
Real-world Polymorphic Attack Detection using
Network-level Emulation

Michalis Polychronakis
FORTH-ICS, Greece

mikepo@ics.forth.gr

Kostas G. Anagnostakis
I2R, Singapore

kostas@i2r.a-star.edu.sg

Evangelos P. Markatos
FORTH-ICS, Greece

markatos@ics.forth.gr

ABSTRACT
As state-of-the-art attack detection technology becomes more
prevalent, attackers have started to employ techniques such
as code obfuscation and polymorphism to defeat these de-
fenses. We have recently proposed network-level emulation,
a heuristic detection method that scans network traffic to
detect polymorphic attacks. Our approach uses a CPU em-
ulator to dynamically analyze every potential instruction se-
quence in the inspected traffic, aiming to identify the exe-
cution behavior of certain malicious code classes, such as
self-decrypting polymorphic shellcode.

Network-level emulation does not rely on any exploit or
vulnerability specific signatures, which allows the detection
of previously unknown attacks, while the actual execution of
the attack code makes the detector robust to evasion tech-
niques such as self-modifying code. After more than a year
of continuous operation in production networks, our proto-
type implementation has captured more than a million at-
tacks against real systems, employing a highly diverse set of
exploits, often against less widely used vulnerable services,
while so far has not resulted to any false positives.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection; C.2.3 [Computer-Communication
Networks]: Network Operations—Network Monitoring

General Terms
Measurement, Security

Keywords
Polymorphism, shellcode, emulation, intrusion detection

1. INTRODUCTION
Along with the phenomenal growth of the Internet, the

number of attacks against Internet-connected systems con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSIIRW ’08 May 12–14, Oak Ridge, Tennessee, USA
Copyright 2008 ACM 978-1-60558-098-2/08/05 ...$5.00.

tinues to grow at alarming rates [5, 6]. Besides the con-
stantly increasing number of security incidents, we have also
been witnessing a steady increase in attack sophistication
and diversity. During the last few years, there has been a
decline in the number of massive, easy-to-spot global worm
epidemics, and a shift towards more stealthy and localized
attacks against selected targets.

The constant increase in the amount, sophistication, and
diversity of remote system compromise attacks, and the con-
sequent increase in the deployment and effectiveness of de-
fenses, have resulted in an arms race between attack de-
tection and evasion techniques. As detection mechanisms
improve, attackers employ increasingly sophisticated meth-
ods to evade them. Techniques such as code obfuscation
and polymorphism pose significant challenges to existing
network-level detectors. Using polymorphism, the code in
the attack vector—which is usually referred to as shellcode—
is mutated so that each instance of the same attack acquires
a unique byte pattern, thereby making fingerprinting of the
whole breed very difficult. At the same time, accurate at-
tack fingerprinting is getting increasingly important for the
already inherently hard problem of identifying previously
unknown attacks, also known as zero-day attacks, while try-
ing to minimize the rate of false positives.

A major outstanding question in security research and
engineering is thus whether we can proactively develop the
tools needed to contain advanced polymorphic attacks. While
recent results have been promising, most of the existing pro-
posals can be defeated using only minor enhancements to the
attack vector. In fact, some publicly-available polymorphic
shellcode engines are currently one step ahead of the most
advanced publicly-documented network-level detectors [3].

Along with the several research efforts towards this goal,
we have recently proposed network-level emulation [3, 4],
a passive network monitoring approach for the detection of
zero-day polymorphic attacks. In contrast to previous work,
network-level emulation uses a CPU emulator to dynami-
cally analyze every potential instruction sequence in the in-
spected traffic, aiming to identify the execution behavior of
certain malicious code classes, such as self-decrypting poly-
morphic shellcode. Network-level emulation does not rely on
any exploit or vulnerability specific signatures, which allows
the detection of previously unknown attacks, while the ac-
tual execution of the attack code on the emulator makes the
detector robust to evasion techniques such as self-modifying
code. Furthermore, each input is inspected autonomously,
making the approach effective against targeted attacks.

