
LOBSTER: A European Platform for Passive
Network Traffic Monitoring

Demetris Antoniadis∗, Michalis Polychronakis∗, Antonis Papadogiannakis∗, Panagiotis Trimintzios†
Sven Ubik‡, Vladimir Smotlacha‡, Arne Oslebo§, and Evangelos P. Markatos∗

∗ FORTH-ICS, PO BOX 1385, Heraklion, GR1110, Greeece
Corresponding Author: danton@ics.forth.gr

† The European Network and Information Security Agency (ENISA)
‡ CESNET Prague, Czech Republic
§ UNINETT, Trondheim, Norway

Abstract—Over the past few years we have been witness-
ing a large number of new programs and applications which
generate prolific amounts of questionable, if not illegal, traffic
that dominates our networks. Hoping from one port to another
and using sophisticated encoding mechanisms, such applications
have managed to evade traditional monitoring tools and confuse
system administrators.

In this paper we present a concerted European Effort to im-
prove our understanding of the Internet through the LOBSTER
passive network traffic monitoring infrastructure. By capitaliz-
ing on a novel Distributed Monitoring Application Programming
Interface which enables the creation of sophisticated applications
on top of commodity hardware, LOBSTER empowers a large
number of researchers and system administrators into reaching
a better understanding of the kind of traffic that flows through
their networks.

We have been running LOBSTER for more than a year now
and we have deployed close to forty sensors in twelve countries
in three continents. Using LOBSTER sensors
• we have captured more than 600,000 sophisticated cyber-

attacks which attempted to masquerade themselves using
advanced polymorphic approaches

• we have monitored the traffic of entire NRENs making it
possible to identify the magnitude (as well as the sources)
of file-sharing (peer to peer) traffic.

I. INTRODUCTION

Network traffic monitoring is getting increasingly important
for a large set of Internet users and service providers, such
as ISPs, NRENs, computer and telecommunication scientists,
security and network administrators, and managers of high-
performance computing infrastructures. As networks get faster
and as network-centric applications get more complex, our
understanding of the Internet continues to diminish. The world
is often surprised with security breaches, such as Internet
worms and Denial of Service (DoS) attacks, and the extent of
unclassified traffic due to applications that use dynamic ports.

Current monitoring standards often force administrators to
trade-off functionality for interoperability [1]. Passive traffic
monitoring and capture has been regarded as the main solution
for advanced network monitoring and security systems that
require fine-grained performance measurement, such as “deep”
packet inspection [2]. Current passive network monitoring
applications are commonly based on data gathered at a single
observation point. For instance, Network Intrusion Detection

Systems (NIDS) usually run on a single monitoring host
that captures the network packets and processes them by
performing tasks such as filtering, TCP stream reassembly and
pattern matching [3].

Several emerging applications would benefit from moni-
toring data gathered at multiple observation points across a
network. For instance, Quality of Service (QoS) applications
could be based on traffic characteristics that can be computed
only by combining monitoring data from both the ingress and
egress nodes of a network. However, a distributed monitoring
infrastructure can be extended outside the border of a single or-
ganization and span multiple administrative domains across the
Internet. The installation of several geographically distributed
network monitoring sensors provides a broader view of the
network in which large-scale events could become apparent.

Recent research efforts [4]–[6] have demonstrated that a
large-scale monitoring infrastructure of distributed cooperative
monitors can be used for building Internet worm detection
systems. Distributed DoS attack detection applications would
also benefit from multiple vantage points across the Internet.
Finally, user mobility necessitates distributed monitoring due
to nomadic users who change locations frequently across
different networks.

It is clear from the above that distributed network monitor-
ing is becoming necessary for understanding the performance
of modern networks and for protecting them against security
breaches.

This paper presents the design, deployment and achieve-
ments of LOBSTER, a large-scale infrastructure for distributed
passive network monitoring. LOBSTER provides an advanced
pilot European passive Internet traffic monitoring infrastruc-
ture that improves our understanding of the Internet and
contributes towards solving difficult performance and secu-
rity problems. Based on appropriate abstractions and willing
cooperation among points of presence, LOBSTER contributes
towards effectively monitoring the underlying network, pro-
viding early warning for security incidents, and providing
accurate and meaningful measurements of performance.

The main goal of LOBSTER is to deploy an advanced
pilot European Internet Traffic Monitoring Infrastructure based
on passive monitoring sensors at speeds starting from 2.5



Gbps and possibly up to 10 Gbps. It also aims to develop
appropriate data anonymising tools to prohibit unauthorized
tampering with the original traffic data, and to develop novel
applications to improve network monitoring, such as traffic
characterization and zero-day worm spread detection. Another
objective is to provide properly anonymised traffic data to
network researchers and security analysts.

