
Efficient Content-Based Detection of Zero-Day Worms

P. Akritidis?, K. Anagnostakis†, E. P. Markatos?

?Institute of Computer Science
Foundation for Research & Technology Hellas
P.O. Box 1385 Heraklio, GR-711-10 GREECE

Email: {akritid,markatos}@ics.forth.gr

†Distributed Systems Laboratory
CIS Department, Univ. of Pennsylvania

200 S. 33rd Street, Phila, PA 19104, USA
Email: anagnost@dsl.cis.upenn.edu

Abstract— Recent cybersecurity incidents suggest that Internet
worms can spread so fast that in-time human-mediated reaction
is not possible, and therefore initial response to cyberattacks has
to be automated. The first step towards combating new unknown
worms is to be able to detect and identify them at the first stages
of their spread. In this paper, we present a novel method for
detecting new worms based on identifying similar packet contents
directed to multiple destination hosts. We evaluate our method
using real traffic traces that contain real worms. Our results
suggest that our approach is able to identify novel worms while
at the same time the generated false alarms reach as low as zero
percent.

Index Terms— Security, network-level intrusion detection, In-
ternet worm detection.

I. I NTRODUCTION

Recent cyberattack outbreaks have shown that Internet
worms are able to infect tens of thousands of Internet com-
puters in less than one hour. For example, the Witty Worm
was able to infect more than 20,000 victim computers in less
than 60 minutes [1]. Similarly, the Sapphire/Slammer worm
was able to infect more than 70,000 victim computers in less
than 15 minutes [2]. To make matters worse, theoretic results
suggest that well-prepared worms can spread even faster than
the above examples, infecting the majority of their victim
population in less than 10 minutes [3], [4].

Fortunately, the current generation of Internet worms can be
effectively blocked at the network level using filtering mech-
anisms, such as those employed by firewalls and Intrusion
Prevention Systems. These mechanisms are usually based on
rules or signatures that describe the worms. However, the
generation of those signatures currently requires considerable
human effort and consequently takes a lot of time. The current
practice suggests that signatures for firewalls and Intrusion
Prevention Systems are usually available several hours after
the initial outbreak of the worm, which implies that at the
current speeds of worm spread, signatures are availableafter
the worm has been spread to the majority of its victims. In
order to reduce the cost of each worm outbreak, we need
to develop methods that are able to detect the worm and
generate its signaturebefore the worm manages to infect a
large percentage of the vulnerable population, i.e. within the
first few minutes of its spread. Therefore, it is evident that
automatic worm detection and mitigation mechanisms need to
be studied.

In this paper we describe a method to detect Internet
worms that relies on popular packet payloads and investigate
its parameter space with the intention of eliminating false

positives. We show that three parameters, other than mere
popularity, play an important role in eliminating false posi-
tives: the multiplicity of targeted destinations, the length of
the considered content substrings, and their position within
their flows.

The rest of the paper is organized as follows: Section II
presents the description of our worm detection algorithm,
while section III presents its evaluation using realistic network
traffic. Section IV places our work in context by contrasting
it to related work, and finally section V summarizes and
concludes the paper.

II. WORM DETECTION ALGORITHM

In this section we present a worm detection method based
on four observations which are commonly found in known
worms:

• Diversity of Destinations: The network packets that be-
long to the same worm tend to have a very large number
of destinations. Actually, this seems to be an inherent
property of all the worms: worms tend to spread to as
many victims as possible, and therefore, their network
packets seem to have a large number of destinations.

• Spread by Clients: Most worms are usually spread by
clients, i.e. by computers that initiate a (usually TCP)
connection. This property, as well, seems to be an inher-
ent property of the aggressive worms. Indeed, in order for
a worm to spread fast, it needs to initiate connections to
its potential victims, rather than to wait for the potential
victims to connect to it.

• Payload Repetition: Several of the network packets that
belong to the same worm, tend to contain similar (if not
identical) payloads.1

• Small Size: Worms tend to be small in size, in order
to spread as fast as possible. A large worm size would
prolong infection time and consume bandwidth that could
be used for infecting other targets.

