hold the abso-
lute address of the first instruction of each execution cHakeept the dependence on
the base register, all other operations of the shellcodenwt! be affected from such
a setting, since the rest of the code is self-contained. isiamnce, going back to the
execution trace of Fig. 2, when the emulator begins exegtitie code starting with the
instruction at addre€d60000000 , all registers will have been set@x60000000 .
Thus, the calculations for settiregx to point to the encrypted payload will proceed
correctly, and the 9th instruction will indeed decrypt thstffour bytes of the payload
at addres®x60000171 . Note that the stack grows downwards, towards lower mem-
ory addresses, in the opposite direction of code execusimisettingesp to point to
the beginning of the shellcode does not affect its correetetion, e.g. due tpush
instructions that write on the stack.



Behavioral Heuristic Having achieved the correct execution of non-self-comain
shellcode on the network-level emulator, the next step ideatify a strict behavioral
pattern that will be used as a heuristic for the accurateidigtation between malicious
and benign network data. Such a heuristic should rely towsagsumptions about the
structure of the shellcode as possible, in order to be eesito evasion attacks, while
at the same time should be specific enough so as to minimizesthef false positives.

Considering the execution behavior of the shellcodes pteden the previous sec-
tion, we can make the following observations. First, thesale of any form of GetPC
code precludes the reliance on the presence of specificdtisins as an indication of
non-self contained shellcode execution, as was the casetingtcall or fstenv
groups of instructions, which are a crucial part of the Gete@e. Indeed, all opera-
tions of both shellcodes could have been implemented in rdéfgrent ways, using
various combinations of instructions and operands, eafgavhen considering ex-
ploits in which the use of a broader range of byte values @madtl in the attack vector.
Second, we observe that the presence of reads from the mémcations of the input
buffer during the decryption process is not mandatory, asatestrated in Sec. 3.2, so
this also cannot be used as an indication of non-self-coatishellcode execution.

However, it is still possible to identify some indispensabkhavioral characteris-
tics that are inherent to all such non-self-contained paolgphic shellcodes. An essen-
tial characteristic of polymorphic shellcodes in genesathat during execution, they
eventually unveil their initially concealed payload, ahistcan only be done by writing
the decrypted payload to some memory area. Therefore, #mutan of a polymor-
phic shellcode will unavoidably result to several memoryteg to different memory
locations. We refer to such write operations to differentmey locations asunique
writes” Additionally, after the end of the decryption procesg tlow of control will in-
evitably be transferred from the decryptor code to the neesgaled code. This means
that the instruction pointer will movat least once from addresses of the input buffer
that have not been altered before (the code of the decryptogddresses that have
already been written during the same execution (the codbkeotiecrypted payload).
For the sake of brevity, we refer to instructions that cqrogsl to code at any memory
address that has been written during the same executiom ahédix-instructions.”

It is important to note that the decrypted payload may not b#em in the same
buffer where the attack vector resides [20]. Furthermare aould construct a shellcode
in which the unique writes due to the decryption processhvélinade to non-adjacent
locations. Finally, wx-instructions may be interleavedhamon-wx-instructions, e.g.,
due to self-modifications before the actual decryption heoitstruction pointer may
switch several times between unmodified and modified menoaations.

Based on the above observations, we derive the followingatien heuristicif at
the end of an execution chain the emulator has performed 17 unique writes and has ex-
ecuted X wx-instructions, then the execution chain correspondsto a non-self-contained
polymorphic shellcode. The intuition behind this heuristic is that during the extian
of random code, although there will probably be a lot of randaerite operations to
arbitrary memory addresses, we speculate that the prdigadiilthe control flow to
reach such a modified memory address during the same exeeuitide low. In the
following, we elaborate on the details behind this heuristi



Unique memory writes. The number of unique write$i() in the heuristic serves just as
a hint for the fact that at least a couple of memory locatiamgtbeen modified during
the same execution chain—a prerequisite for the existehaeyowx-instructions. The
parametefV cannot be considered as a qualitatively strong detectianisie because
the execution of random code sometimes exhibits a large ruaflaccidental memory
writes. The emulator does not have a view of the vulneraldegss’ memory layout,
and thus cannot know which memory addresses are valid andblaj so it blindly
accepts all write operations to any location, and keep& whthe written values in its
own virtual memory. The decryption process of a polymorghiellcode will too result
to tens or even hundreds of memory writes. This makes the aunftunique writes
per se a weak indication for the execution of polymorphic shellepsince random code
sometimes results to a comparable number of writes.