Till now the LOBSTER monitoring infrastructure consists
of 36 sensors worldwide, most of them located in Europe,
operating up to 35 Gbit/sec totally and monitoring about 2.5
million IP addresses. These LOBSTER monitoring sensors run
8 different applications for performance and security monitor-
ing. To the best of our knowledge, LOBSTER constitutes the
largest platform for Internet traffic monitoring in Europe.

The paper continues with a description of the LOBSTER
platform high level architecture in Section II. Section III in-
troduces the Distributed Monitoring Application Programming
Interface which facilitates the development of new LOBSTER
applications, while Section IV presents the architecture of a
distinct monitoring sensor. The mechanisms for ensuring only
authorized use of the monitoring sensors and for preserving
the privacy of the monitored organizations are described in
Section V. Section VI outlines several useful applications
developed by LOBSTER for performance and security moni-
toring, while Section VII presents the current deployment of
the distributed infrastructure around the world. Section VIII
gives details about the availability of the software and finally
Section X concludes the paper.

II. THE LOBSTER PLATFORM ARCHITECTURE

The need for elaborate monitoring of large-scale network
events and characteristics requires the cooperation of many,
possibly heterogeneous, monitoring sensors, distributed over
a wide-area network, or several collaborating Autonomous
Systems (AS). In such an environment, the processing and
correlation of the data gathered at each sensor gives a broader
perspective of the state of the monitored network, in which
related events become easier to identify.

LOBSTER aims to deploy a large scale infrastructure
for distributed Internet traffic monitoring, based on passive
monitoring sensors that are located across Europe. Figure 1
illustrates a high-level view of the LOBSTER distributed
passive network monitoring infrastructure. Monitoring sensors
are distributed across several autonomous systems, with each
AS having one or more monitoring sensors. Each LOBSTER
sensor may monitor the link between the AS and the Internet
(as in AS 1 and 3), or an internal link of a local sub-network
(as in AS 2). An authorized user, who may not be located in
one of the participating ASes, can run monitoring applications
that require the involvement of an arbitrary number of the
available monitoring sensors.

To support collaborative passive network monitoring across
a large number of geographically distributed—and possibly
heterogeneous—sensors, LOBSTER needs a uniform access
platform that will provide to the monitoring applications a
common interface for concurrent access to several distributed

sensors. This platform is realized by introducing an Ap-
plication Programming Interface for Distributed Monitoring,
called DiMAPI. Based on the network flow scope abstraction,
DiMAPI enables the manipulation of compound network flows
that may consist of traffic captured at several geographically
distributed monitoring sensors. DiMAPI allows monitoring
applications to interact concurrently with multiple remote
sensors across the Internet. It provides a flexible and expressive
programming interface that fulfills the needs of emerging
application and it is able to exploit specialized monitoring
hardware, when it is available, transparently to the appli-
cations. The basic functionality of DiMAPI is described in
Section III.

Each LOBSTER sensor runs a monitoring daemon which
is responsible for packet capturing and processing. A commu-
nication agent accepts requests from monitoring applications,
based on DiMAPI, and forwards them to the monitoring dae-
mon. The monitoring daemon performs the packet processing
imposed by the application and produces the corresponding
results, that are returned to the applications through the com-
munication agent. An authentication daemon is responsible to
authenticate the authorized users before starting to run their
monitoring applications in each sensor, while the monitoring
daemon is responsible to enforce discrete data anonymiza-
tion policies for applications of different group of users, as
explained in Section V. The components of a LOBSTER
monitoring sensor are further discussed in Section IV.

The LOBSTER monitoring applications are developed
based on DiMAPI. Each application first creates a network
flow scope with a set of monitoring sensors and then config-
ures the flow, by restricting the packets that consist this flow
and defining the processing that will be performed by each
monitoring daemon. Finally, the monitoring sensors return the
results to the application, periodically or upon requests, which
are responsible to correlate, analyze and present them to the
end users.

A large-scale network monitoring infrastructure, like LOB-
STER, consisting of many sensors across the Internet is
exposed to several threats that may disrupt its operation, so
privacy and security issues must be concerned. The authenti-
cation daemon provides access control by authenticating each
user before starting an application, so non-authorized users
cannot misuse the LOBSTER infrastructure neither obtain
access to sensitive data. Moreover, since all communication
between user applications and the remote sensors will be
made through public networks across the Internet, encryption
using the Secure Sockets Layer protocol (SSL) ensures the
confidentiality of the transferred data. Finally, LOBSTER is
a distributed monitoring infrastructure that promotes sharing
of network packets and statistics between different parties,
so the exchanged data should be anonymized before given
to monitoring applications for security, privacy, and business
competition concerns that may arise due to the lack of trust
between the collaborating parties. Since different users and
applications may require different levels of anonymization,
in LOBSTER anonymization mechanism each user belongs



Internet

Autonomous
System 1

Autonomous
System 3

Autonomous
System 2Local

Network 1

Local
Network 2

Monitoring Sensor

User

Fig. 1. A high-level view of a distributed passive network monitoring infrastructure.

to a group, called virtual organizations, in which different
anonymizations policies are applied, configured by the sensors
administrators.