Well-known worms such as CODE-RED, Blaster and
Welchia, Sapphire, and the Witty worm, depicted all the above
four properties.

Thus, to identify new worms, our detection scheme identi-
fies common substrings that appear in the payloads of several
(client) packets, which are heading for lots of different desti-
nations. We capitalize on the small worm size observation by

1It has been proposed that future worms will be polymorphic and will be
able to change the payload of the network packets that carry the worm. The
detection of such worms is outside the scope of this paper.

for each reassembled packet in trace
for each fingerprint in packet

if fingerprint in cache
if packet destination not recorded

mark as new
record destination
if destinations > threshold

report
else

create new entry for fingerprint
record destination

Fig. 1. Pseudocode for worm detection algorithm without the fingerprint
selection optimization.

ignoring substrings whose connections have generated large
traffic.

Our starting point is the technique presented by Spring and
Wetherall [5] for identifying repetitive information transfers
using Rabin fingerprints [6], which we appropriately extend
for worm detection. We use a cache that holds substrings
encountered within a fixed period of time, each cache entry
contains an encountered string2 together with a list of distinct
destinations it was sent to, and the entries are indexed by
string.

Our algorithm operates as follows:
• Only traffic from theinitial part of client-to-serverflows

is processed.
• For each encountered string, if a corresponding cache en-

try exists and its distinct destination list does not include
the current destination, the entry is marked as new and
the current destination is recorded in the entry’s distinct
destination list. The number of distinct destinations is
then compared against a threshold, and an alert is issued
if the threshold has been reached.

• Otherwise, if the string is not already in the cache, a new
entry is created.

• Finally, old entries are evicted from the cache.
The pseudocode can be found in Figure 1.

A. Repetitive Traffic From Server Replies

Given that rapidly-spreading worms spread mostly through
clients, and not through servers, in our implementation we
discard server replies and process only client requests, thus
preventing content from popular servers from triggering false
positives. Our implementation relies on Snort’s [7] session
tracking to decide the direction of a packet.

B. Repetitive Packets vs. Repetitive Strings

Many worms are spread using identical packet payloads,
and therefore could be easily detected by identifying repeti-
tive packets seen in the network. However, sometimes entire
packets may be too coarse-grained for worm detection. For ex-
ample, the Witty worm [1], has actually implemented random
padding of packets. Therefore, in our approach, to identify

2In order to save space the entry contains a 32-bit fingerprint of the string.

payload repetition, instead of entire packets, we consider
packet substrings of a fixed length.

C. Stream Reassembly

Clever attackers may easily hide their attack into several
different fragmented packets that may be sent out-of-order.
To solve this problem, we have used the packet reassembly
mechanisms provided by the Snort NIDS [7]. We integrated
our filters with Snort in the form of a Snort preprocessor
plugin. This way we can take advantage of the existing
stream4 preprocessor that comes with Snort and reassembles
raw packets into larger ones. The reassembled packets are then
fed to the worm detection algorithm.

D. Flow Size Penalty

In this article we have used the crude criterion of ignoring
substrings appearing deeper than a fixed offset in their flows.
An elaborate worm could exploit this to evade detection by
transferring a sufficient amount of junk data before carrying
out its attack. However, a refinement of this mechanism that
weights each occurrence according to the traffic that has been
carried over its connection would transform this abrupt limit
into a smooth tradeoff between increased detection delay and
decreased worm size.

The main benefit of penalizing strings that appear in
large flows is to weaken the impact of peer-to-peer protocol
messages sent to multiple destinations over long-lived client
connections, preventing them from causing false positives.

E. Performance

For each encountered substring, the system records all the
destinations to which it has been sent. Fortunately, most
substrings will only be sent to a single destination before they
are evicted from the cache and therefore the space required
for recording more than one destination does not have to be
allocated for the majority of the encountered substrings.