Although this does not allow us to derive a threshold valuelfo that would be
reached only during the execution of polymorphic shellcogle can derive a lower
bound forlV, given that any regularly sized encrypted payload will iegquite a few
memory writes in order to be decrypted. Considering thatwryption of a 32-byte
payload —a rather conservatively small size for a meaningdiyload, as discussed
in Sec. 5.2— would require at least 8 memory writes (usingriresions with 4-byte
operands), we sét’ = 8. This serves as a “negative” heuristic for deciding quickly
absence of shellcode, which effectively filters out a lot xé@ution chains with very
few memory writes that cannot correspond to any functiongmorphic shellcode.

Execution of decrypted instructions. Although the number of unique writes alone can-
not provide a strong positive indication for shellcode data, we expected that the
number of wx-instructions in random code would be very lowjak would allow for
deriving a definite detection threshold that would neverdazhed by random code. A
prerequisite for the execution of code from a recently medifnemory address is that
the instruction pointer should first be changed to point & themory address. Intu-
itively, the odds for this to happen in random code are qoite given that most of the
modified locations will be dispersed across the whole virddaress space of the emu-
lator, due to the random nature of memory writes. Even if tirgiol flow ever lands on
such a memory address, most probably it will contain justwavielid instructions. In
contrast, self-decrypting shellcode will result to the@x@n of tens or even hundreds
of wx-instructions, due to the execution of the decryptegqead.

We conducted some preliminary experiments using real n&tivaces and ran-
domly generated data in order to explore the behavior ofadandode in terms of
wx-instructions. The percentage of instruction chaindwitore than 8 unique writes
and at least one wx-instruction was in the order of 0.01% ftfi@al binary data,
while it was negligible for artificial ASCII data and real ma&trk traces. However, there
were some rare cases of streams in which some execution obwtained as much as
60 wx-instructions. As we discuss in Sec. 5.2, the execudfdhe decrypted payload
may involve less than 60 wx-instructions, so the range irctvlain accurate detection
threshold value foX could exist is somehow blurred. Although one could consider
percentage of these outlying streams as marginal, and lleutallse positive ratio as
acceptable, it is still possible to derive a stricter detecheuristic that will allow for
improved resilience to false positives.
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Fig. 6. An example of accidental occurrence of wx-instructionsaimdom code.

Second-stage execution. The existence of some execution chains with a large number
of wx-instructions in random code is directly related to thi&alization of the general
purpose registers before each new execution. Settinggaditees to point to the address
of the first instruction of the execution chain facilitatége accidental modification of
the input stream itself, e.g., in memory addresses farthdrigher memory addresses)
from the starting position of the execution chain. An exaagdlthis effect is presented
in Fig. 6. Initially (Fig. 6a), when the flow of control reach#ée instruction starting
with byte01, ecx happens to point to the same instruction, @ast holds the value
0x04030201 . The effective address calculationadd [ecx+0x3],eax (Fig. 6b)
involvesecx , and its execution results to a 4-byte memory write withmkhffer, right
after theadd instruction. This simple self-modification causes the exiea of four wx-
instructions (Fig. 6¢). Note that after the execution ofsthéour wx-instructions, the
flow of control will continue normally with the subsequensgiructions in the buffer, so
the same effect may occur multiple times.

In order to mitigate this effect, we introduce the concemeobnd-stage execution.
For a given position in the input stream, if the executionictiaat starts from this posi-
tion results to more than 8 unique writes and has at least thsiructions® then it is
ignored, and the execution from this position is repeatglteimes with eight different
register initializations. Each time, only one of the eighhgral purpose registers is set
to point to the starting location. The remaining seven tegésare set to random values.

The rationale is that a non-self-contained shellcode thes some register for find-
ing its base address will run correctly both in the initiakeuntion, when all registers
point to the starting position, as well as in one of the eiglisequent second-stage
executions—the one in which the particular base registergbesed by the decryp-
tor will have been properly initialized. At the same timesd@me random code enters
second-stage execution, the chances for the accidentaireoce of a large number of
wx-instructions in any of the eight new execution chainssagaificantly lower, since
now only one of the eight registers happens to point with@itiput buffer.