III. THE DISTRIBUTED NETWORK MONITORING API
In order to take advantage information from multiple van-

tage points in LOBSTER, monitoring applications need a uni-
form access platform for interaction with several remote mon-
itoring sensors. In this extent, we have developed DiMAPI [7],
an API for distributed passive network monitoring, that fulfills
this requirement by facilitating the concurrent programming
and coordination of a set of remote sensors within a single
monitoring application. DiMAPI enables users to efficiently
configure and manage any set of remote passive monitoring
sensors, acting as a middleware to homogeneously use a large
distributed monitoring infrastructure. Furthermore, DiMAPI
exploits any specialized hardware available at the monitoring
sensors, and efficiently shares the monitoring infrastructure
among many users.

A. Network Flow Scope

One of the main novelties of DiMAPI is the introduction
of the network flow scope, a new attribute of network flows.
In DiMAPI, each flow is associated with a scope that defines
a set of monitoring interfaces which are collectively used for
network traffic monitoring.

Generally, given an input packet stream, a network flow
is defined as a sequence of packets, subset of the original
packet stream, that satisfy a given set of conditions [8]. These
conditions can be arbitrary, ranging from simple header-based
filters to sophisticated protocol analysis and content inspection
functions.

The notion of scope in DiMAPI enables a network flow to
have as input packets from several monitoring interfaces. With
this definition, the abstraction of the network flow remains

intact: a network flow with scope is still a subset of the
packets of an input packet stream. However, the input packet
stream over which the network flow is defined may come
from more than one monitoring points. In this way, when
a monitoring application performs operations to manipulate
or extract information from a network flow with a scope
of multiple sensors, it effectively manipulates and extracts
information concurrently from all these monitoring points.

In the example of Figure 2, a monitoring application creates
a network flow associated with two remote sensors located in
two different organizations, FORTH and UNINETT. The user’s
monitoring application restricts the packets of the flow to only
those that are destined to some web server, i.e., the packets
with destination port 80. As a result, the network flow consists
of packets with destination port 80 that are captured from both
UNINETT’s and FORTH’s sensors.

B. Basic Operations of DiMAPI

DiMAPI builds on the generalized network flow scope ab-
straction and offers a standardized API, flexible and expressive
enough to capture emerging application needs.

Central to the operation of DiMAPI is the action of creating
a new network flow scope:

int mapi_create_flow(char *scope)

This call creates a network flow and returns a flow de-
scriptor fd that refers to it. By default, a newly created
flow consists of all network packets that go through the
monitoring interfaces that are included in scope. When a
network flow is not needed any more, it can be closed using
mapi_close_flow().

The abstraction of the network flow allows users to treat
packets belonging to different flows in different ways. For
example, after specifying which packets will constitute the
flow, a user may be interested in capturing the packets (e.g., to



sensor.uninett.no

mon1.ics.forth.gr

Internet

Packet to port 80

fd = mapi_create_flow(

"sensor.uninett.no:/dev/dag0,"

"mon1.ics.forth.gr:eth0");

mapi_apply_function(fd,

"BPF_FILTER", "dst port 80");

User

Fig. 2. An example of a network flow scope with multiple sensors.

record an intrusion attempt), or in just counting the number of
packets and their lengths (e.g., to measure the bandwidth usage
of an application), or in sampling the packets (e.g., to find the
IP addresses that generate most of the traffic). DiMAPI allows
users to clearly communicate to the underlying monitoring
systems these different monitoring needs by applying functions
to network flows:

int mapi_apply_function(int fd, char * funct,
...)

The above call applies the function funct to every packet
of the network flow fd in each of the monitoring sensors
in the scope, and returns a relevant function descriptor fid.
Depending on the applied function, additional arguments may
be passed. Based on the header and payload of the packet, the
function will perform some computation, or may optionally
discard the packet.

DiMAPI provides several predefined functions that cover a
broad range of standard monitoring needs. Several functions
are provided for restricting the packets that will constitute
a network flow to those that satisfy an appropriate filter or
other condition, e.g., packets that are destined to a specific
port number or packets that contain a specified byte sequence.
Many other functions are provided for processing the traffic of
a flow, like counting the number of packets and bytes of a flow,
sampling packets, computing a digest of each packet, stream
reassembly, NetFlow-like data generation and other. Moreover,
DiMAPI users are able to add their own custom functions for
operating on packets.

After applying the desirable list of functions to a network
flow, the user calls the function

int mapi_connect(int fd)

in order to connect to the flow with flow descriptor fd to
start receiving results from each sensor.

