
J Comput Virol (2007) 2:257–274
DOI 10.1007/s11416-006-0031-z

ORIGINAL PAPER

Network-level polymorphic shellcode detection using emulation

Michalis Polychronakis · Kostas G. Anagnostakis ·
Evangelos P. Markatos

Received: 31 July 2006 / Accepted: 1 November 2006 / Published online: 23 December 2006
© Springer-Verlag France 2006

Abstract Significant progress has been made in recent
years towards preventing code injection attacks at the
network level. However, as state-of-the-art attack detec-
tion technology becomes more prevalent, attackers are
likely to evolve, employing techniques such as poly-
morphism and metamorphism to defeat these defenses.
A major outstanding question in security research and
engineering is thus whether we can proactively develop
the tools needed to contain advanced polymorphic and
metamorphic attacks. While recent results have been
promising, most of the existing proposals can be defeated
using only minor enhancements to the attack vector.
In fact, some publicly-available polymorphic shellcode
engines are currently one step ahead of the most
advanced publicly-documented network-level detectors.
In this paper, we present a heuristic detection method
that scans network traffic streams for the presence of
previously unknown polymorphic shellcode. In contrast
to previous work, our approach relies on a NIDS-
embedded CPU emulator that executes every poten-
tial instruction sequence in the inspected traffic, aiming
to identify the execution behavior of polymorphic shell-
code. Our analysis demonstrates that the proposed

M. Polychronakis (B) · E. P. Markatos
Institute of Computer Science,
Foundation for Research & Technology – Hellas,
Heraklion, Crete, Greece
e-mail: mikepo@ics.forth.gr

E. P. Markatos
e-mail: markatos@ics.forth.gr

K. G. Anagnostakis
Institute for Infocomm Research,
Singapore, Singapore
e-mail: kostas@i2r.a-star.edu.sg

approach is more robust to obfuscation techniques like
self-modifications compared to previous proposals, but
also highlights advanced evasion techniques that need
to be more closely examined towards a satisfactory solu-
tion to the polymorphic shellcode detection problem.

1 Introduction

The primary aim of an attacker or an Internet worm is to
gain complete control over a target system. This is usu-
ally achieved by exploiting a vulnerability in a service
running on the target system that allows the attacker to
divert its flow of control and execute arbitrary code. The
execution path of the vulnerable service can be diverted
using several exploitation methods, such as buffer over-
flows, integer overflows, format string abuse, and arbi-
trary data corruption. The code that is executed after
hijacking the instruction pointer is usually provided as
part of the attack vector. Although the typical action
of the injected code is to spawn a shell (hereby dubbed
shellcode), the attacker can structure it to perform arbi-
trary actions under the privileges of the service that
is being exploited [1]. For example, the “shellcode” of
recent worms usually just connects back to the previous
victim, downloads the main body of the worm, and exe-
cutes it. In this paper we use the term shellcode to refer
to malicious injected code with any purpose.

Significant progress has been made in recent years
towards detecting previously unknown code injection
attacks at the network level [2–10]. However, as orga-
nizations start deploying state-of-the-art detection tech-
nology, attackers are likely to react by employing
advanced evasion techniques, such as polymorphism and

258 M. Polychronakis et al.

metamorphism, known from the virus scene since the
early 1990s [11], to defeat these defenses.

Polymorphic shellcode engines create different forms
of the same initial shellcode by encrypting its body with
a different random key each time, and by prepending
to it a decryption routine that makes it self-decrypting.
Since the decryptor itself cannot be encrypted, some
intrusion detection systems rely on the identification of
the decryption routine of polymorphic shellcodes. While
naive encryption engines produce constant decryptor
code, advanced polymorphic engines mutate the decryp-
tor using metamorphism [12], which collectively refers
to techniques such as dead-code insertion, code trans-
position, register reassignment, and instruction substi-
tution [13], making the decryption routine difficult to
fingerprint.

A major outstanding question in security research
and engineering is thus whether we can proactively
develop mechanisms for automatic containment of
advanced polymorphic attacks at the network-level.
While results have been promising, and some
approaches can cope with limited polymorphism, when
polymorphism and metamorphism is combined with
advanced evasion techniques like self-modifying code,
as we demonstrate, most of the existing proposals can
be easily defeated.