We have deployed our prototype implementation, called

Payload Reads

Decryptor Encrypted Payload

Attack Vector: ~1-64KB

Virtual Address Space: 4GB

GetPC Code

Figure 1: A typical execution of a polymorphic shell-
code using network-level emulation.

nemu, as part of LOBSTER [2, 1], a large-scale distributed
passive network monitoring infrastructure. LOBSTER has
installed more than 50 passive monitoring sensors across Eu-
rope, providing an advanced pilot platform for network per-
formance and security applications. In an effort to foster re-
search on network monitoring, LOBSTER also makes pub-
licly available network statistics and captured data, after
being properly anonymized using the data anonymization
tools provided by the platform.

After almost a year of continuous operation, nemu has de-
tected more than a million attacks against real systems (not
honeypots) in the monitored networks, while so far has not
resulted to any false positives. Besides common exploits
against popular OS services associated with multiple well
known vulnerabilities, we have witnessed sporadic attacks
against less widely used services and third-party applica-
tions. At the same time, although the bulk of the attacks
use naive encryption or polymorphism techniques, there is
an increase in the number of attacks that employ more so-
phisticated obfuscation schemes. These observations are in-
dicative of the change in attackers’ tactics and goals.

2. NETWORK-LEVEL EMULATION
The principle behind network-level emulation is that the

machine code interpretation of arbitrary data results to ran-
dom code, which, when it is attempted to run on an actual
CPU, usually crashes soon, e.g., due to the execution of an
illegal instruction. In contrast, if some network request actu-
ally contains polymorphic shellcode, then the shellcode runs
normally, exhibiting a certain detectable behavior.
Nemu inspects the client-initiated data of each network

flow, which may contain malicious requests towards vulner-
able services. Any server-initiated data, such as the content
served by a web server, are ignored. For TCP packets, the
application-level stream is reconstructed using TCP stream
reassembly. In case of large client-initiated streams, e.g.,
due to file uploads, only the first 64KB of the stream are
inspected. Each input is mapped to a random memory lo-
cation in the virtual address space of an IA-32 emulator, as
shown in Fig. 1. Since the exact location of the shellcode
in the input stream is not known in advance, the emulator
repeats the execution multiple times, starting from each and
every position of the stream, although in certain cases some
the execution of some code paths can be skipped to optimize
runtime performance [4].

Before the beginning of a new execution, the state of the
CPU is randomized, while any accidental memory modifi-
cations in the addresses where the attack vector has been
mapped to are rolled back after the end of each execution.
Since the execution of random code sometimes may not stop
soon, e.g., due to the accidental formation of loop structures
that may execute for a very large number of iterations, if
the number of executed instructions in some execution chain

A
tta

ck
 s

ou
rc

es
 (

%
)

 0%

 5%

10%

15%

20%

25%

30%

US HU RU JP DE CA CN RO TW PL FR GB KR IT IE ES NL CH CZ� other

Figure 2: Distribution of attack sources according
to country of origin. Category “other” includes 98
countries with less than 1% of the total sources each.

reaches a certain execution threshold, then the execution is
terminated.

The execution of polymorphic shellcode is identified by
two key runtime behavioral characteristics: the execution of
some form of GetPC code, and the occurrence of several read
operations from the memory addresses of the input stream
itself, as illustrated in Fig 1. The GetPC code is used by
the shellcode for finding the absolute address of the injected
code, which is mandatory for subsequently decrypting the
encrypted payload, and involves the execution of an instruc-
tion from the call or fstenv instruction groups [3].

3. REAL-WORLD DEPLOYMENT
In this section, we present attack activity results from

real-world deployments of our prototype detector implemen-
tation. In each installation, nemu runs on a passive monitor-
ing sensor that inspects all the traffic of the access link that
connects the protected network to the Internet. Here, we
collectively report statistics from four deployments in three
National Research Networks and one Educational Network
across Europe. The sensors have been continuously oper-
ational since 9 March 2007, except some occasional daily
downtimes.

As of 13 February 2008, nemu has captured 1,052,332 at-
tacks targeting 21 different port numbers. From these at-
tacks, 31.35% were launched from 8981 different external IP
addresses against internal hosts, while the rest 68.65% orig-
inated from 204 infected hosts in the monitored networks
that were massively attempting to propagate malware. The
distribution of external attack source addresses according to
country of origin is presented in Fig. 2. In the remaining,
we focus only on these external attacks that were targeting
hosts within the protected networks.