These functions give the opportunity for processing packets
and computing network traffic metrics locally at the mon-
itoring sensors, without receiving all the actual packets in

the remote applications. The monitoring sensors send to the
remote applications only the results they need, according to
the applied functions. This approach is much more effective,
since the network overhead is minimized and the latency
is significantly reduced when the sensors sends only useful
result summaries instead of all the captured packets to the
applications. Results retrieval is achieved using the following
call:

mapi_results_t* mapi_read_results(int fd,
int fid)

The above call receives the results computed by the function
denoted by the function descriptor fid, which has been
applied to the network flow fd and returns a data structure
with the results.

Once a flow is established, packets belonging to that flow
can be sent one-at-a-time using the following blocking call:

struct mapipkt * mapi_get_next_pkt(int fd,
int fid)

The above function reads the next packet that belongs to
flow fd.

IV. LOBSTER SENSOR ARCHITECTURE

Figure 3 illustrates the architecture of a LOBSTER moni-
toring sensor. The overall architecture includes one or more
monitoring interfaces for capturing traffic, a monitoring dae-
mon, which provides optimized passive monitoring services, a
DiMAPI stub, for writing monitoring applications, a commu-
nication agent, which facilitates communication with multiple
remote monitoring applications, an authentication daemon for
access control and finally, the actual monitoring applications.

The monitoring sensor machine is equipped with one or
more monitoring interfaces for packet capture, and optionally
an additional network interface for remote access. The latter
is the sensor’s “control” interface, and ideally it should be
separate from the packet capturing interfaces.



Monitoring
Interface

Communication
Agent (commd)

UNIX socket /
shared memory

Captured Packets

Application 1

Monitoring Sensor
User A

TCP
socket

Application 2TCP
socket

DiMAPI stub
DiMAPI stub

DiMAPI stub

Monitoring
Daemon (mapid)

User B

Fig. 3. Architecture of a LOBSTER monitoring sensor.

Packets are captured and processed by a monitoring dae-
mon, called mapid. Mapid is a single process that serves
multiple monitoring applications in parallel, so makes it pos-
sible to perform several performance optimizations and lead to
better performance if compared with stand-alone monitoring
applications that are not based in DiMAPI. Also, mapid
is optimized to perform intensive monitoring tasks at high
speeds, exploiting any features of the underlying hardware. Lo-
cal monitoring applications communicate directly with mapid
via a subset of the DiMAPI stub that is optimized for fast
and efficient local access. This is achieved by performing
all communication between local applications and mapid via
shared memory and UNIX sockets [8].

Remote applications must be able to communicate their
monitoring requirements to each sensor through the Internet.
In order to avoid any modifications to mapid, an intermediate
communication agent, called commd, is responsible for han-
dling all the communication between mapid and the remote
applications. Commd, which runs on the same host as mapid,
acts as a proxy for the remote applications, forwarding their
requests to mapid, and sending back to them the computed re-
sults. The DiMAPI stub is responsible to support the DiMAPI
functionality in a monitoring application, running completely
transparently for the user.

Finally, an authentication daemon is responsible to provide
access control, so that only authorized users will be able to
use the monitoring sensor through an application. Whenever
a user’s monitoring application connects to a LOBSTER
monitoring sensor and requests the creation of a network flow,
it passes the user’s certificate. The authentication daemon per-
forms access control based on the user’s request and certificate.
This certificate also specify the usage policy applicable to that
user.

V. AUTHENTICATION AND ANONYMIZATION MECHANISM

Since LOBSTER’s goal is to deploy a large infrastructure
of network monitoring sensors, some critical concerns are

the authentication and authorization of the platform’s users
and the confidentiality of the shared data. LOBSTER sensors
are to be deployed among different organizations, so privacy
concerns of each organization should be taken in mind. On
the other hand, monitoring applications should have sufficient
information in order to perform the indented analysis of the
data.

Having all these in mind, we created an authentication,
authorization and data anonymization mechanism to preserve
both the privacy of the users in the monitored networks and
also the usefulness of the monitoring data.

We used the abstraction of Virtual Organizations (VOs), that
has been successfully used in the area of GRID Computing.
A VO represents a group of users that have the same needs
and the same privileges. A similar approach is used in the
UNIX operating system user groups. Each user has a unique
identifier, but also belongs to a group. Access is defined on
user level, but also in group level. For example, a user can set
the permissions of a file to be readable only by a specific group
of users. The advantage of this approach is the simplification
of access controls, since there is no need to make decisions
per user basis, but per groups instead.

LOBSTER uses a similar approach. A virtual organization,
in LOBSTER, represents a group of people with common
research interests and needs, which will have common access
privileges. For example, assume researchers in the field of
Internet security that run a project to identify worm outbreaks.
In order to accomplish this, they need access to network traffic
and more specifically to packet payloads. To enable these
researchers use the LOBSTER infrastructure, we create a new
VO, named wormTeam. Every sensor that supports this VO
should define a policy which will be applied to all the members
of the wormTeam.