In this paper, we revisit the question of whether poly-
morphic shellcode is detectable at the network-level. We
present a detection heuristic that tests byte sequences
in network traffic for properties similar to polymor-
phism. Specifically, we speculatively execute potential
instruction sequences and compare their execution pro-
file against the behavior observed to be inherent to poly-
morphic shellcode. Our approach relies on a fully-blown
IA-32 CPU emulator, which, in contrast to previous
work, makes the detector immune to runtime evasion
techniques such as self-modifying code.

The remainder of this paper is organized as follows.
We summarize related work in Sect. 2, and discuss tech-
niques that can be used for evading current network-
level detectors in Sect. 3. We present in detail our
emulation-based detection method in Sect. 4, and exper-
iments examining the performance of our approach in
Sect. 5. Finally, Sect. 6 discusses limitations and issues
that need further research, and Sect. 7 concludes the
paper.

2 Related work

Network intrusion detection systems (NIDS) like Snort
[14] and Bro [15] have been extensively used for shell-
code detection. Although such systems usually detect

known attacks, for which a precise signature exists, they
can also be used for detecting previously unseen attacks
using generic signatures that match components com-
mon to similar exploits, such as the NOP sled, pro-
tocol framing, or specific parts of the shellcode [16].
As a response to signature-based NIDS, attackers have
started to employ encryption and polymorphism for
evading detection [17–20].

Initial approaches on zero-day polymorphic shell-
code detection focused on the identification of the sled
component [21,22] that is often prepended to the begin-
ning of the shellcode. However, sleds are mostly use-
ful in expediting exploit development, and in several
cases, especially in Windows exploits, can be completely
avoided through careful engineering using register
springs [23]. In fact, most infamous Internet worms so
far did not employ sleds. Our approach focuses on the
detection of the polymorphic shellcode itself, and thus
works even in the absence of a sled component. But-
tercup [24] attempts to detect polymorphic buffer over-
flow attacks by identifying the ranges of the possible
return addresses for existing buffer overflow vulnerabil-
ities. Unfortunately, this heuristic cannot be employed
against some of the more sophisticated buffer overflow
attack techniques [25].

Several research efforts have focused on the auto-
mated generation of signatures for previously unknown
worms. These methods are based on the prevalence of
common byte sequences across different worm
instances, among other characteristics, and derive sig-
natures that match zero day worms by correlating pay-
loads from different suspicious traffic flows [2,3,26].
However, these approaches are prone to false positives,
and are ineffective against polymorphic worms [27],
which do not contain sufficiently long common byte
sequences.

Polygraph [4], PAYL [6], PADS [5], and Hamsa [10],
generate signatures that can capture polymorphic worms
by identifying common invariants among different worm
instances, such as return addresses, protocol framing,
and poor obfuscation. The derived signatures are
expressed as regular expressions or statistical byte distri-
butions. Although above approaches can identify simple
obfuscated worms, their effectiveness is still question-
able in the presence of extensive polymorphism [20].
Furthermore, Polygraph and Hamsa rely on an first-level
classifier that splits the traffic into two different pools for
innocuous and malicious samples, which introduces an
additional avenue for evasion [28].

A fundamental limitation of all above automated sig-
nature generation methods is that they require multi-
ple worm instances before reasoning for a threat, which
makes them ineffective against targeted attacks. In

Network-level polymorphic shellcode detection using emulation 259

contrast, our proposed method identifies each attack
separately, which makes it also effective for targeted
attacks.

Having identified the limitations of signature-based
approaches, recent research efforts, most closely related
to our work, have turned to static binary code anal-
ysis for identifying exploit code inside network flows.
Payer et al. [29] describe a hybrid polymorphic shellcode
detection engine based on a neural network that com-
bines several heuristics, including a NOP-sled detector
and recursive traversal disassembly. However, the neu-
ral network must be trained with both positive and nega-
tive data in order to achieve a good detection rate, which
makes it ineffective against zero-day attacks. Kruegel
et al. [7] present a worm detection method that identi-
fies structural similarities between different worm muta-
tions. Styx [8] differentiates between benign data and
program-like exploit code in network streams by looking
for meaningful data and control flow, and blocks iden-
tified attacks using automatically generated signatures.
SigFree [9] detects the presence of attack code inside
network packets by pruning seemingly useless instruc-
tions using data flow anomaly detection, and finding an
increased number of remaining useful instructions.