Furthermore, to efficiently compute the hash values of
consecutive overlapping packet substrings we employ Rabin
fingerprints [6]. The Rabin fingerprintfα of an n-gram a is
computed according to the formulafα(a0, a1, . . . , an−1) =∑n−1

i=0 aiα
n−i−1. Rabin fingerprints can be used to incremen-

tally update the hash value of a sliding window over the
packet payload, by considering the contribution to the hash
of the next byte and removing the contribution to the hash of
the last byte of the previous window according to formula
fα(a1, a2, . . . an, an+1) = α(fα(a0, a1, . . . , an) − αna0) +
an+1. We perform the arithmetic modulo232 and use a large
prime for α.

However, even Rabin fingerprints employ a constant number
of operations for each and every byte of network traffic. Given
that modern networks deliver up to 10 Gigabytes of traffic per
second, even Rabin fingerprints impose a substantial computa-
tional overhead to the system. Furthermore, having to account
for each and every overlapping substring is impractical. We
use two mechanisms to reduce these overheads in our detection
scheme:
• Discard server replies
• Fingerprint selection

TABLE I

TOTAL WORM LENGTH, LENGTH OF THE ATTACK PORTION SENT FROM

CLIENT TO SERVER, PROTOCOLS, AND TARGETED PORTS FOR VARIOUS

WORMS.

Worm Total Length Attack Length Protocol Dst Port
Witty 600 B + padding 600 Bytes UDP random

Sapphire 376 Bytes 376 Bytes UDP 1434
CodeRedII 3,8KBytes 3,8KBytes TCP 80

Welchia 10KBytes 1,7KBytes TCP 135

1) Discard Server Replies:We have already mentioned in
section II-A that we ignore server replies and focus only
on client requests in order to reduce false positives. The
same mechanism improves performance as well. Indeed, server
replies are typically large contributors to Internet traffic. By
focusing our detection algorithm on client requests, instead
of server replies, we reduce the load of our detection mecha-
nism by having to compute fewer Rabin fingerprints without
reducing its accuracy.

2) Fingerprint Selection:It is impractical to process each
substring that starts at each and every byte of the network traf-
fic. For example, assume a network packet that ispacketsize
characters long. Assume also that our algorithm searches for
substrings which aren-bytes long. Then, for this specific
example, we will end up processingpacketsize − n + 1
substrings. Given that these substrings are highlyoverlapping,
it is possible to reduce the overhead of our approach without
reducing its accuracy by employing fingerprint selection, a
technique developed by Manber [8] for files and used by
Spring and Wetherall [5] for network traffic. Instead of con-
sidering all Rabin fingerprints, we sample them based on
their value. The amount of samples can be determined by the
number of bits set in a sampling mask. A fingerprint is further
processed only if the result of applying the mask to it is not
zero. A string that matches the sampling criteria is always
sampled, so its frequency is not reduced.

Note, that is is theoretically possible for an attacker to
exploit this sampling mechanism. Indeed, if the attacker knows
the parameters of Rabin fingerprints and the exact value of the
mask, (s)he will create worms whose content will never match
the mask and therefore will never be sampled. On the other
hand, these parameters could vary or the mask bits could be
shuffled at regular intervals, so that it would be practically
impossible for an attacker to avoid detection by carefully
crafting the body of the worm to avoid sampling.

III. E VALUATION

In this section we evaluate the effectiveness and efficiency
of our approach and investigate its parameter space using real
network traffic traces that contain a real worm.

A. Network Traffic Traces

Two sets of real network traffic traces, gathered from
FORTH’s Local Area Network in early 2004, have been used
for our evaluation. The monitored networks contain about 150
hosts. Each trace is about 5 Gbytes large and contains between
11.7 and 14.4 million network packets that represent traffic

TABLE II

CHARACTERISTICS OF THE TRACES USED IN THE EXPERIMENTS.

Trace TCP Packets TCP (Payload) Bytes Duration Attacks
TRACE-I 11,746,790 5,108,857,877 2h 102
TRACE-II 14,429,618 5,333,977,518 2h30m 57

from web clients, peer-to-peer programs, SMB shares, IMAP,
printers, etc. The traffic characteristics of the traces are shown
in table II.