Each LOBSTER user can be member of several VOs.
When, however, LOBSTER users try to access packets from
a particular monitoring sensor, they must specify one of the
VO’s that they belong to. Thus, we need the appropriate
mechanisms for registering LOBSTER users with a VO and
then mapping VOs with specific anonymization policies.

When deploying a sensor, the local administrator setups the
configuration file by adding the virtual organizations that wants
to support. For each VO, the monitoring daemon applies a
different anonymization policy to the packets, as defined in the
configuration file, and then passes them to the network flows
created from users that belong to this VO. Figure 4 shows
how different virtual organizations are handled inside mapid.
Each captured packet is applied to different anonymization
operations for every VO’s policy. Mapid stores the specifica-
tions of the network flows created by the users of each VO
and dispatches the anonymized packets to them for further
processing. Thus, a single packet is anonymized once for all
the active flows of a specific virtual organization.

In the example of Figure 4, the sensor supports three VOs,
a security VO, a network measurement VO and a traffic
classification VO. For the security VO access to the whole
packet payload is needed, so the chosen anonymization policy



Fig. 4. The LOBSTER anonymization mechanism: different anonymization policies are performed for each virtual organization.

is to map IP addresses and keep the payload untouched. On the
other hand, the measurement VO does not need any access to
the packet payload but needs information from the header of
both IP and transport layer. Finally, the traffic classification VO
is given access to the packet payload and has prefix-preserving
anonymization on the IP addresses.

A new user of LOBSTER, that wants to become member
of an existing virtual organization, must contact an external
authority and get a certificate (login name and password)
which can be used for running applications using a set of
monitoring sensors. As soon as the user gets the certificate,
(s)he can run monitoring applications by calling a specific
DiMAPI function for authentication before creating a network
flow. Each monitoring sensor runs an authentication daemon
which receives this authentication requests and verifies the
user’s certificate by contacting the external authority. Also,
the external authority verifies the virtual organization that the
user belongs to.

VI. APPLICATIONS

This section describes the various applications that are
currently operating on the LOBSTER infrastructure. Though a
user can easily deploy its own applications, LOBSTER offers
a variety of applications ready to use. We classify the appli-
cations by the field of interest. We first describe applications
used for network performance monitoring. These applications
include per-application traffic categorization, available band-
width monitoring, packet loss measurements and generic net-
work statistics. As a second application category, we present
a group of tools for flexible traffic anonymization. Finally, we
present a class of security applications, that mainly facilitate

for attack detection.

A. Performance Monitoring

1) appmon: Appmon [9] is an application for network
traffic characterization. It splits the consumed bandwidth to the
applications that generated it and identifies the top hosts with
the highest bandwidth consumption. In order to achieve identi-
fication of network traffic we use three different approaches for
different kind of applications. For complex applications, which
use dynamically generated port numbers, we use sophisticated
trackers that deploy deep packet inspection it two forms.
The on form is to look inside the application message for
applications-specific protocol patterns. The other form is to
fully decode the applications protocol to identify the new,
dynamically generated port number which is going to be
used and categorize the corresponding flows to belong to this
application. For applications that are based on well known
static port numbers for data transfers, we use BPF filters in
order to categorize them. We plan to implement application
decoders even for more simple applications in order to avoid
misclassification of other traffic or duplicate classifications of
a certain flow.

Figure 5 shows the per-application traffic distribution as pre-
sented by appmon in one of the currently deployed LOBSTER
sensors. The figure shows both inbound and outbound traffic
for a period of one month, using two hour averages.

2) abw: ABW [10] application monitors how bandwidth
usage on a network link is divided into various protocols in
different layers corresponding to OSI model (e.g., transport
layer or application layer, and also IPv6 and multicast traffic).
It indicates bandwidth usage in different timescales including



Fig. 5. Per-application traffic distribution as presented by appmon.

short-term samples (1 second averages) in order to detect short
peaks. It shows real bandwidth dynamics on a monitored line,
without stressing user traffic with performance test, that is an
inherent property of passive network monitoring.

3) Stager: Stager is an application for aggregating and
presenting network statistics. Stager is generic and can be cus-
tomized to present and process any kind of network statistics.
The backend collects data and stores reports in a database,
automatically handling the aggregation of hourly statistics into
days, weeks, and months. The Web frontend presents data in
tables, matrices, or plots and the displayed reports are fully
customizable.