% As discussed in Sec. 5.2, a functional payload results test 14 wx-instructions.
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— dec edi
L xor al,0x25
F——————— and eax, 0x6e424104
| add al, 0x41
— inc ecx
— inc edx

—— outsb

Fig. 7. Example of an illegal instruction path.

Although second-stage execution incurs an eight timesas® in the emulation
overhead, its is only triggered for a negligible fractionexcution chains, so it does
not incur any noticeable runtime performance degradafibthe same time, it results
to a much lower worst-case number of accidental wx-insimastin benign streams, as
shown in Sec. 5.1, which allows for deriving a clear-cut sinedd for X

4.2 Performance Optimizations

Skipping Illegal Paths The main reason that network-level emulation is practycall
feasible and achieves a decent processing throughputéssecin the most common
case, the execution of benign streams usually terminaths aéter the execution of
only a few instructions. Indeed, arbitrary data will resolrandom code that usually
contains illegal opcodes or privileged instructions, whé@nnot take part in the exe-
cution of a functional shellcode. Although there exist oallyandful of illegal opcodes
in the 1A-32 architecture, there exist 25 privileged instions with one-byte opcodes,
and several others with multi-byte opcodes. In the restisfdaction, we use the term
illegal instruction to refer to both privileged and actyallegal instructions.

A major cause of overhead in network-level emulation is thaeach input stream,
the emulator starts a new execution from each and everyigogit the stream. How-
ever, since the occurrence of illegal instructions is commaandom code, there may
be some instruction chains which all end to the same illeggtuction. After the ex-
ecution of the first of these chains terminates (due to tkegall instruction), then any
subsequent execution chains that share the same finaldtistrpath with the first one
will definitely end up to the same illegal instruction, if He path does not contain any
control transfer instructions, ii) none of the instructan the path was the result of
a self-modification, and iii) the path does not contain arstrinction with a memory
destination operand. The last requirement is necessanyler to avoid potential self-
modifications on the path that may alter its control flow. Thukenever the flow of
control reaches any of the instructions in the path, thegi@tcan stop immediately.

Consider for example the execution chain that starts atipndd in the example
of Fig. 7. Upon its termination, the emulator backtracksittstruction path and marks
each instruction until any of the above requirements isatéal, or the beginning of the
input stream is reached. If any subsequent execution ceaahes a marked instruction,
then the execution ceases immediately. Furthermore, theué®rn chains that would
begin from positions 1, 3, 5, and 6, can now be skipped alteyet



Name Port Number | Number of streams | Total size
HTTP 80 6511815 5.6GB
NetBIOS 137-139 1392679 1.5GB
Microsoft-ds | 445 2585308 3.8GB
FORTH-ICS | all 668754 821 MB

Table 1. Details of the client-initiated network traffic traces usedhe experimental evaluation.

Kernel Memory Accesses The network-level detector does not have any information
about the vulnerable process targeted by a particularatéecalready discussed, the
emulator assumes that all accesses to any memory addresaidrén reality, only a
small subset of these memory accesses would have succeau=rlthe hypothetical
vulnerable process would have mapped only a small subsetgéspfrom the whole
4GB virtual memory space. Thus, memory writes outside tpatibuffer or the stack
proceed normally and the emulator tracks the written valwbge memory reads from
previously unknown locations are executed without refugrany meaningful data,
since their contents are not available to the network-ldeg&tctor. The execution can-
not stop on such unknown memory references, since otheaniattacker could hinder
detection by interspersing instructions that read anhitdata from memory locations
known in advance to belong to the address space of the vibliegreocess [22].

The network-level emulation approach assumes that theavt®B of virtual mem-
ory may be accessible by the shellcode. However, user-f@eelesses cannot access
the address space of the OS kernel. In Linux, the kernel addpace begins at address
0xC0000000 and takes up the whole upper 1GB of the 4GB space. In Windtwss, t
upper half of the 4GB space is allocated for kernel use. Atianal shellcode would
never try to access a memory address in the kernel address spaany instructions in
random code that accidentally try to access some kernel myelmcation can be con-
sidered illegal. For simplicity, the emulator assumes gallall memory accesses up
to OXBFFFFFFF, i.e., excludes only the common kernel space of both OSese s
cannot know in advance which OS is being targeted.

