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Abstract. The constant increase in link speeds and number of threats
poses challenges to network intrusion detection systems (NIDS), which
must cope with higher traffic throughput and perform even more complex
per-packet processing. In this paper, we present an intrusion detection
system based on the Snort open-source NIDS that exploits the underuti-
lized computational power of modern graphics cards to offload the costly
pattern matching operations from the CPU, and thus increase the over-
all processing throughput. Our prototype system, called Gnort, achieved
a maximum traffic processing throughput of 2.3 Gbit/s using synthetic
network traces, while when monitoring real traffic using a commodity
Ethernet interface, it outperformed unmodified Snort by a factor of two.
The results suggest that modern graphics cards can be used effectively
to speed up intrusion detection systems, as well as other systems that
involve pattern matching operations.
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1 Introduction

Network security architectures such as firewalls and Network Intrusion Detec-
tion Systems (NIDS) attempt to detect break-in attempts by monitoring the
incoming and outgoing traffic for suspicious payloads. Most modern network in-
trusion detection and prevention systems rely on a set of rules that are compared
against network packets. Usually, a rule consists of a filter specification based
on packet header fields, a string that must be contained in the packet payload,
the approximate or absolute location where that string should be present, and
an associated action to take if all the conditions of the rule are met.

Signature matching is a highly computationally intensive process, accounting
for about 75% of the total CPU processing time of modern NIDSes [2, 7]. This
overhead arises from the fact that most of the time, every byte of every packet
needs to be processed as part of the string searching algorithm that searches for
matches among a large set of strings from all signatures that apply for a partic-
ular packet. For example, the rule set of Snort [26], one of the most widely used



open-source NIDS, contains about 10000 strings. Searching every packet for all
of these strings requires significant resources, both in terms of the computation
capacity needed to process a packet, as well as the amount of memory needed
to store the rules.

Several research efforts have explored the use of parallelism for improving
the packet processing throughput [25, 8, 14, 4, 37]. Specialized hardware devices
can be used to inspect many packets concurrently, and such devices include
ASICs and Network Processors. Both are very efficient and perform well, however
they are complex to modify and program. Moreover, FPGA-based architectures
have poor flexibility since most of the approaches are usually tied to a specific
implementation.

As Graphics Processing Units (GPUs) are becoming increasingly powerful
and ubiquitous, researchers have begun exploring ways to tap their power for
non-graphic or general-purpose (GPGPU) applications. The main reason behind
this evolution is that GPUs are specialized for computationally-intensive and
highly parallel operations—required for graphics rendering—and therefore are
designed such that more transistors are devoted to data processing rather than
data caching and flow control [23]. The release of software development kits
(SDKs) from big vendors, like NVIDIA1 and ATI,2 has started a trend of using
GPUs as a computational unit to offload the CPU.

In addition, many attempts have been made to use graphics processors for
security purposes, including cryptography [11], data carving [20] and intrusion
detection [17]. Specifically, it has been shown that GPU support can substan-
tially increase the performance of digital forensics software that relies on binary
string searches [20]. Jacob and Brodley were the first that tried to use the GPU
as a pattern matching engine for NIDS in PixelSnort [17]. They used a sim-
plified version of the Knuth-Morris-Pratt (KMP) algorithm [18], however, their
performance results indicated marginal improvement.

In this paper, we explore how GPUs can be used to speed up the process-
ing throughput of intrusion detection systems by offloading the string matching
operations to the GPU. We show that single pattern matching algorithms, like
KMP, do not perform well when executed on the GPU, especially when using
an increased number of patterns. However, porting multi-pattern matching al-
gorithms, like the Aho-Corasick algorithm can boost overall performance by a
factor of three. Furthermore, we take advantage of DMA and the asynchronous
execution of GPUs to impose concurrency between the operations handled by
the CPU and the GPU. We have implemented a prototype intrusion detection
system that effectively utilizes GPUs for pattern matching operations in real
time.

The paper is organized as follows: In the remainder of the Introduction we
will give an overview of the GPU architecture that we used for this research.
In Section 2 we will briefly present a survey of related work. Section 3 and 4
presents our prototype architecture and the implementation details respectively.