B. Detection

In this section we explore the parameter space of the
worm detector that we have described. The parameters of the
experiments are:
• substring length,
• distinct destinations threshold,
• substring cache size,
• flow offset limit, and
• sampling mask.
We measure the following quantities:
• false positives, which are defined to be the number

of distinct flows that triggered an alert but did not
correspond to any real worm,

• detection delay, which is defined as the elapsed worm
attacks up to the detection of the worm.

Figure 2 shows the detection delay and the number of
false positives incurred by our approach as a function of the
substring length for TRACE-I and TRACE-II. We immediately
notice that as the substring length increases, the number of
false positives decreases. This is as expected. Indeed, it is quite
possible for unrelated network packets to contain identical
small substrings. Therefore, these identical small substrings
that can be found in unrelated (non-worm) network packets,
will generate a large number of false alarms. However, as
the substring length is getting larger, it is rather unlikely for
unrelated network packets to contain large identical substrings.
The remaining false positives persist up to a substring length of
150 bytes and are caused by common strings such as protocol
headers.

It is very encouraging to see in Figure 2 that as the string
length increases beyond 150, the number of false positives
reaches zero, which implies that no false alarms for worm
outbreaks are generated by our approach. Given that most
worms are longer than 150 bytes (as seen in Table I), operating
our approach with substring length longer than 150 bytes,
will probably be able to identify these known worms without
generating any false positives.

We also see that the detection delay is independent of the
substring length, and therefore, is plotted as a line parallel to
the x-axis. This is because all the true positive alerts were
generated by strings belonging to the Welchia worm, which
has size larger than 150 bytes.

However, the worm contains a few 150-byte strings that
can also be found in normal RPC traffic. Filtering these
strings would result in inadvertent denial-of-service attacks.
This problem is solved by using a string length of 250 bytes
or above.

 0

 10

 20

 30

 40

 50

 60

 40 60 80 100 120 140
 0

 2

 4

 6

 8

 10
D

et
ec

tio
n

de
la

y
(e

la
ps

ed
 a

tta
ck

s)

F
al

se
 p

os
iti

ve
s

(d
is

tin
ct

 fl
ow

s)

Substring length (bytes)

Detection delay
False positives

(a) TRACE-I

 0

 10

 20

 30

 40

 50

 60

 40 60 80 100 120 140
 0

 2

 4

 6

 8

 10

D
et

ec
tio

n
de

la
y

(e
la

ps
ed

 a
tta

ck
s)

F
al

se
 p

os
iti

ve
s

(d
is

tin
ct

 fl
ow

s)

Substring length (bytes)

Detection delay
False positives

(b) TRACE-II

Fig. 2. Detection delay and false positives as a function of substring length for
a fixed cache size of 500 msec, distinct destination threshold of 10, sampling
mask value of 0xf, and an offset limit of 100K. We observe that we have zero
false positives for substring lengths above 150 bytes, while at the same time
we have detection after about 10–20 attacks.

Figure 3 shows the detection delay and the number of false
positives as a function of the substring cache size measured
in milliseconds. By definition our approach is incapable to
detect worms that are encountered less often than the period
that substring fingerprints are cached. Indeed, we observe that
the worm contained in the traces may evade detection for cache
sizes less than 100 msec (Figure 3(b)). On the other hand, we
observe that larger cache sizes result in more false positives,
as expected, since strings with a lower rate of new destinations
are retained in the cache, and can trigger false detection.

Figure 4 shows the detection delay and the number of false
positives as a function of the distinct destination threshold.
We observe that decreasing the threshold decreases detection
delay. This is expected, since less worm attacks are required to
trigger detection. However, decreasing the threshold may also
result in false positives. This is expected too, since there exist
legitimate strings that are sent to more than one destinations.