5 Experimental Evaluation

5.1 Deriving a Robust Detection Threshold

The detection algorithm is based on a strict behavioragpathat matches some execu-
tion characteristics of non-self-contained polymorplielkode. In order to be effec-
tive and practically applicable, a heuristic based on sunéheavioral pattern should not
falsely identify benign data as polymorphic shellcode.his section, we explore the
resilience of the detector to false positives using a largediverse attack-free dataset.
We accumulated full payload packet traces of frequentlgcattd ports captured
at FORTH-ICS and the University of Crete across severaéufit periods. We also
captured a two hour long trace of all the TCP traffic of the asdak that connects
FORTH-ICS to the Internet. Since we are interested in clieitited traffic, which
contains requests to network services, we keep only thespattkat correspond to the
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client-side stream of each TCP flow. For large flows, whichdgample may corre-
spond to file uploads, we keep the packets of the first 64KBegtream. Trace details
are summarized in Table 1. Note that the initial size of th&FB-ICS trace, before ex-
tracting the client-initiated only traffic, was 106GB. Wes@lgenerated a large amount
of artificial traces using three different kinds of unifognalistributed random content:
binary data, ASCII-only data, and printable-only charest€or each type, we gener-
ated four million streams, totaling more than 160GB of data.

We tested our prototype implementation of the detectiomibgaiwith second-stage
execution enabled using the above dataset, and measumaximaum number of acci-
dental wx-instructions among all execution chains of ea@am. The execution thresh-
old of the emulator was set to 65536 instructions. Figureeg@nts the results for the
different types of random data, as well as for the real ndtvgtreams (the category
“network traces” refers collectively to all network tradested in Table 1). We see that
random binary data exhibit the largest number of wx-ingtons, followed by printable
data and real network traffic. From the four million randomdyy streams, 0.8072%
contain an execution chain with one wx-instruction, whiléhie worst case, 0.00014%
of the streams resulted to seven wx-instructions. In aktsaso streams were found to
contain an execution chain with more than seven wx-indoost

Based on the above results, we can derive a lower bound fanuth#er of wx-
instructions (parameteX of the detection heuristic) that should be found in an execu-
tion chain for flagging the corresponding code as maliciSesting X =8 allows for no
false positives in the above dataset. However, larger gauepreferable since they are
expected to provide even more improved resilience to falsitipes.

5.2 Non-self-contained Shellcode Detection

CPU execution threshold As discussed in Sec. 4.1, the execution of non-self-coathin
shellcode will exhibit several wx-instructions, due to #eecution of the decrypted
payload. However, a crucial observation is that most ofé¢les-instructions will occur
after the end of the decryption process, except perhaps any selffications during
the bootstrap phase of the decryptor [22, 33]. Thus, the a&mushould execute the
shellcode for long enough in order for the decryption to ctetg and then for the



decrypted payload to execute, for actually identifying pinesence of wx-instructions.
This means that the CPU execution threshold should be largegh to allow for the
complete execution of the shellcode.

The number of executed instructions required for the cotepecryption of the
payload is directly related to i) the decryption approact &s implementation (e.g.,
decrypting one vs. four bytes at a time), and ii) the size ef éncrypted payload.
We used off-the-shelf polymorphic shellcode engines thatipce non-self-contained
shellcode to encrypt payloads of different sizes. We gdadrmutations of a hypo-
thetical payload ranging in size from 64 to 576 bytes, in §fehbncrements, using
the Avoid UTF8/tolower [1,27], Encoder [11, 26], and Alph&3] shellcode engines.
The size of the largest IA-32 payload contained in the Métdispramework v3.0,
windows/adduser/reverse _http , is 553 bytes, so we chose a slightly larger
value of 576 bytes as a worst case scenario.

Figure 9 shows the number of executed instructions for thepbete decryption
of the payload, for different payload sizes. As expected,ribmber of instructions
increases linearly with the payload size, since all enggpeEnd an equal amount of
instructions per encrypted byte during decryption. Alpka2cutes considerably more
instructions compared to the other two engines, and in thrstvease, for a 576-byte
payload, takes 6374 instructions to complete. Thus, we ldhchbose an execution
threshold significantly larger than the 2048 instructidrat s suggested in the existing
network-level emulation approach [22].