1 http://developer.nvidia.com/object/cuda.html
2 http://ati.amd.com/technology/streamcomputing/index.html



In Section 5 we evaluate our implementation and we compare with the previous
work. Finally, in Section 6 we present some conclusions as well as some ideas for
future work.

1.1 Overview of the GeForce 8 Series Architecture

In this Section we briefly describe the architecture of the NVIDIA GeForce 8
Series (G80) cards, which we have used for this work, as well as the programming
capabilities it offers through the Compute Unified Device Architecture (CUDA)
SDK. The G80 architecture is based on a set of multiprocessors, each of which
contains a set of stream processors operating on SIMD (Single Instruction Multi-
ple Data) programs. When programmed through CUDA, the GPU can be used as
a general purpose processor, capable of executing a very high number of threads
in parallel.

A unit of work issued by the host computer to the GPU is called a kernel,
and is executed on the device as many different threads organized in thread

blocks. Each multiprocessor executes one or more thread blocks, with each group
organized into warps. A warp is a fraction of an active group, which is processed
by one multiprocessor in one batch. Each of these warps contains the same
number of threads, called the warp size, and is executed by the multiprocessor
in a SIMD fashion. Active warps are time-sliced: A thread scheduler periodically
switches from one warp to another to maximize the use of the multiprocessors’
computational resources.

Stream processors within a processor share an instruction unit. Any control
flow instruction that causes threads of the same warp to follow different execution
paths reduces the instruction throughput, because different executions paths
have to be serialized. When all the different execution paths have reached a
common end, the threads converge back to the same execution path.

A fast shared memory is managed explicitly by the programmer among
thread blocks. The global, constant, and texture memory spaces can be read
from or written to by the host, are persistent across kernel launches by the same
application, and are optimized for different memory usages [23]. The constant
and texture memory accesses are cached, so a read from them costs much less
compared to device memory reads, which are not being cached. The texture
memory space is implemented as a read-only region of device memory.

GPGPU programming on G80 series and later is feasible using the CUDA
SDK. CUDA consists of a minimal set of extensions to the C language and a
runtime library that provides functions to control the GPU from the host, as
well as device-specific functions and data types. CUDA exposes several hardware
features that are not available via the graphics API. The most important of these
features is the read and write access to the shared memory shared among the
threads, and the ability to access any memory location in the card’s DRAM
through the general memory addressing mode it provides. Finally, CUDA also
offers highly optimized data transfers to and from the GPU.



2 Related Work

Pattern matching is the most critical operation that affects the performance
of network intrusion detection systems. Pattern matching algorithms can be
classified into single- and multi-pattern algorithms.

In single pattern matching algorithms, each pattern is searched in a given
text individually. This means that if we have k patterns to be searched, the algo-
rithm must be repeated k times. Knuth-Morris-Pratt [18] and Boyer-Moore [6]
are some of the most widely used single pattern matching algorithms. Knuth-
Morris-Pratt is able to skip characters when a mismatch occurs in the compar-
ison phase using a partial-match table for each pattern. Each table is built by
preprocessing every pattern separately. Boyer-Moore is the most widely used
single-pattern algorithm. Its execution time can be sublinear if the suffix of the
string to be searched for appears infrequently in the input stream, due to the
skipping heuristics that it uses.

Multi-pattern string matching algorithms search for a set of patterns in a
body of text simultaneously. This is achieved by preprocessing the set of pat-
terns and building an automaton that will be used in the matching phase to scan
the text. The automaton can be thought of as a state machine that is represented
as a trie, a table or a combination of the two. Each character of the text will be
searched only once. Multi-pattern matching scales much better than algorithms
that search for each pattern individually. Multi-pattern string matching algo-
rithms include Aho-Corasick [1], Wu-Manber [36] and Commentz-Walter [10].