The main limitation of above static analysis based
approaches, and main motivation for our work, is that
an attacker can effectively and effortlessly hinder static
analysis, and thus evade detection. We discuss such eva-
sion methods in the following section.

3 Static analysis resistant polymorphic shellcode

Several research efforts have turned to static binary code
analysis for detecting previously unknown polymorphic
code injection attacks at the network level [7–9,21,22,
29]. These approaches treat the input network stream as
potential machine code and analyze it for signs of mali-
cious behavior. The first step of the analysis involves the
decoding of the binary machine instructions into their
corresponding assembly language representation, a pro-
cess called disassembly. Some methods rely solely to
disassembly for identifying long instruction chains that
may denote the existence of a NOP sled [21,22] or shell-
code [29]. After the code has been disassembled, some
techniques derive further control or data flow informa-
tion that is then used for the discrimination between
shellcode and benign data [7–9].

However, after the flow of control reaches the shell-
code, the attacker has complete freedom to structure
it in a complex way that can thwart attempts to stati-
cally analyze it. In this section, we discuss ways in which
polymorphic code can be obfuscated for evading

network-level detection methods based on static binary
code analysis.

Note that the techniques presented here are rather
trivial, compared to elaborate binary code obfuscation
methods [30–32], but powerful enough to illustrate the
limitations of detection methods based on static analy-
sis. Advanced techniques for complicating static analy-
sis have also been extensively used for tamper-resistant
software and for preventing the reverse engineering of
executables, as a defense against software piracy [33–35].

3.1 Thwarting disassembly

There are two main disassembly techniques: linear sweep
and recursive traversal [36]. Linear sweep begins with
the first byte of the stream and decodes each instruc-
tion sequentially, until it encounters an invalid opcode
or reaches the end of the stream. The main advantage of
linear sweep is its simplicity, which makes it very light-
weight, and thus an attractive solution for high-speed
network-level detectors.

Since the IA-32 instruction set is very dense, with
248 out of the 256 possible byte values representing a
legitimate starting byte for an instruction, disassembling
random data is likely to give long instruction sequences
of seemingly legitimate code [37]. The main drawback
of linear sweep is that it cannot distinguish between
code and data embedded in the instruction stream, and
incorrectly interprets them as valid instructions [38]. An
attacker can exploit this weakness and evade detection
methods based on linear sweep disassembly using well-
known anti-disassembly techniques. The injected code
can be obfuscated by interspersing junk data among the
exploit code, not reachable at runtime, with the pur-
pose to confuse the disassembler. Other common anti-
disassembly techniques include overlapping instructions
and jumping into the middle of instructions [39].

The recursive traversal algorithm overcomes some
of the limitations of linear sweep by taking into account
the control flow behavior of the program. Recursive tra-
versal operates in a similar fashion to linear sweep, but
whenever a control transfer instruction is encountered,
it determines all the potential target addresses and pro-
ceeds with disassembly at those addresses recursively.
For instance, in case of a conditional branch, it con-
siders both the branch target and the instruction that
immediately follows the jump. In this way, it can “jump
around” data embedded in the instruction stream which
are never reached during execution.

Figure 1 shows the disassembly of the decoder part
of a shellcode encrypted using the Countdown encryp-
tion engine of the Metasploit Framework [40] using lin-
ear sweep and recursive traversal. The code has been

260 M. Polychronakis et al.

Fig. 1 Disassembly of the
decoder produced by the
Countdown shellcode
encryption engine using
(a) linear sweep and
(b) recursive traversal

(a) (b)

mapped to address 0x0000 for presentation purposes.
The target of the call instruction at address 0x0003
lies at address0x0007, one byte before the end ofcall,
i.e., thecall instruction jumps to itself. This tricks linear
disassembly to interpret the instructions immediately
following the call instruction incorrectly. In contrast,
recursive traversal follows the branch target and disas-
sembles the overlapping instructions correctly.