An overall view of the external attack activity is pre-
sented in Fig. 3. The upper part of the figure shows the
attack activity according to the targeted port. The bottom
part shows the number of external attacks per hour. There
are occasions with several hundreds of attacks in one hour,
mostly due to bursts from a single source which attacks all
active hosts in local neighboring subnets.

As expected, the port numbers of popular OS services as-
sociated with well-known vulnerabilities, e.g., 135, 139, and
445, receive the highest number of attacks. However, it is in-
teresting to note that there also exist sporadic attacks to less
commonly attacked ports like 1051, 5000, 41523, and so on.
With firewalls and OS-level protections now being widely de-
ployed, attackers have turned their attention to third-party
services and applications, such as corporate virus scanners,

Apr’07 May’07 Jun’07 Jul’07 Aug’07 Sep’07 Oct’07 Nov’07 Dec’07 Jan’08 Feb’08

at
ta

ck
s

pe
r

ho
ur

0

200

400

600

800

1000

ta
rg

et
 p

or
t

25
42
80

110
135
139
143
445

1023
1025
1029
1082
1433
2100
2103
2967
2968
3050

30708
41523

1 + 16 + 32 + 64 + 128 + 256 + 512 +

Figure 3: Overall attack activity from four deployments of nemu. The graph shows only the attacks that
were launched from external hosts against hosts in the protected networks. Although the bulk of the attacks
target well known vulnerable services, there are also sporadic attacks against less widely used services.

mail servers, backup servers, and DBMSes. Although such
services are not very popular among typical home users, they
are commonly found in corporate environments, and most
importantly, they usually do not get the proper attention
regarding patching, maintenance, and security hardening.
Nemu scans the traffic towards any service and does not

rely on exploit or vulnerability specific signatures, thus it is
capable to detect polymorphic attacks destined to even less
widely used or “forgotten” services. We should note that for
all captured attacks, nemu was able to successfully decrypt
the attack payload, while so far has zero false positives.
For each identified attack, nemu generates i) an alert with
generic attack information and the execution trace of the
shellcode, ii) a raw dump of the reassembled TCP stream,
iii) a full payload trace of all attack traffic (both directions)
in libpcap format,1 and iv) the raw contents of the mod-
ified locations in the virtual memory of the emulator, i.e.,
the decrypted shellcode.

The above results clearly show that polymorphic shellcode
is extensively used in the wild, although in most cases it
employs naive encryption methods, mostly for concealing
restricted payload bytes. However, as shown in Fig. 3, in the
past few months we have observed a slight increase in the
overall number of detected incidents, while there has been an
increased use of more sophisticated engines and obfuscation
techniques.

1Anonymized full payload traces of some of the captured
attacks are available from http://lobster.ics.forth.gr/
traces/

4. REFERENCES
[1] LOBSTER Project. http://www.ist-lobster.org/.

[2] D. Antoniades, M. Polychronakis, A. Papadogiannakis,
P. Trimintzios, S. Ubik, V. Smotlacha, A. Øslebø, and
E. P. Markatos. LOBSTER: A european platform for
passive network traffic monitoring. In Proceedings of the
4th International Conference on Testbeds and Research
Infrastructures for the Development of Networks &
Communities (TRIDENTCOM), March 2008.

[3] M. Polychronakis, E. P. Markatos, and K. G.
Anagnostakis. Network-level polymorphic shellcode
detection using emulation. In Proceedings of the Third
Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), July 2006.

[4] M. Polychronakis, E. P. Markatos, and K. G.
Anagnostakis. Emulation-based detection of
non-self-contained polymorphic shellcode. In
Proceedings of the 10th International Symposium on
Recent Advances in Intrusion Detection (RAID),
September 2007.

[5] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadug. The Ghost In The Browser: Analysis
of Web-based Malware. In Proceedings of the First
Workshop on Hot Topics in Understanding Botnets
(HotBots), 2007.

[6] V. Yegneswaran, P. Barford, and J. Ullrich. Internet
intrusions: global characteristics and prevalence. In
Proceedings of the 2003 ACM SIGMETRICS
international conference on Measurement and modeling
of computer systems, 2003.