Finally, in Figure 5 we investigate the effects of various
offset limit values. We observe that penalizing strings that ap-
pear deep in their flows significantly reduces the encountered
false positives. Inspection of these false positives revealed that

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700 800 900 1000
 0

 2

 4

 6

 8

 10

D
et

ec
tio

n
de

la
y

(e
la

ps
ed

 a
tta

ck
s)

F
al

se
 p

os
iti

ve
s

(d
is

tin
ct

 fl
ow

s)

Substring cache size (msec)

Detection delay
False positives

(a) TRACE-I

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700 800 900 1000
 0

 2

 4

 6

 8

 10

D
et

ec
tio

n
de

la
y

(e
la

ps
ed

 a
tta

ck
s)

F
al

se
 p

os
iti

ve
s

(d
is

tin
ct

 fl
ow

s)

Substring cache size (msec)

Detection delay
False positives

(b) TRACE-II

Fig. 3. Detection delay and false positives as a function of cache size for
a fixed substring length of 250 bytes, distinct destination threshold of 10,
sampling mask value of 0xf, and an offset limit of 100K. We observer that
we have zero false positives for cache sizes less than 600 msec, while at the
same time we have detection after about 10–20 attacks. We also observe that
smaller cache sizes increase detection delay, and eventually prevent detection.

they are caused by peer-to-peer traffic and are encountered at
random offsets in long-lived connections.

Summarizing, figures 2–5 suggest that our approach is able
to identify the worms contained in the studied traces, without
generating any false alarms.

C. Performance

In our next set of experiments we evaluate the performance
of our approach and measure the effects of fingerprint selec-
tion. In our experiments we have used deterministic sampling
using the0xf mask therefore the processed substrings have
been reduced by a factor of 16. We carried out these exper-
iments without an offset limit, to take into account the case
where the smoother variation would be used as described in
Section II-D.

Table III shows the CPU time spent for the optimized
and the unoptimized version of the worm detection system
to process TRACE-I: a trace of network packets 5 Gbytes
large. We see that the un-optimized version takes close to 13
minutes which corresponds to a processing rate of 57 Mbits/s,

 0

 10

 20

 30

 40

 50

 60

 3 4 5 6 7 8 9 10 11 12 13
 0

 50

 100

 150

 200
D

et
ec

tio
n

de
la

y
(e

la
ps

ed
 a

tta
ck

s)

F
al

se
 p

os
iti

ve
s

(d
is

tin
ct

 fl
ow

s)

Distinct destination threshold

Detection delay
False positives

(a) TRACE-I

 0

 10

 20

 30

 40

 50

 60

 3 4 5 6 7 8 9 10 11 12 13
 0

 50

 100

 150

 200

D
et

ec
tio

n
de

la
y

(e
la

ps
ed

 a
tta

ck
s)

F
al

se
 p

os
iti

ve
s

(d
is

tin
ct

 fl
ow

s)

Distinct destination threshold

Detection delay
False positives

(b) TRACE-II

Fig. 4. Detection delay and false positives as a function of distinct destination
threshold for a fixed substring length of 250 bytes, cache size of 500 msec,
sampling mask value of 0xf, and offset limit of 100K. We observer that we
have zero false positives for a threshold of 10 or greater, while at the same
time we have detection after about 10–20 attacks.

TABLE III

CPU TIME CONSUMED BY EXPERIMENTS WITHTRACE-I AND

EXTRAPOLATED THROUGHPUT.

Sampling Mask CPU Time Throughput
0x0 13m 57 Mbits/s
0xf 145s 307 Mbits/s

while the optimized version takes close to 145 seconds, which
corresponds to a processing rate of 307 Mbits/s.

Figure 6 demonstrates the savings in CPU-time that result
from applying different sampling masks. We observer that
performance increases exponentially with the number of bits
in the sampling mask, as expected.

IV. RELATED WORK

Attempts to automatically detect unknown worms have
been based on connection history patterns characteristic of
worm spread, on popular packets or packet payloads, and on
honeypots and correlation of data from distributed honeypots.