However, the targets of control transfer instructions
are not always identifiable. Indirect branch instructions
transfer control to the address contained in a register
operand and their destination cannot be statically deter-
mined. In such cases, recursive traversal also does not
provide an accurate disassembly, and thus, an attacker
could use indirect branches extensively to hinder it.
Although some advanced static analysis methods can
heuristically recover the targets of indirect branches,
e.g., when used in jump tables, they are effective only
with compiled code and well-structured binaries [36,
38,41,42]. A motivated attacker can construct highly
obfuscated code that abuses any assumptions about the
structure of the code, including the extensive use of indi-
rect branch instructions, which impedes both disassem-
bly methods.

3.2 Thwarting control and data flow analysis

Once the code has been disassembled, some approaches
analyze the code further using control flow analysis,
by extracting its control flow graph (CFG). The CFG
consists of basic blocks as nodes, and potential control
transfers between blocks as edges. Kruegel et al. [7] use
the CFG of several instances of a polymorphic worm
to detect structural similarities between different muta-
tions. Chinchani et al. [8] differentiate between data and
exploit code in network streams based on the control
flow of the extracted code.

SigFree, proposed by Wang et al. [9], uses both con-
trol and data flow analysis to discriminate between code
and data. Data flow analysis examines the data oper-
ands of instructions and tracks the operations that are
performed on them within a certain code block. After
the extraction of the control flow graph, SigFree uses

Fig. 2 A modified, static analysis resistant version of the Count-
down decoder

data flow analysis techniques to prune seemingly useless
instructions, aiming to identify an increased number of
remaining useful instructions that denote the presence
of code.

However, even if a precise approximation of the CFG
can be derived in the presence of indirect jumps or other
anti-disassembly tricks, a motivated attacker can still
hide the real CFG of the shellcode using self-modifying
code, a much more powerful technique. Self-modifying
code modifies its own instructions dynamically at run-
time. Although payload encryption is also a form of self-
modification, in this section we consider modifications
to the decoder code itself, which is the only shellcode
part exposed to static binary code analysis.

Since self-modifying code can transform almost any
instruction of itself to a different instruction, an attacker
can construct a decryptor that will eventually execute
instructions that do not appear in the initial code image,
on which static analysis methods operate on. Thus, cru-
cial control transfer or data manipulation instructions
can be concealed behind fake instructions, specifically
selected to hinder control and data flow analysis. The
real instructions will be written into the shellcode’s mem-
ory image while it is executing, and thus are inaccessible
to static binary code analysis methods.

A very simple example of this technique, also known
as “patching,” is presented in Fig. 2, which shows the
recursive traversal disassembly of a modified version of
the Countdown decoder presented in Fig. 1. There are
two main differences: anadd instruction has been added
at address 0x000A, and the loop 0xA instruction has
been replaced by add bh,dl. At first sight, this code

Network-level polymorphic shellcode detection using emulation 261

Fig. 3 Execution trace of the modified Countdown decoder

(a) (b)

Fig. 4 Control flow graph of the modified Countdown decoder
(a) based on the code derived using recursive traversal disassem-
bly, and (b) based on its actual execution

does not look like a polymorphic decryptor, since the
flow of control is linear, without any backward jumps
that would form a decryption loop. However, in spite of
the intuition we get by statically analyzing the code, the
code is indeed a polymorphic decryptor which decrypts
the encrypted payload correctly, as shown by the execu-
tion trace of Fig. 3.

The decoder starts by initializing ecx with the value
0x7F, which corresponds to the encoded payload size
minus one. The call instruction sets the instruction
pointer to the relative offset -1, i.e., the inc ecx
instruction at address0x0007.Pop then loads the return
address that was pushed in the stack by call in ecx.
These instructions are used to find the absolute address
from which the decoder is executing, as discussed in
Sect. 4.1.2.

The crucial point is the execution of the add
[esi+0xA],0xE0 instruction. The effective address
of the left operand corresponds to address 0x0012, so
add will modify its contents. Initially, at this address is
stored the instruction add bh,dl. By adding the value
0xE0 to this memory location, the code at this location
is modified and add bh,dl is transformed to loop
0xe. Thus, while the decryptor is executing, as soon as
the instruction pointer reaches the address 0x0012, the
instruction that will actually be executed is loop 0xe.