Most Network Intrusion Detection Systems (NIDS) use finite automata and
regular expressions [26, 24, 16] to match patterns. Coit et al. [9] improved the
performance of Snort by combining the Aho-Corasick keyword trie with the
skipping feature of the Boyer-Moore algorithm. Fisk and Vaghese enhance the
Boyer-Moore-Horspool algorithm to simultaneously match a set of rules. The new
algorithm, called Set-wise Boyer-Moore-Horspool [15], was shown to be faster
than both Aho-Corasick and Boyer-Moore for sets with less than 100 patterns.
Tuck et al. [31] optimized the Aho-Corasick algorithm by applying bitmap node
and path compression.

Snort from version 2.6 and onwards uses only flavors of the Aho-Corasick for
exact-match pattern detection. Specifically, it contains a variety of implementa-
tions that are differentiated by the type of the finite automaton they use (NFA
or DFA), and the storage format they use to keep it in memory (full, sparse,
banded, trie, etc.). It should be mentioned, however, that the best performance
is achieved with the full version that uses a deterministic finite automaton (DFA)
at the cost of high memory utilization [30].

To speed-up the inspection process, many IDS implementations are based on
specialized hardware. By using content addressable memory (CAM), which is
suitable to perform parallel comparison for its contents against the input value,
they are very well suited for use in intrusion detection systems [37, 38]. However
they have a high cost per bit.

Many reconfigurable architectures have been implemented for intrusion de-
tection. Most approaches involve building an automaton for a string to be



searched, generating a specialized hardware circuit using gates and flip-flops
for the automaton, and then instantiating multiple such automata in the re-
configurable chip to search the streaming data in parallel. However, the circuit
implemented on the FPGA to perform the string matching is designed based on
the underlying hardware architecture to adjust to a given specific rule set. To
adjust to a new rule set, one must program a new circuit (usually in a hardware
description language), which is then compiled down through the use of CAD
tools. Any changes in the rule set requires the recompilation, regeneration of the
automaton, resynthesis, replacement and routing of the circuits which is a time
consuming and difficult procedure.

Sidhu and Prasanna implemented a regular expression matching architecture
for FPGAs [28]. Baker et al. also investigated efficient pattern matching as a
signature based method [4]. In [13], the authors used hardware bloom filters to
match multiple patterns against network packets at constant time. Attig et al.

proposed a framework for packet header processing in combination with payload
content scanning on FPGAs [3].

Several approaches attempt to reduce the amount of memory required to
economically fit it in on-chip memory [4, 31, 14]. However, the on-chip hard-
ware resource consumption grows linearly with the number of characters to be
searched. In [29], the authors convert a string set into many tiny state machines,
each of which searches for a portion of the strings and a portion of the bits of
each string.

Other approaches involve the cooperation with network processors in order
to pipeline the processing stages assigned to each hardware resource [8], as well
as the entire implementation of an IDS on a network processor [5, 12]. Computer
clusters have also been proposed to offload the workload of a single computer [19,
34, 33, 27]. The cost however remains high, since it requires multiple processors,
a distribution network, and a clustered management system.

On the contrary, modern GPUs have low design cost while their increased
programmability makes them more flexible than ASICs. Most graphic cards man-
ufacturers provide high-level APIs that offer high programming capabilities and
are further ensure forward compatibility for future releases, in contrast with
most FPGA implementations that are based on the underlying hardware ar-
chitecture and need to be reconfigured whenever a change occurs in the rule
set. Furthermore, their low design cost, the highly parallel computation and the
potential that are usually underutilized, especially in hosts used for intrusion de-
tection purposes, makes them suitable for use as an extra low-cost coprocessor
for time-consuming problems, like pattern matching.

The work most related to ours is PixelSnort [17]. It is a port of the Snort IDS
that offloads packet matching to an NVIDIA 6800GT. The GPU programming
was complicated, since the 6800GT did not support a general purpose program-
ming model for GPUs (as the G80 used in our work). The system encodes Snort
rules and packets to textures and performs the string searching using the KMP
algorithm on the 16 fragment shaders in parallel. However, PixelSnort does not

achieve any speed-up under normal-load conditions. Furthermore, PixelSnort
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Fig. 1. Overall architecture of Gnort.

did not have any multi-pattern matching algorithms ported to GPU. This is a
serious limitation since multi-pattern matching algorithms are the default for
Snort. In a more recent work, Marziale et al. [20] evaluated the effectiveness of
offloading the processing of a file carving tool to the GPU. The system was im-
plemented on the G80 architecture and the results show that GPU support can
substantially increase the performance of digital forensics software that relies on
binary string search.