4) Packet Loss: The Packet Loss application [11] uses
distributed passive network monitoring for real-time estimation
of the packet loss ratio between different domains. It is based
on tracking the expired flows at each monitoring sensor. Each
monitoring sensor counts the packets per each flow (packets
with the same protocol, source and destination IP address
and source and destination port) and consider a flow as
expired after being inactive for a specific time interval (e.g. 30
seconds). Then, by comparing statistics for the same expired
flow from different sensors, we can accurately compute the
packet loss for this flow, avoiding to consider as lost any
packets that are still in transfer. Using DiMAPI, a central
monitoring application correlates the results from different
pairs of LOBSTER monitoring sensors and computes the
actual packet loss ratio between each pair of sensors. This
passive monitoring approach for packet loss estimation is
accurate and reliable, while at the same time exhibits inherent

advantages such as scalability and a non-intrusive nature.
5) LONT: The LOBSTER Network Telescope is an applica-

tion that performs distributed measurements with LOBSTER
and afterward post processes and visualizes the results. The
set-up of the application is generic and current post processing
supports the visualization of source or filtered packets e.g.
from SPAM or worms. The application tracks a specific service
for suspicious Internet traffic. The user specifies a description
of suspected traffic and the desired form of post processing
and results. The LONT service translates this description into
MAPI calls and instructs LOBSTER nodes to examine the
network for the specified traffic.

B. Traffic Anonymization

Since LOBSTER promotes the sharing of network packets
and statistics between different parties, exchanged data should
be anonymized before made publicly available for security,
privacy, and business competition concerns that may arise
due to the lack of trust between the collaborating parties.
In these extent LOBSTER provides an extensive network
anonymization tool [12], that implements several predefined
policies and also supports the easy development of any possi-
ble anonymization policy.

C. Cyberattack Detection

1) dIDS: dIDS is a distributed intrusion detection tool. It
creates network flows for intrusion detection rules, and applies
them in several monitoring sensors. In this way it manages to
provide the defense capabilities needed to respond to large-
scale attacks.

2) EAR: EAR [13] is an application for zero-day Inter-
net worm detection based on the identification of packets
with similar contents directed to multiple destination hosts.
EAR monitors the initial part of every TCP connection and
processes the data stream sent from the client (connection
initializer) to the server. It creates fingerprints on substrings
of constant length from the data and counts the occurrence of
these fingerprints among different connections. When a certain
threshold is reached, EAR issues an alert which denotes that
a worm is trying to spread itself over the Internet.

3) nemu: nemu stands for Network-level Emulation. The
application implements a code emulation technique that tries
to detect polymorphic attacks [14], [15]. These attacks are hard
to detect using traditional signature based methods, since the
attack payload changes from host to host.

Nemu, based on passive network monitoring, loads and
executes, in a x86 emulator, the payload of the packets
designated to an internal service. If the packet contains an
attack then the emulator will detect executable code into the
payload.

A major advantage of this technique is that it is able to
detect zero day attacks without the need of payload-specific
signatures.

Figure 6 presents an overall view of the attack activity in
one of the LOBSTER sensors during the last year, based on
the attacks detected by nemu. The upper part of the figure



Ta
rg

et
 p

or
t

445
143

1025
80
42

5000
135

2967
1051

453
139

Dec’06 Jan’07 Feb’07 Mar’07 Apr’07 May’07 Jun’07 Jul’07 Aug’07 Sep’07 Oct’07 Nov’07

A
tta

ck
s 

pe
r h

ou
r

0

50

100

150

200

250

Fig. 6. Attacks captured by nemu during the last year. Upper part shows attack activity according to the targeted port.

shows the attack activity according to the targeted port. Red
dots show attacks launched from external IP addresses, while
the gray dots denote attacks originated from infected hosts
within the monitored network.

VII. DEPLOYMENT

During the last three years, LOBSTER deployed 36 oper-
ational passive monitoring sensors worldwide, in 12 different
countries and 16 different organizations, that are mainly ISPs
and NRENs networks. Figure 7 shows the deployment of these
sensors around the world. Most sensors are located in Europe,
while sensors also exist at Asia (Singapore) and at the United
States of America (Columbia). These sensors, operating up
to gigabit speeds, are together able to monitor more than
2.5 million IP addresses at any time, using the applications
developed in LOBSTER.

Furthermore, as a result from the security applications
deployed at these sensors, more than 600,000 sophisticated
cyberattacks have been detected and captured by LOBSTER.

VIII. AVAILABILITY

All tools developed by the LOBSTER project as well as
the distributed monitoring application programming interface
(DiMAPI) are available through the project’s website: http:
//www.ist-lobster.org. To facilitate the easy deployment of new
LOBSTER sensors we also offer a precompiled linux distribu-
tion that includes all the necessary LOBSTER software. This
distribution is available on a live cd and can easily run in any
computer without any effort for installation. LOBSTER also
encourages the sharing of network data among researchers.
Thus, we make publicly available anonymized network traces
with the attacks that we have detected so far. These traces can
be found at http://lobster.ics.forth.gr/traces.