Even in this simple form, the above technique is very
effective in obfuscating the real CFG of the shellcode.
Indeed, as shown in Fig. 4, a slight self-modification
of just one instruction results to significant differences
between the CFG derived using static analysis, and the
actual CFG of the code that is eventually executed.
If such self-modifications are applied extensively, then
the real CFG can effectively be completely concealed.
Going one step further, an attacker could implement a
polymorphic engine that produces decryptors with arbi-
trarily fake CFGs, different in each shellcode instance,
for evading detection methods based on CFG analysis.
This can be easily achieved by placing fake control trans-
fer instructions which during execution are overwritten
with other useful instructions. Instructions that manipu-
late crucial data can also be concealed in the same man-
ner in order to hinder data flow analysis. Static binary
code analysis would need to be able to compute the
output of each instruction in order to extract the real
control and data flow of the code that will be eventually
executed.

4 Network-level execution

Carefully crafted polymorphic shellcode can evade
detection methods based on static binary code analy-
sis. Using anti-disassembly techniques, indirect control
transfer instructions, and most importantly, self-
modifications, static analysis resistant polymorphic shell-
code will not reveal its actual form until it is eventually
executed on a real CPU. This observation motivated us
to explore whether it is possible to detect such highly
obfuscated shellcode by actually executing it, using only
information available at the network level.

4.1 Approach

Our goal is to detect network streams that contain poly-
morphic exploit code by passively monitoring the incom-
ing network traffic. Each request to some network
service hosted in the protected network is treated as
a potential attack vector. The detector attempts to exe-
cute each incoming request in a virtual environment as
if it was executable code. Depending on the execution
behavior, we can differentiate between benign data and
polymorphic shellcode. Besides the NOP sled, which
might not exist at all [23], the only executable part of
polymorphic shellcodes is the decryption routine. There-
fore, the detection algorithm focuses on the identifica-
tion of the decryption process that takes place during
the initial execution steps of a polymorphic shellcode.

262 M. Polychronakis et al.

Being isolated from the vulnerable host, the detector
lacks the context in which the injected code would run.
Crucial information such as the OS of the host and the
process being exploited might not be known in advance.
At first sight, under these extremely obscure conditions,
it does not seem feasible to fully simulate the execution
of arbitrary shellcode by relying only to the captured
attack vector. For instance, knowing the OS type and
version is crucial for emulating system calls.

In this work, we focus on the detection of polymor-
phic shellcodes. The execution of a polymorphic shell-
code can be conceptually split in two sequential parts:
the execution of the decryptor, and the execution of the
actual payload. The accurate execution of the payload,
which usually includes several advanced operations such
as the creation of sockets or files, would require a com-
plete virtual machine environment, including an appro-
priate OS. In contrast, the decryptor is in essence a series
of machine instructions that perform a certain compu-
tation over the memory locations where the encrypted
shellcode has been injected. This allows us to simulate
the execution of the decryptor using merely a CPU emu-
lator. The only requirement is that the emulator should
be compatible with the hardware architecture of the vul-
nerable host. For our prototype, we have focused on the
IA-32 architecture.

Up to this point, the context of the vulnerable process
in which the shellcode would be injected is still missing.
Specifically, since the emulator has no access to the tar-
get host, it lacks the memory and CPU state of the vul-
nerable process at the time its flow of control is diverted
to the injected code. However, the construction of poly-
morphic shellcodes conforms to several restrictions that
allow us to simulate the execution of the decryptor part,
even without having any further information about the
context in which it is destined to run. In the remainder
of this section we discuss these restrictions.

4.1.1 Position-independent code

In a dynamically changing stack or heap, the exact mem-
ory location where the shellcode will be placed is not
known in advance. For this reason, any absolute address-
ing is avoided and reliable shellcode is made completely
relocatable, in order to run from any memory posi-
tion. Otherwise, the exploit becomes fragile [1]. For
instance, in case of Linux stack-based buffer overflows,
the absolute address of the vulnerable buffer varies
between systems, even for the same compiled execut-
able, due to the different environment variables that
are stored in the beginning of the stack. This position-
independent nature of shellcode allows us to map it in

an arbitrary memory location and start its execution
from there.

4.1.2 GetPC code

Both the decryptor and the encrypted payload are part
of the injected vector, with the decryptor stub usually
prepended to the encrypted payload. Since the abso-
lute memory address of the injected shellcode cannot
be accurately predicted in advance, the decoder needs
to somehow find a reference to this exact memory loca-
tion in order to decrypt the encrypted payload.