3 Architecture

The overall architecture of Gnort, which is based on the Snort NIDS, is shown
in Figure 1. We can separate the architecture of our system in three different
tasks: the transfer of the packets to the GPU, the pattern matching processing
on the GPU, and finally the transfer of the results back to the CPU.

3.1 Transferring Packets to the GPU

The first thing to consider is how the packets will be transferred from the network
interface to the memory space of the GPU. The simplest approach would be to
transfer each packet directly to the GPU for processing. However, due to the
overhead associated with a data transfer operation to the GPU, batching many
small transfers into a larger one performs much better than making each transfer
separately [23]. Thus, we have chosen to copy the packets to the GPU in batches.

Snort organizes the content signatures in groups, based on the source and
destination port numbers of each rule. A separate detection engine instance is
used to search for the patterns of a particular rule group. Table 1 shows the
number of rules that come with the latest versions of Snort and are enabled by
default, as well as the number of groups in which they are organized. We use a



separate buffer for temporarily storing the packets of each group. After a packet
has been classified to a specific group, it is copied to the corresponding buffer.
Whenever the buffer gets full, all packets are transferred to the GPU in one
operation. In case a buffer is not yet full after 100ms, its packets are explicitly
transferred to the GPU.

Snort version # Groups # Rules

2.6 249 7179
2.7 495 8719
2.8 495 8722

Table 1. Snort Data Structures.

The buffers are allocated as a special type of memory, called page-locked or
“pinned down” memory. Page-locked memory is a physical memory area that
does not map to the virtual address space, and thus cannot be swapped out
to secondary storage. The use of pinned down memory results to higher data
transfer throughput between the host and the device [23]. Furthermore, the
copy from page-locked memory to the GPU is performed using DMA, without
occupying the CPU. Thus, the CPU can continue working and collecting the
next batch of packets at the same time the GPU is processing the packets of the
previous batch.

To further improve parallelism, we use a double buffering scheme. When the
first buffer becomes full, it is copied to a texture bounded array that can be read
later by the GPU through the kernel invocation. While the GPU is performing
pattern matching on the packets of the first buffer, the CPU will copy newly
arrived packets in the second buffer.

3.2 Pattern Matching on the GPU

Once the packets have been transferred to the GPU, the next step is to perform
the pattern matching operation. We have ported the Aho-Corasick algorithm [1]
to run on the graphics card. The Aho-Corasick algorithm seems to be a perfect
candidate for SIMD processors like a GPU. The algorithm iterates through all the
bytes of the input stream and moves the current state to the next correct state
using a state machine that has been previously constructed during initialization
phase. The loop lacks any control flow instructions that would probably lead to
thread divergence.

In our GPU implementation, the deterministic finite automaton (DFA) of the
state machine is stored as a two-dimensional array. The dimensions of the array
are equal to the number of states and the size of the alphabet (256 in our case),
respectively, and each cell consists of four bytes. The first two bytes contain
the next state to move, while the other two contain an indication whether the
state is a final state or not. In case the state is final, the corresponding cell will



contain the unique identification number (ID) of the matching pattern, otherwise
zero. A drawback of this structure is that state machine tables will be sparsely
populated, containing a significant number of zero elements and only a few non-
zero elements. However, the use of more efficient storage structures, like those
proposed in [22], are much more complex to map in the memory space of a GPU.

During the initialization phase, the state machine table of each rule group is
constructed in host memory by the CPU, and is then copied to texture mem-
ory that is accessible directly from the GPU. At the searching phase, all state
machine tables reside only in GPU memory. The use of GPU texture mem-
ory instead of generic GPU memory has the benefit that memory fetches are
cached. A cache hit consumes only one cycle, instead of several hundreds in case
of transfers from generic device memory. Since the Aho-Corasick algorithm ex-
hibits strong locality of references [12], the use of texture memory for storing
the state machine tables boosts GPU execution time about 19%.