Setting a threshold value for X A final dimension that we need to explore is the
minimum number of wx-instructionsX) that should be expected during shellcode ex-
ecution. As we have already mentioned, this number is djreetated to the size of
the encrypted payload: the smaller the size of the concealéel, the fewer the number
of wx-instructions that will be executed. As shown in theyiwas section, the thresh-
old value forX should be set to at least 8, in order to avoid potential fats@tipes.
Thus, if the execution of the decrypted payload would retsuét comparable number
of wx-instructions, then we would not be able to derive a stloletection threshold.

Fortunately, typical payloads found in remote exploitsalistconsist of much more
than eight instructions. In order to verify the ability ofrqurototype implementation to
execute the decrypted payload upon the end of the decryptomess, we tested it with
the IA-32 payloads available in Metasploit. Note that althb the network-level em-
ulator cannot correctly execute system calls or follow mgnazcesses to addresses
of the vulnerable process, whenever such instructions mreumtered, the execution
continues normally (e.g., in case of ant 80 instruction, the code continues as if
the system call had returned). In the worst case,lithex/x86/exec family of
payloads, which have the smallest size of 36 bytes, restiietexecution of 14 instruc-
tions. All other payloads execute a larger number of ingions. Thus, based on the
number of executed instructions of the smallest payloadset& =14. This is a rather
conservative value, given that in practice the vast majofitemote exploits in the wild
are targeting Windows hosts, so in the common case the nuofilet-instructions of
the decrypted payload will be much higher.



Payloads targeting Linux hosts usually have a very smaddiz to the direct invo-
cation of system calls through tlret 80 instruction. In contrast, payloads for Win-
dows hosts usually involve a much higher number of instamsti Windows shellcode
usually does not involve the direct use of system calls gaigfh this is sometimes pos-
sible [5]), since their mapping often changes across d@iffe©S versions, and some
crucial operations, e.g., the creation of a socket, areeatily offered through system
calls. Instead, Windows shellcode usually relies on sysétcalls that offer a wide
range of advanced functionality (e.g., the ability to dovad a file from a remote host
through HTTP using just one call). This, however, requicefirst locate the necessary
library functions, which involves finding the base addres&arnel32.dll , then
resolving symbol addresses, and so on. All these operatsod to the execution of a
considerable number of instructions.

In any case, even a conservative value 16r14, which effectively detects both
Linux and Windows shellcode, is larger enough than the sageidental wx-instructions
that were found in benign data, and thus allows for a strongisiec with even more
improved resilience to false positives.

5.3 Processing Throughput

In this section, we evaluate the raw processing throughptiteoproposed detection
algorithm. We have implemented the new detection heurdstiour existing prototype
network-level detector [22], which is based on a custom PAC®U emulator that uses
interpretive emulation. We measured the user time reqdiimeprocessing the network
traces presented in Table 1, and computed the processmgthput for different values
of the CPU execution threshold. The detector was running B @&quipped with a
2.53GHz Pentium 4 processor and 1GB RAM, running Debianx {kernel v2.6.18).
Figure 10 presents the results for the four different neltviiaces.

As expected, the processing throughput decreases as thee®ution thresh-
old increases, since more cycles are spent on streams withorey execution chains
or seemingly endless loops. We measured that in the worst @@sport 445 traffic,
3.2% of the streams reach the CPU execution threshold dwere bop when using a
threshold higher than 8192. This percentage remains altin@stame even when using
a threshold as high as 131072 instructions, which meanghése loops would require
a prohibitively large number of iterations until completio

Overall, the runtime performance has been slightly impdas@mpared to our pre-
vious network-level emulation prototype. Although thealthmic optimizations pre-
sented in Sec. 4.2 offer considerable runtime performampedvements, any gain is
compensated by the more heavy utilization of the virtual mgnsubsystem and the
need to frequently undo accidental self-modifications @itiput stream.