To this end, shellcodes take advantage of the CPU
program counter (PC, or EIP in the IA-32 architecture).
During the execution of the decryptor, the PC points to
the decryptor code, i.e., to an address within the memory
region where the decryptor, along with the encrypted
payload, has been placed. However, the IA-32 architec-
ture does not provide any EIP-relative memory address-
ing mode,1 as opposed to instruction dispatch. Thus, the
decryptor cannot use the PC directly to reference to the
memory locations of the encrypted payload in order to
modify it. Instead, the decryptor first loads the current
value of the PC to a register, and then uses this value to
compute the absolute address of the payload. The code
that is used for retrieving the current PC value is usually
referred to as the “getPC” code.

The simplest way to read the value of the PC is
through the use of the call instruction. The intended
use of call is for calling a procedure. When the call
instruction is executed, the CPU pushes the return
address in the stack, and jumps to the first instruction of
the called procedure. The return address is the address of
the instruction immediately following the call instruc-
tion. Thus, the decryptor can compute the address of
the encrypted payload by reading the return address
from the stack and adding to it the appropriate off-
set in order to reference the payload memory loca-
tions. This technique is used by the decryptor shown in
Fig. 1. The encrypted payload begins at address0x0010.
Call pushes in the stack the address of the instruc-
tion immediately following it (0x0008), which is then
popped to esi. The size of the encrypted payload is
computed in ecx, and the effective address computa-
tion [esi+ecx+0x7] in xor corresponds to the last
byte of the encrypted payload at address 0x08F. As the
name of the engine implies, the decryption is performed
backwards, one byte at a time, starting from the last
encrypted byte.

1 The IA-64 architecture supports a RIP-relative data addressing
mode. RIP stands for the 64bit instruction pointer.

Network-level polymorphic shellcode detection using emulation 263

Fig. 5 The decryptor of the PexFnstenvMov engine, which is
based on a getPC code that uses the fnstenv instruction

Finding the absolute memory address of the decryp-
tor is also possible using the fstenv instruction, which
saves the current FPU operating environment at the
memory location specified by its operand [43]. The
stored record includes the instruction pointer of the
FPU, which is different than EIP. However, if a float-
ing point instruction has been executed as part of the
decryptor, then the FPU instruction pointer will also
point to the memory area of the decryptor, and thus
fstenv can be used to retrieve its absolute memory
address. The same can also be achieved using one of the
fstenv, fsave, or fnsave instructions.

Figure 5 shows the decoder generated by the PexFn-
stenvMov engine of the Metasploit Framework [40],
which uses an fnstenv-based getPC code. By spec-
ifying the memory offset to the fstenv relative to
the stack pointer, the absolute memory address of the
latest floating point instruction fldz can be popped
to ebx. By combining the fstenv-based getPC code
with self-modifications, as presented in Sect. 3.2, it is
possible to construct a decoder with no control trans-
fer instruction, i.e., with a CFG consisting of a single
node.

A third getPC technique is possible by exploiting
the structured exception handling (SEH) mechanism
of Windows [44]. However this technique works only
with older versions of Windows, and the introduction of
registered SEH in Windows XP and 2003 limits its appli-
cability. From the tested polymorphic shellcode engines
(cf. Sect. 5.2.1), only Alpha2 [45] supports this type of
getPC, although not by default.

4.1.3 Known operand values

Polymorphic shellcode engines produce generic decryp-
tor code for a specific hardware platform that runs inde-
pendently of the OS version of the victim host or the
vulnerability being exploited. The decoder is constructed
with no assumptions about the state of the process in
which it will run, and any registers or memory locations
being used by the decoder are initialized on the fly. This
allows us to correctly follow its execution from the very

first instruction, since instruction operands with initially
unknown values will eventually become available.

For instance, the execution trace of the Countdown
decoder in Fig. 3 is always the same, independently of the
process in which it has been injected. Indeed, the code
is self-contained, which allows us to correctly execute
even instructions with non-immediate operands which
otherwise would be unknown, as shown from the com-
ments next to the code. The emulator can correctly ini-
tialize the registers, follow stack operations, compute all
effective addresses, and even follow self modifications,
since every operand eventually becomes known.