We have implemented two different parallelization methods for the Aho-
Corasick searching phase. In the first, each packet is splitted into fixed equal parts
and each thread searches each portion of the packet in parallel. In the second,
each thread is assigned a whole packet to search in parallel. Both techniques
have advantages and disadvantages that will be discussed in Section 4.

3.3 Transferring the Results to the CPU

Every time a thread matches a pattern inside a packet, it reports it by appending
it in an array that has been previously allocated in the device memory. The
reports for each packet will be written in a separate row of the array, following
the order they were copied to the texture memory. That means that the array
will have the same number of rows as the number of packets contained in the
batch. Each report is constituted by the ID of the pattern that was matched
and the index inside the packet where it was found.

After the pattern matching execution has finished, the array that contains
the matching pairs is copied to the host memory. Before raising an alert for each
matching pair, the following extra cases should be examined in case they apply:

– Case-sensitive patterns. Since Aho-Corasick cannot distinguish between cap-
ital and low letters, an extra, case-sensitive, search should be made at the
index where the pattern was found.

– Offset-oriented rules. Some patterns must be located in specific locations
inside the payload of the packet, in order for the rule to be activated. For
example, it is possible to look for a specified pattern within the first 5 bytes
of the payload. Such ranges are specified in Snort with special keywords,
like offset, depth, distance, etc. The index where the match was found is
compared against the offset to argue if the match is valid or not.

– Patterns with common suffix. It is possible that if two patterns have the same
suffix will also share the same final state in the state machine. Thus, for each
pattern, we keep an extra list that contains the “suffix-related” IDs in the
structure that holds its attributes. If this list is not empty for a matching



pattern, the patterns that contained in the list have to be verified to find
the actual matching pattern.

4 Implementation

We have implemented Gnort on the GeForce 8 Series architecture using CUDA.
NVIDIA states that programs developed for the GeForce 8 series will also work
without modification on all future NVIDIA video cards.

To facilitate concurrent execution between the host and the device, we as-
sociate GPU execution into streams. A stream is a sequence of operations that
execute in order. It is created by the host and in our case includes the copying
of the packets to the device memory, the kernel launch, and the transfer of the
results back to the host memory. While the stream is executing, the CPU is able
to collect the next batch of packets. The CPU work includes the execution flow
of Snort to capture, decode, and classify the incoming packets, as well as the
extra packet copies to the page-locked memory buffer that we have introduced.

The page-locked memory buffers that are used to collect the packets in
batches are allocated by the CUDA runtime driver. The driver tracks the rel-
evant virtual memory ranges and automatically accelerates calls to functions
that are used to copy data to the device. The copying of the buffers to the de-
vice is asynchronous and is associated to the stream. The device memory where
the packets are copied is bound to a texture reference of type unsigned char

and dimensionality 2. Texture fetches are cached using a proprietary 2D caching
scheme and cost only one clock cycle when a cache hit occurs; otherwise a fetch
can take 400 to 600 clock cycles. The cache size for texture fetches is 8 KB per
multiprocessor. Only the packet payloads are copied to the device, and each pay-
load is stored in a separate row of fixed size. The actual length of the payload is
stored in the first two bytes of the row.

The state machine tables that are used for each group of rules are stored in
a texture reference of type unsigned short and dimensionality 2. CUDA does
not support dynamic allocation of textures yet. To overcome this limitation,
all state table arrays are copied to the device at start-up and each of them is
dynamically bound to the texture reference, every time a batch of packets have
to be matched against.

Once the packets have been copied to the texture bound array, the kernel is
initiated by the host to perform the pattern matching. The 8-Series (G8X)—as
well as the 9-Series (G9X) which was recently released—contain many inde-
pendent multiprocessors, each comprising eight processors that run on a SIMD
fashion. However, every multiprocessor has an independent instruction decoder,
so they can run different instructions.

The Aho-Corasick algorithm performs multi-pattern search, which means
that all patterns of a group are searched concurrently. We have explored two
different approaches for parallelizing the searching phase by splitting the com-
putation in two ways: assigning a single packet to each multiprocessor at a time,



and assigning a single packet to each stream processor at a time. The two ap-
proaches are illustrated in Figure 2.