Moore et al. [9] focus on containment, as opposed to
prevention and treatment, as an early response against worms,

 0

 10

 20

 30

 40

 50

 60

 10 100 1000 10000 100000
 0

 20

 40

 60

 80

 100

 120

 140

D
et

ec
tio

n
de

la
y

(e
la

ps
ed

 a
tta

ck
s)

F
al

se
 p

os
iti

ve
s

(d
is

tin
ct

 fl
ow

s)

Offset limit (KBytes)

Detection delay
False positives

(a) TRACE-I

 0

 10

 20

 30

 40

 50

 60

 10 100 1000 10000 100000
 0

 20

 40

 60

 80

 100

 120

 140

D
et

ec
tio

n
de

la
y

(e
la

ps
ed

 a
tta

ck
s)

F
al

se
 p

os
iti

ve
s

(d
is

tin
ct

 fl
ow

s)

Offset limit (KBytes)

Detection delay
False positives

(b) TRACE-II

Fig. 5. Detection delay and false positives as a function of offset limit for a
fixed substring length of 250 bytes, cache size of 500 msec, distinct destination
threshold value of 10, and sampling mask value of 0xf. We observer that for
a limit of 100K or less, we have zero false positives, while at the same time
we have detection after about 10–20 attacks.

and attempt to determine the minimum requirements posed
on a system for it to successfully contain a worm. They
argue that detecting and characterizing a worm is far easier
than understanding the worm itself or the vulnerability being
exploited and therefore containment can be applied very early
on, during an epidemic. They lay out the design space for
worm containment systems using the parameters of reaction
time, containment strategy, and deployment strategy, and con-
sider known and hypothesized worms using a combination of
analytic modeling and simulation. They show that to prevent
wide-spread infection in a 24 hour period, worms have to be
detected within minutes of the start of an epidemic and nearly
all of Internet paths, such as those covered by the 100 largest
ASes, need to employ filtering.

Singh et al. [10] describe EarlyBird, a system for auto-
matically detecting new worms based on highly repetitive
packet content, an increased population of sources generating
infections, and an increased number of destinations being
targeted. They employ Rabin fingerprints [6] which allow
incrementally computing the fingerprint of a sliding window of
packet payload. They propose to first identify popular fixed-

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4

C
P

U
-T

im
e

(s
ec

)

Bits set

Fig. 6. CPU-time as a function of the number of bits set in the sampling
mask.

length substrings using sample-and-hold [11] on the Rabin
fingerprints and then use thresholds on distinct source and
destination counts to ascertain whether the recurring content
is a spreading worm. They further augment the incrementally
computed Rabin fingerprints with the destination port number
and argue that repetitive worm traffic always goes to the same
ports while other repetitive content such as popular web pages
or peer to peer traffic often goes to ports randomly chosen for
each transfer.

There exist other network-level methods to detect worms
that instead of packet contents rely on the effects of excessive
scanning and probing, which is characteristic of worms en-
countered so far. For example, Bakos and Berk [12] propose
an Internet-scale framework for worm detection that relies on
ICMP destination unreachable (ICMP-T3) messages produced
by failed connection attempts to identify worm activity and
infected nodes. The system requires instrumented routers
to forward such messages to a central collection point for
analysis.

Weaver et al. [13] describe worm containment algorithms
suitable for deployment in high-speed, low-cost network hard-
ware based on detection of scanning worms. They divide the
network into cells that communicate through worm contain-
ment devices and are quarantined in case of infection. The
system relies on a low vulnerable host to probed host ratio to
detect and contain a scanning worm at a faster rate than it can
spread.

We should emphasize, however, that all methods based on
scan detection provide good defense against scanning worms
but are of limited use against hit-list worms or worms that
discover targets without scanning.

Indra is a distributed security system that runs on top of
a peer-to-peer network of Intrusion Detection Systems [14].
Indra correlates information gathered by individual IDSs in
order to detect new types of attacks. Indra is very much work
in progress, but based on the available information, we can
say that it shares some goals with our approach.

Honeypots have also been proposed as a tool to detect and
study attackers. Honeypots are ordinary computers that under
normal circumstances provide no advertised services and have
no ordinary users. Thus, honeypots should ordinarily have
neither incoming nor outgoing traffic. If honeypots receive

or generate traffic, this traffic is immediately considered sus-
picious, and is probably the result of an interaction with an
attacker. Honeycomb is a system that uses honeypots to detect
intrusions and generate their signatures [15]. DOMINO [16]
is another system that is based on correlation of data from
geographically distributed honeypots and Intrusion Detection
Systems.