Port 80 traffic exhibits the worst performance among alldsagvith an almost con-
stant throughput that drops from 12 to 10 Mbit/s. The thrquglis not affected by the
CPU execution threshold because i) the zero-delimited kloptimizatiorf is not ef-
fective because HTTP traffic rarely contains any null byaesl ii) the execution chains

“ Given that in the vast majority of exploits the attack veatannot contain a null byte, the
detector skips any zero-byte delimited regions smallen Babytes, since they are too small
to contain a functional polymorphic shellcode [22].



9 B
¢ ports 137-139 1400 « FORTH-ICS full 2h trace |
_. 80 @ port 445
® % 1200
= 70 = 4 port 80 2
2 FORTH-ICS k] L
S sl ° < 1000
= 2
5 sof 5 800
=3 (=%
S 40} 5
=) 2 600
g 30 2
£ 400
ol . [=
oL A—a— 4 A it 200
0 . . . . . . 0 . . . . . .
4096 8192 16384 32768 65536 131072 4096 8192 16384 32768 65536 131072
Execution threshold (log scale) Execution threshold (log scale)

Fig.10. Raw processing throughput for differFig. 11. Raw processing throughput for the
ent execution thresholds. complete 2-hour trace.

of port 80 traffic have a negligible amount of endless loops higher CPU execution
threshold does not result to the execution of more instastdue to extra loop itera-
tions. However, ASCII data usually result to very long andskeexecution chains with
many one or two byte instructions, which consume a lot of Ciptles.

We should stress that our home-grown CPU emulator is highbptimized, and
the use of interpretive emulation results to orders of miaglei slowdown compared to
native execution. It is expected that an optimized CPU etoulke QEMU [6] would
boost performance, and we plan in our future work to proceiddsuch a change.

Nevertheless, the low processing throughput of the cuimgoiementation does not
prevent it from being practically usable. In the contraigce the vast majority of the
traffic is server-initiated, the detector inspects only akisubset of the total traffic of
the monitored link. For example, web requests are usualhgiderably smaller than
the served content. Note that all client-initiated streamesinspected, in both direc-
tions. Furthermore, even in case of large client-initidteds, e.g., due to file uploads,
the detector inspects only the first 64KB of the client stresmagain the vast amount
of the traffic will not be inspected. Indeed, as shown in Fify. when processing the
complete 106GB long trace captured at FORTH-ICS, the peiegshroughput is or-
ders of magnitude higher. Thus, the detector can easilwisutiie traffic rate of the
monitored link, which for this 2-hour long trace was on ageraround 120 Mbit/s.

6 Real-world Deployment

In this section, we present some attack activity resultsfaceal-world deployment of
our prototype detector implementation. The detector isllexl on a passive monitoring
sensor that inspects the traffic of the access link that atengart of an educational
network with hundreds of hosts to the Internet. The detelctm been continuously
operational since 7 November 2006, except a two-day doventimJanuary.

As of 14 June 2007, the detector has captured 21795 attagieditay nine different
ports. An overall view of the attack activity during theseese months is presented in
Fig. 12. The upper part of the figure shows the attack actaggording to the targeted
port. From the 21795 attacks, 14956 (68.62%) were launctuad 6747 external IP
addresses (red dots), while the rest 6839 (31.38%) origiifadm 269 infected hosts in
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Fig.12. Overall attack activity from a real-world deployment of quiptotype detector.

the monitored network (gray dots). Almost one third of theinal attacks came from a
single IP address, using the same exploit against port 4&b5bdttom part of the figure
shows the number of attacks per hour of day. There are ocwagiih hundreds of
attacks in one hour, mostly due to bursts from a single sahetdnorizontally attacks all
active hosts in local neighboring subnets. The vast mgjofithe attacks (88%) target
port 445. Interestingly, however, there also exist attacksss commonly attacked ports
like 1025, 1051, and 5000. We should note that for all captattacks the emulator was
able to successfully decrypt the payload, while so far has faése positives.