4.1 Assigning a Single Packet to each Multiprocessor

In this approach, each packet is processed by a specific thread block, executed
by one multiprocessor. The number of threads in the thread block that search
the packet payload is fixed and equal to the warp size (currently 32). Even
though each multiprocessor consists of eight stream processors, the warp size
ensures that the multiprocessor’s computational resources are maximized by
hiding arithmetic pipeline and memory delays.

Each thread searches a different part of the packet, and thus the packet is
divided in 32 equal chunks. The 32 chunks of the packet are processed by the 32
threads of the wrap in parallel. To correctly handle matching patterns that span
consecutive chunks of the packet, each thread searches in additional X bytes
after the chunk it was assigned to search, where X is the maximum pattern
length in the state table. To reduce further communication costs due to the
overlapping computations, each packet is also copied to the shared memory of
the multiprocessor (besides the texture memory)—all threads copy a different
chunk in parallel, so this additional copy does not add significant overhead.

An advantage of this method is that all threads are assigned the same amount
of work, so execution does not diverge, which would hinder the SIMD execution.
Moreover, the texture cache is entirely used for the state tables, as shown in
Figure 2(a). A drawback of this approach is that extra processing is needed for
the chunk overlaps, especially in case of small packets.

4.2 Assigning a Single Packet to each Stream Processor

In this approach, each packet is processed by a different thread. The number of
blocks that are created is equal to the number of multiprocessors the GPU has,
so all are working. Each thread block processes X /N packets using an equal
number of threads, where X is the number of packets in the batch sent to the
GPU, and N is the number of multiprocessors. However, the maximum number
of threads that can be created per block is currently 512. So if the number of
threads per thread block is greater, more thread blocks are created to keep the
number of threads under this limit. The disadvantage of this method is that the
amount of work per thread will not be the same since packet sizes will vary. This
means that threads of a warp will have to wait until all have finished searching
the packet that was assigned to them. However, no additional computation will
occur since every packet will be processed in isolation.

Whenever a match occurs, regardless of the implementation used, the cor-
responding ID of the pattern and the index where the match was found are
stored in an array allocated in device memory. Each row of the array contain
the matches that were found per packet. We use the first position of each row
as a counter to know where to put the next match. Every time a match occurs,
the corresponding thread increments the counter and writes the report where
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Fig. 2. Different pattern matching parallelization approaches. In (a), a different packet
is processed by each multiprocessor. All stream processors in the multiprocessor search
the packet payload concurrently. In (b), a different packet is processed by each stream
processor independently of the others.



the counter points to. The increment is performed using an atomic function sup-
plied by CUDA, to overcome possible race conditions for the first parallelization
method.

5 Evaluation

In this section, we explore the performance of our implementation. First, we
measure the scalability of the various algorithms for different number of patterns
and packet sizes, and how they affect overall performance. We then examine how
these algorithms perform in a realistic scenario as a function of the traffic load.

In our experiments we used an NVIDIA GeForce 8600GT card, which con-
tains 32 stream processors organized in 4 multiprocessors, operating at 1.2GHz
with 512 MB of memory. The CPU in our system was a 3.40 GHz Intel Pentium
4 processor with 2 GB of memory.

In order to directly compare with prior work, we re-implemented the KMP
algorithm on the NVIDIA G80 GPU architecture using CUDA. In our imple-
mentation, the patterns to be searched, and the partial-match tables that KMP
uses, are stored in two 2D texture arrays. Each packet is assigned to a different
thread block, while each thread in a block is responsible for searching a specific
pattern in the entire packet. This way, each warp of threads performs pattern
matching against each packet in parallel, as long as the number of patterns is
equal with the number of processors. If the number of patterns is greater than
512, the pattern matching is bundled in groups of 512 patterns each time, due
to the limitation of the 512 threads that can be created per block.

We also did a GPU implementation of the Boyer-Moore algorithm, which
performs better than KMP. The patterns to be searched, as well as the bad-
character shift tables, are stored in two 2D texture arrays similarly to the KMP
implementation. Each packet is assigned to a different thread block, while each
thread in a block is responsible for searching a specific pattern in the whole
packet.