The Autograph system [17] uses a first level screening
test (scan detection in their evaluation), to identify suspicious
traffic, and then counts substring popularity and number of
sources to generate worm signatures. While superficially sim-
ilar to Autograph, both EarlyBird and our system apply their
heuristics directly on network traffic. The Autograph authors
suggest that other mechanisms, such as EarlyBird, could be
used as a first level screening test, enabling detection of hit-
list worms.

From all described systems, our work is more closely related
to the EarlyBird system [10]. Indeed, both approaches use
frequently appearing fixed-length strings in network packet
payloads as an indication for a new worm outbreak and
they consider the number of distinct destinations where these
strings are sent. However, there are also significant differences
between our approach and the EarlyBird work:
• EarlyBird weights the same a string that appears in the

first few kilobytes of a connection with a string that
appears after hundreds of megabytes. On the other hand,
we propose giving less weight to substrings appearing in
connections that have already caused a great overhead
to their initiator. This heuristic is especially effective
against peer-to-peer control messages that appear like
worm attacks, differing only in that they travel over
already established, long-lived connections.

• EarlyBird augments the fingerprints with the destination
port based on the observation that most worms target
specific ports. Although this is a reasonable assumption,
the Witty worm, with its random destination port, demon-
strates an exception to this rule. On the other hand, we
conservatively avoid relying on this criterion.

• By augmenting the fingerprints with the destination port,
EarlyBird effectively ignores traffic sent from a server
to a client (since the client’s port is typically chosen at
random), but it nevertheless has to compute and store
fingerprints for such traffic. On the other hand, our system
explicitly ignores traffic sent from a server to a client,
using session tracking. Thus, apart from not having to
augment fingerprints with the destination port, our system
does not have to compute Rabin fingerprints at all for the
bulk of the data transferred during a typical download
operation (where the client sends a small request and
receives an orders of magnitude larger response).

• As an additional mechanism to prevent false positives by
contents of popular servers, EarlyBird also counts distinct
sources. However, in some cases the number of sources in
the start of an epidemic may appear significantly less than
the number of targeted destinations. (With sequentially
scanning worms, the first external source may probe and
infect an entire network, before any other internal or
external source appears.) We do not rely on the number

of sources in these experiments.
• EarlyBird uses a substring length of 40 bytes while we,

on the other hand, justify a length of 150–250 bytes
by showing that increasing the substring length has an
adverse impact on false positives.

• The focus of the EarlyBird paper is on novel data-
structures that facilitate efficient wire-speed worm detec-
tion. On the other hand, our detection heuristics allow
us to skip much traffic and achieve similar performance
results using far less optimized data-structures.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

We have demonstrated that signatures belonging to an
Internet worm can be detected by finding strings with a high
rate of transfer to different targets, and that false positives can
be eliminated by considering strings of a reasonably large size
appearing in connections generating reasonably small amounts
of traffic.

We have shown that on the studied scale, of about 150 hosts,
detection without false positives is possible with a detection
delay that suggests a 7-14% infection. The detection was
sensitive to worms generating collectively at least one attack
about every 500 msec. These results are very encouraging.
Presumably, higher aggregation would further reduce detection
time, and also enable detection of less aggressive worms.

An important observation is that the thresholds required to
trigger detection are relatively small, in our experiments eleven
faked attacks would suffice for triggering a malicious false
positive. We intend to solve this problem by using sampling
of flows, which can be done efficiently at high speeds, to
randomly choose sufficient amounts of traffic from a much
larger pool of flows. This way, to pollute a certain fraction of
the sampled flows, an attacker would have to generate much
larger traffic, corresponding to that fraction over all flows in
the entire pool.