IX. RELATED WORK

As network traffic monitoring is becoming increasingly im-
portant for the operation of modern networks, several passive
monitoring infrastructures have been proposed.

CoMo [16] is a passive monitoring infrastructure which
allows users to query network data gathered from multiple
administrative domains, by providing a number of generic
query mechanisms. It is based on a number of distributed
monitoring nodes, consisting of the CoMo core processes and
a number of user defined plug-in modules. Each one of these
nodes is able to answer queries based on the modules that are
plugged-in.

A similar approach is followed by Gigascope [17] that is a
stream database for storing captured network data in a central
repository for further analysis using the GSQL query language.
Users are able to specify special properties to query operators
using a data definition language. Gigascope is able to satisfy
fast simple network monitoring needs by serving user’s SQL-
like queries from a central database.

Sprint’s passive monitoring system [18] was installed within
the Sprint IP backbone network and it was collecting data from
different monitoring points into a central repository for further
analysis.

All the above infrastructures are mainly based on databases
with predefined custom schemes which collect data from dis-
tributed sensors and accept SQL-like queries from monitoring
applications. In order to implement new functionality, new
plugins must be written and embedded within the monitoring
sensors. Compared to LOBSTER, none of these systems
provides any API which will aid the developer to create novel
distributed monitoring applications. LOBSTER adopts a dif-
ferent approach, by providing DiMAPI for distributed passive
monitoring application development instead of supplying with
a database for data queries. Moreover, LOBSTER implements
a data anonymization mechanism to cope with any possible
privacy issues.

Arlos et al. [19] propose DPMI, a distributed passive
measurement infrastructure that supports various monitoring
equipment within the same administrative domain. DPMI
defines the means of creating a testbed that will provide
passive monitoring capabilities to data consumers based on



Fig. 7. Large-scale LOBSTER deployment with 36 sensors around the world.

a number of predefined measurement points
ETOMIC [20] is a European Union sponsored effort, that

aims at providing a Paneuropean traffic measurement in-
frastructure that facilitates for any kind of active probing
techniques using highprecision, GPS-synchronized monitoring
nodes.

Finally, a lot of work is being done in the area of monitoring
of high performance computing systems, such as clusters and
Grids. Ganglia [21] is a distributed monitoring system based
on a hierarchical design targeted at federations of clusters.
GridICE [22] is a distributed monitoring tool integrated with
local monitoring systems with a standard interface for pub-
lishing monitoring data. These systems could utilize at lower
levels the functionality offered by DiMAPI.

X. CONCLUSION

In this paper we presented LOBSTER, a large scale infras-
tructure for Internet traffic monitoring. LOBSTER sensors are
able to perform sophisticated operations on top of commodity
hardware, benefiting from a novel Distributed Monitoring
Application Programming Interface.

By providing user authentication and data anonymization,
LOBSTER facilitates the cooperation among different or-

ganizations and different network research needs. Distinct
organizations can protect their privacy by enforcing policies
regarding the network data exposed to the users of other
organizations. By providing a flexible anonymization frame-
work, different policies can be applied for different groups of
users that will not decrease their understanding of the network
traffic.

LOBSTER software includes several ready to use applica-
tions for effective network monitoring and security. Though,
any user is able to write new applications that fulfill his needs
utilizing the extended functionality offered by DiMAPI.

LOBSTER is fully operating for the last years, counting 36
monitoring sensors so far. These sensors are located mostly
in Europe, but collaboration also exists with organizations
from all around the world. Monitoring about 2.5 million IP
addresses, LOBSTER is able to identify the magnitude of file
sharing traffic and capture more than 600,000 sophisticated
cyberattacks. To the best of our knowledge, LOBSTER con-
stitutes the larger platform for Internet monitoring in Europe
and is among the largest platforms worldwide.

The future of the LOSBTER infrastructure includes the
development and deployment of new potential applications
for present and future network monitoring needs and the



expansion of the infrastructure by deploying new monitoring
sensors and involve more organizations. The ease of deploy-
ment of a new monitoring sensor and the mechanisms provided
by LOBSTER for ensuring privacy give opportunities for
significant extension of the current infrastructure.

ACKNOWLEDGMENT

This work was supported by the IST project LOBSTER
funded by the Europen Union under Contract No. 004336.
The work of Demetris Antoniades, Michalis Polychronakis,
Antonis Papadogiannakis and Evangelos Markatos was also
supported by the GSRT project Cyberscope funded by the
Greek Secretariat for Research and Technology under the
Contract No. PENED 03ED440.

REFERENCES

[1] Peter Morriessy, “RMON2: To the Network Layer and Beyond!” Net-
work Computing, Feb. 1998, http://www.nwc.com/903/903f1.html.

[2] M. Grossglauser and J. Rexford, “Passive traffic measurement for IP
operations,” in The Internet as a Large-Scale Complex System, 2005,
pp. 91–120.