For all experiments conducted, we disregard the time spent in the initializa-
tion phase of Snort as well as the logging of the alerts to the disk. Even though
it only takes less than just a few seconds to load the patterns and build its
internal structures in all cases, there is no practical need to include this time
in our graphs. For all experiments we measure the performance of the default
Snort using the full Aho-Corasick implementation. We conducted experiments
with other implementations as well, however they performed worse in every case.
Some information on the different implementations of Aho-Corasick that Snort
uses can be found in [30].

5.1 Microbenchmarks

We start by investigating the effect that the size of the batch of packets that are
transferred to the GPU has on the overall system performance. We used a syn-
thetic payload trace that contains 1344330 UDP packets with random payload,



Buffer size (# packets) Transfer time (ms)

4 0.035547

32 0.008218

512 0.004626

1024 0.004472

4096 0.004326

32768 0.004296

Table 2. Transfer times per packet as a function of the buffer size for 800-bytes packets.

each 800 bytes in length. The detection engine was disabled, so no execution
would take place on the GPU. This way, we measured the time needed for the
packets to transferred to the device in batches using the double buffer technique
described in Section 3. The times include the capture, decode and classification
phases performed by Snort as well as the copying of each packet to our buffer.
Table 2 shows the time needed for a packet to copied to the memory of the
device for various buffer sizes. We can see that the cost per packet increased as
the size of the buffer decreased. For bigger sizes the cost remained somewhat
constant. This may be due to the PCI startup overhead of each transaction. As
the size of the buffer increases, the number of transaction decreases, resulting
in lower startup overheads. For all subsequent experiments we used a buffer of
1024 packets size, which we think is optimal considering the available memory
of the host computer we used for the evaluation.

In the next experiment we evaluated how each detection algorithm scales
with the number of patterns. We created Snort rules of randomly generated
patterns which size varied between 5 and 25 bytes and gave as input to Snort
a payload trace that contains UDP packets with random payload, each of 800
bytes in length. All rules are matched against every packet. This is the worst
case scenario for a pattern matching engine, as in most cases each packet has
to be checked only against a few hundred rules. Figures 3 and 4 show the max-
imum throughput achieved for single- and multi-pattern matching algorithms
respectively, to perform string searches through rule-sets of sizes 10 up to 4000
rules. As shown in Figure 3, single pattern algorithms do not scale as the rule-
set size increases. Performance of the CPU implementations of both KMP and
BM decreases linearly with the number of patterns. KMP achieves nearly 100
Mbit/s for 10 patterns but its performance for 4000 patterns drops under 1
Mbit/s. BM presents better results but still for a large number of patterns it
can only achieve up to 5 Mbit/s. The GPU implementation of these algorithms
boosts their performance by up to an order of magnitude. For the case of 50,
100 and 250 patterns we can see that GPU versions of algorithms are an order
of magnitude faster than the CPU ones, while for the case of 4000 patterns the
improvements reaches a factor of 3.

An interesting observation is that the throughput of the GPU implementa-
tions for both KMP and BM remained constant for up to 100 patterns. Even
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though there are 32 processors available, the thread scheduler can pipeline
threads execution to effectively utilizes available resources. To verify it, we
changed the kernels to return immediately performing a null computation and
we observed the same behavior. Performance of the system remained constant
for up to 100 patterns and then began decreasing linearly.

In the case of Aho-Corasick algorithm, the throughput remains constant in-
dependently of the number of patterns, a behavior expected for a multi-pattern
approach. The results are shown in Figure 4. For the CPU implementation, Aho-
Corasick achieves nearly 600 Mbit/s throughput, while the GPU implementation
reaches up to 1.4 Gbit/s, yielding a 2.4 times improvement. Our two different
approaches for implementing Aho-Corasick (displayed as AC1 and AC2 in the
graph) do not present significant differences in performance.