Introducing further assumptions about worms can lead
to even more detection heuristics that can be exploited, if
applicable, to detect worms faster, with less false positives.
For example, based on the observation that most worms
spread using buffer overflow attacks, buffer overflow detection
mechanisms can be employed to weed out false positives, or
the system may process only substrings without the ASCII nul
character, which must not be present in buffer overflows. We
can further assume scanning, failed connections, etc. However,
assumptions may also lead to false negatives. With this in
mind, we intend to develop an opportunistic architecture that
uses many focused detection heuristics to boost the sensitivity
of the system, when possible, but at the same time is able to
detect generic attacks, possibly with decreased sensitivity, al-
lowing for graceful degradation of the system’s effectiveness.

ACKNOWLEDGMENTS

This work was supported in part by the Greek General
Secretariat for Research and Technology (GSRT) project EAR
(USA-022) and ESTIA (04BEN8), a PAVET-NE project also
funded by the GSRT. The work of K. Anagnostakis is also
supported by OSD/ONR CIP/SW URI through ONR Grant
N00014-04-1-0725. P. Akritidis and E. P. Markatos are also
with the University of Crete. The work of K. Anagnostakis
was done while at ICS-FORTH.

REFERENCES

[1] C. Shannon and D. Moore, “The spread of the witty worm,” 2004,
http://www.caida.org/analysis/security/witty/.

[2] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “The spread of the sapphire/slammer worm,” CAIDA, ICSI,
Silicon Defense, UC Berkeley EECS and UC San Diego CSE, Tech.
Rep., 2003.

[3] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the internet in your
spare time,” inProceedings of the 11th USENIX Security Symposium
(Security ’02), 2002.

[4] S. Staniford, D. Moore, V. Paxson, and N. Weaver, “The top speed of
flash worms,” inWORM ’04: Proceedings of the 2004 ACM workshop
on Rapid malcode. ACM Press, 2004, pp. 33–42.

[5] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” inProceedings of the conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication. ACM Press, 2000, pp. 87–95.

[6] M. Rabin, “Fingerprinting by random polynomials,” Center for Research
in Computing Technology - Harvard University, Tech. Rep. 15-81, 1981.

[7] M. Roesch, “Snort: Lightweight intrusion detection for networks,” in
Proceedings of USENIX LISA ’99, November 1999, (software available
from http://www.snort.org/).

[8] U. Manber, “Finding similar files in a large file system,” inProceedings
of the USENIX Winter 1994 Technical Conference, San Fransisco, CA,
USA, Jan. 1994, pp. 1–10.

[9] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet quaran-
tine: Requirements for containing self-propagating code,” inINFOCOM,
2003.

[10] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm
fingerprinting,” in Proceedings of the ACM/USENIX Symposium on
Operating System Design and Implementation, Dec. 2004.

[11] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting,” inProceedings of the 2001 ACM SIGCOMM Internet
Measurement Workshop, 2001, pp. 75–80.

[12] G. Bakos and V. Berk, “Early detection of internet worm activity by
metering icmp destination unreachable messages,” inProceedings of the
SPIE Aerosense 2002, 2002.

[13] N. Weaver, S. Staniford, and V. Paxson, “Very fast containment of
scanning worms.” inUSENIX Security Symposium, 2004, pp. 29–44.

[14] R. Janakiraman, M. Waldvogel, and Q. Zhang, “Indra: A peer-to-peer
approach to network intrusion detection and prevention,” inProceedings
of IEEE WETICE 2003, June 2003.

[15] C. Kreibich and J. Crowcroft, “Honeycomb – creating intrusion detection
signatures using honeypots,” inProceedings of the Second Workshop on
Hot Topics in Networks (HotNets-II). Cambridge, Massachusetts: ACM
SIGCOMM, Nov. 2003.

[16] V. Yegneswaran, P. Barford, and S. Jha, “Global intrusion detection
in the DOMINO overlay system,” inProceedings of the 11th Annual
Network and Distributed System Security Symposium, San Diego, CA,
Feb. 2004.

[17] H.-A. Kim and B. Karp, “Autograph: Toward automated, distributed
worm signature detection,” inProceedings of the 13th Usenix Security
Symposium, 2004.