For each identified attack, our prototype detector gengratan alert file with
generic attack information and the execution trace of tredlabde, ii) a raw dump
of the reassembled TCP stream, iii) a full payload tracelddttdck traffic (both direc-
tions) inlibpcap  format® and iv) the raw contents of the modified addresses in the
virtual memory of the emulator, i.e., the decrypted shel&o

Although we have not thoroughly analyzed all captured &#awe can get a rough
estimate on the diversity of the different exploitationlgavorms, or bots that launched
these attacks, based on a simple analysis of the decryptixhpla of the captured poly-
morphic shellcodes. Computing the MD5 hash of the decrypsgdoad for all above
attacks resulted to 1021 unique payloads. However, grgupirther these 1021 pay-
loads according to their size, resulted to 64 different paglisize groups. By manu-
ally inspecting some of the shellcodes with same or simédagths, but different MD5
hashes, we observed that in most cases the actual payloadvesdthe same, but the
seeding URL or IP address from where the “download and egéstiellcode would
retrieve the actual malware was different. Our results m@ccordance with previous
studies [17] and clearly show that polymorphic shellcodesextensively used in the
wild, although in most cases they employ naive encryptiothiods, mostly for con-
cealing restricted payload bytes.

5 Anonymized full payload traces of some attacks are availdtiim http://lobster.
ics.forth.gr/traces/



7 Limitations

The increasing complexity of polymorphic shellcodes resstd a corresponding in-
crease in the processing time required for reasoning weathaput stream is mali-
cious. Indeed, while self-contained polymorphic shelkeadn effectively be detected
using only 2K instructions per execution chain [22], notf-sentained shellcode, re-
quires a CPU execution threshold in the order of 8K instounti However, shellcode
produced by advanced engines like TAPION [4] sometimesiregup to 16K instruc-
tions for the complete decryption of an 128-byte payload,[2Rd can exceed 64K
instructions for 512-byte payloads. Although such shelésouse some form of GetPC
code, and thus can be easily detected by the existing sethiced shellcode heuristic,
if they begin to adopt non-self-contained techniques asdtmesented in this paper,
then network-level emulation should be deployed with higgogition thresholds, in the
order of 128K instructions.

Fortunately, even in case we have to spend so many cyclesaigeedted input,
network-level emulation is still practical, although wighreduced throughput, as we
showed in Sec. 5.3. However, in the extreme case, an atteclt construct a decryp-
tor that could spend millions of instructions, maybe evefokeethe actual decryption
process has begun at all, just for reaching the executieshioid before revealing any
signs of polymorphic behavior [22]. Such “endless” loops arwell-known problem
in the area of dynamic code analysis, and we are not awareyoéféective solution
so far. Fortunately, the percentage of benign streamseéhahrthe execution threshold
is under 3.2%, as discussed in Sec. 5.3, so if attackerststarnploy such evasion
techniques, network-level emulation can still be usefd fisst-stage anomaly detector
for application-aware NIDS like shadow honeypots [3], bpsidering as suspicious all
streams that reach the execution threshold.

Finally, here we have considered only the class of nonemmitained shellcode that
takes advantage of some register to get a reference to tiduthaddress of the in-
jected code in order to decrypt. However, it could be posdiblconstruct a shellcode
that during decryption uses some data or code from memoatitots with a priori
known contents, which should remain constant across atlerable systems. Since the
network-level detector lacks any host-level informatidmould not be able to execute
such shellcode properly. In general, however, the use ofbaded addresses is avoided
because it results in more fragile code [25], especiallgesimddress space randomiza-
tion has become prevalent in popular OSes, and significaotiyplicates the imple-
mentation of polymorphic shellcode engines. In our futumkywe plan to explore
ways to augment the network-level detector with host-leegltext [10] for enabling
the detection of a broader class of non-self-containedcsiusds.

8 Conclusion

In this paper, we have presented a novel approach for thetagt®f a certain class of
non-self-contained polymorphic shellcodes using dynagoite analysis of network-
level data. We have extended previous work on network-lewallation to correctly
handle the execution and identify the behavior of polymarghellcodes that do not



use any form of GetPC code, but instead rely on some regisé¢rhtappens during
exploitation to contain the base address of the injecteé.cbdis demonstrates that in
certain cases where some certain host-level state is ustet lshellcode, detection at
the network level is still possible.

Such advanced analysis comes at the cost of spending more@iRis per input,
which reduces the runtime throughput of the detector, bllitadiows it to achieve a
decent performance on real-world deployments. Howevetaiceevasion methods are
still possible, and the problem of effectively tacklingthat the network-level remains
open. Nevertheless, we believe that the ability to acclyrditect previously unknown
polymorphic shellcodes with virtually zero false posisyand the simplicity of its de-
ployment, make network-level emulation an effective aratfical defense method.
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