Figures 5 and 6 show the throughput achieved for various UDP packet sizes.
Snort was loaded with 1000 random patterns which size varied between 5 and
25 bytes. Each packet contains random data, a property that favors the BM
algorithm as it will skip most of the payload. CPU implementations of KMP
and BM presented a stable performance of around 1 and 10 Mbit/s respectively,
independently of the packet size. Their GPU implementations yield a speedup
from 2 up to 10 times. The throughput of Aho-Corasick reached over 2.3 Gbit/s
for 1500-byte packets, giving a total speed-up of 3.2 compared to the respective
CPU implementation. It is important to notice that it is worthless to process
small packets on GPU. As it can be seen in Figure 6, for small packet sizes
(under 100), the CPU implementation performs better than the GPU. However,
for sizes larger than 100 bytes, the GPU implementation outperforms the CPU
one in all cases.

5.2 Macrobenchmarks

In this section we present the evaluation of our prototype implementation using
real rules from the current Snort rule set on real network traffic. Our experimen-
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tal environment consists of two PCs connected via a 1 Gbit/s Ethernet switch.
The first PC is equipped with a NVIDIA GeForce 8600GT card and runs our
modified version of Snort, while the second is used for replaying real network
traffic traces using tcpreplay [32]. We used a full payload trace captured at the
access link that connects an educational network with thousands of hosts to the
Internet. By rewriting the source and destination MAC addresses in all packets,
the generated traffic can be sent to the first PC.

We ran Snort with a custom configuration in which preprocessors and regular
expression pattern matching were disabled, as both processes are executed only
on the CPU. Snort loaded 5467 rules that contain about 7878 content patterns.

Figure 7 shows the packet loss ratio while replaying the trace at different
speeds for two versions of pcap: the default one [21] and the pcap-mmap [35]. The
pcap-mmap is a modified version of libpcap that implements a shared memory
ring buffer to store captured packets. In this fashion user-space applications are
able to read them directly, without trapping to kernel mode and copying them
to a user buffer. The use of pcap-mmap gave both unmodified Snort and our
system an increase of 50 to 100 Mbit/s to the overall performance. We can
see that conventional Snort cannot process all packets in rates higher than 300
Mbit/s, so a significant percentage of packets is being lost. On the other hand,
our GPU-assisted Snort is twice as fast as the original one. Packet loss for our
approach starts at 600 Mbit/s, a 200% improvement to the processing capacity of
Snort. The two different GPU implementations of the Aho-Corasick algorithm
achieve almost the same performance. For completeness, in Figure 8, we plot
the corresponding CPU utilization. Packet loss starts when CPU reaches 100%
utilization.

Figure 9 plots the packets dropped by the kernel when CPU was overloaded
synthetically. We used a simple program in an infinite tight loop, performing ba-
sic math operations to increase CPU usage to 100%. Snort was executing simul-
taneously. We observe that the performance decreased even when the matching
process was executing on GPU. This can be explained by the fact that as the
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Fig. 8. CPU utilization as a function of the traffic speed.

CPU controls the execution of the GPU, by overloading the former the execution
flow is affected directly. However, performance degradation did not converge to
that of default Snort, in contrast with [17].

6 Conclusions

In this paper, we presented Gnort, an intrusion detection system that utilizes
the GPU to offload pattern matching computation. We ported the classic Aho-
Corasick algorithm to run on the GPU exploiting the SIMD instructions. Our
prototype system was able to achieve a maximum throughput of 2.3 Gbit/s,
while in a real world scenario outperformed conventional Snort by a factor of
two.

As future work we plan on eliminating the extra copy we introduced in order
to transfer the packets to the GPU in batches. One way to accomplish this, is to
transfer the packets directly from the kernel buffer. This would require that the
buffer will be allocated from the application and will be shared between the user
and kernel spaces. We believe that by modifying the pcap-mmap, that already
implements this shared buffer capability, we can benefit from the lack of copies
of both from kernel to user space as well as the one to our defined buffer. An
even more efficient way would be to DMA directly the packets from the NIC to
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the GPU, without occupying the CPU at all. Currently, this is not supported
but it may be in the future.

Finally, we plan on utilizing multiple GPUs instead of a single one. Modern
motherboards support dual GPUs, and there are PCI Express backplanes that
support multiple slots. We believe that building such “clusters” of GPUs will be
able to support multiple Gigabit per second Intrusion Detection Systems.
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