[3] M. Roesch, “Snort: Lightweight intrusion detection for networks,”
in Proceedings of the 1999 USENIX LISA Systems Administration
Conference, November 1999. [Online]. Available: http://www.snort.org

[4] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and early
warning for internet worms,” in Proceedings of the 10th ACM conference
on Computer and communications security (CCS), 2003, pp. 190–199.

[5] J. Wu, S. Vangala, L. Gao, and K. Kwiat, “An effective architecture
and algorithm for detecting worms with various scan techniques,”
in Proceedings of the 11th Network and Distributed System Security
Symposium (NDSS), 2004.

[6] K. Wang, G. Cretu, and S. J. Stolfo, “Anomalous payload-based worm
detection and signature generation,” in Proceedings of the 8th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID),
2005.

[7] P. Trimintzios, M. Polychronakis, A. Papadogiannakis, M. Foukarakis,
E. P. Markatos, and A. Øslebø, “DiMAPI: An application programming
interface for distributed network monitoring,” in Proceedings of the 10th

IEEE/IFIP Network Operations and Management Symposium (NOMS),
April 2006.

[8] M. Polychronakis, K. G. Anagnostakis, E. P. Markatos, and A. Øslebø,
“Design of an Application Programming Interface for IP Network
Monitoring,” in Proceedings of the 9th IFIP/IEEE Network Operations
and Management Symposium (NOMS’04), Apr. 2004, pp. 483–496.

[9] D. Antoniades, M. Polychronakis, S. Antonatos, E. P. Markatos, S. Ubik,
and A. Oslebo, “Appmon: An application for accurate per application
traffic characterization,” in Proceedings of IST Broadband Europe 2006
Conference, December 2006.

[10] S. Ubik, D. Antoniades, and A. Oslebo, “Abw–short-timescale passive
bandwidth monitoring,” in Sixth International Conference on Network-
ing, 2007.

[11] A. Papadogiannakis, A. Kapravelos, M. Polychronakis, E. P. Markatos,
and A. Ciuffoletti, “Passive end-to-end packet loss estimation for grid
traffic monitoring,” in Proceedings of the CoreGRID Integration Work-
shop, 2006.

[12] D. Koukis, S. Antonatos, D. Antoniades, E. Markatos, and P. Trim-
intzios, “A Generic Anonymization Framework for Network Traffic,”
Communications, 2006 IEEE International Conference on, vol. 5, 2006.

[13] P. Akritidis, K. Anagnostakis, and E. Markatos, “Efficient content-based
detection of zero-day worms,” Communications, 2005. ICC 2005. 2005
IEEE International Conference on, vol. 2, 2005.

[14] M. Polychronakis, K. Anagnostakis, and E. Markatos, “Network-level
Polymorphic Shellcode Detection using Emulation,” in Proceedings of
the Third Conference on Detection of Intrusions and Malware and
Vulnerability Assesment (DIMVA), 2006.

[15] ——, “Emulation-Based Detection of Non-self-contained Polymorphic
Shellcode,” in Proceedings of the 10th International Symposium on
Recent Advances in Intrusion Detection (RAID), 2007.

[16] G. Iannaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, and L. Rizzo,
“The CoMo White Paper,” 2004, http://como.intel-research.net/pubs/
como.whitepaper.pdf.

[17] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigascope:
a stream database for network applications,” in Proceedings of the ACM
SIGMOD international conference on Management of data, 2003.

[18] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannaki,
and F. Tobagi, “Design and Deployment of a Passive Monitoring
Infrastructure,” in Proceedings of the Passive and Active Measurement
Workshop, Apr. 2001.

[19] P. Arlos, M. Fiedler, and A. A. Nilsson, “A distributed passive measure-
ment infrastructure,” in Proceedings of the 6th International Passive and
Active Network Measurement Workshop (PAM’05), 2005, pp. 215–227.

[20] D. Morato, E. Magana, M. Izal, J. Aracil, F. Naranjo, F. Astiz, U. Alonso,
I. Csabai, P. Haga, G. Simon et al., “The European Traffic Observatory
Measurement Infrastructure (ETOMIC): a testbed for universal active
and passive measurements,” Testbeds and Research Infrastructures for
the Development of Networks and Communities, 2005. Tridentcom 2005.
First International Conference on, pp. 283–289, 2005.

[21] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience,” Parallel
Computing, vol. 30, no. 7, Jul. 2004.

[22] S. Andreozzi, N. D. Bortoli, S. Fantinel, A. Ghiselli, G. Rubini,
G. Tortone, and M. Vistoli, “GridICE: a Monitoring Service for Grid
Systems,” Future Generation Computer Systems Journal, vol. 21, no. 4,
pp. 559–571, Apr. 2005.