Note that, depending on the vulnerability, a skilled
attacker may be able to construct a non-self-contained
decryptor, which our approach would not be able to
fully execute. This could be possible by including in the
computations of the decoder existing data that reside at
known locations of the memory image of the vulnera-
ble process, and which remain consistent across all vul-
nerable systems. Such data are not accessible from the
network-level emulator, and thus it cannot follow any
instructions that manipulate them. We further discuss
this issue in Sect. 6.

4.2 Detection algorithm

In this section we describe in detail the emulation-based
polymorphic shellcode detection algorithm. The algo-
rithm takes as input a byte stream captured passively
from the network, such as a reassembled TCP stream
or the payload of a UDP packet, and reasons whether it
contains polymorphic shellcode. Each input is executed
on a CPU emulator as if it was executable code. Due
to the dense instruction set and the variable instruc-
tion length of the IA-32 architecture, even non-attack
streams can be interpreted as valid executable code.
However, such random code usually stops running soon,
e.g., due to the execution of an illegal instruction, while
real polymorphic code is being executed until the
encrypted payload is fully decrypted.

The pseudo-code of the detection algorithm is pre-
sented in Fig. 6 with several simplifications for brevity.
Each input buffer is mapped to a random location in the
virtual address space of the emulator, as shown in Fig. 7.
This corresponds to the placement of the attack vector
into the input buffer of a vulnerable process. Before each
execution attempt, the state of the virtual processor is
randomized (line 5). Specifically, the EFLAGS register,
which holds the flags of conditional instructions, and all
general purpose registers are assigned random values,
except esp, which is set to point to the middle of the
stack of a supposed process.

264 M. Polychronakis et al.

Fig. 6 Simplified
pseudo-code for the detection
algorithm

Payload Reads

Decryptor Encrypted Payload

Input Buffer: ~1-64KB

Virtual Address Space: 4GB

Fig. 7 Memory reads during the decryption of a polymorphic
shellcode

4.2.1 Running the shellcode

The main routine, emulate, takes as parameters the
starting address and the length of the input stream.
Depending on the vulnerability, the injected code may
be located at an arbitrary position within the stream.
For example, the first bytes of a TCP stream or a UDP
packet payload will probably be occupied by protocol
data, depending on the application (e.g., the METHOD
field in case of an HTTP request). Since the position of
the shellcode is not known in advance, the main routine
consists of a loop which repeatedly starts the execution
of the supposed code that begins from each and every
position of the input buffer (line 3). We call a complete
execution starting from position i an execution chain
from i.

Note that it is necessary to start the execution from
each position i, instead of starting only from the first
byte of the stream and relying on the self-synchronizing
property of the IA-32 architecture [7,8], since we may
otherwise miss the execution of a crucial instruction that
initializes some register or memory location. For exam-
ple, going back to the execution trace of Fig. 3, if the exe-
cution misses the first instruction push 0xF, e.g., due
to a misalignment or an overlapping instruction placed
in purpose immediately before push, then the emulator
will not execute the decryptor correctly, since the value
of the ecx register will be arbitrary. Furthermore, the
execution may stop even before reaching the shellcode,
e.g., due to an illegal instruction.

For each position pos, the algorithm enters the main
execution loop (line 6), in which a new instruction is
fetched, decoded, the program counter is increased by
the length of the instruction, and finally the instruction
is executed. In case of a control transfer instruction,
upon its execution, the PC might have been changed to
the address of the target instruction. Since instruction
decoding is an expensive operation, decoded instruc-
tions are stored in a translation cache (line 9). If an
instruction at a certain position of the buffer is going
to be executed again, e.g., as part of a loop body in the
same execution chain, or as part of a different execution
chain of the same input buffer then the instruction is
instantly fetched from the translation cache.

4.2.2 Optimizing performance

For large input streams, starting a new execution from
each and every position incurs a high execution over-
head per stream. We have implemented the following
optimization in order to mitigate this effect. The injected
shellcode is treated by the vulnerable application as
legitimate input data. Thus, it should conform to any
restrictions that input data may have. Since usually the
injected code is treated by the vulnerable application as
a string, and strings in C are terminated with a NULL
byte (a byte with zero value), any NULL byte within
the shellcode will truncate it and render the code non-
functional. For this reason, the shellcode cannot contain
NULL bytes inside its body.

We exploit this restriction by taking advantage of the
zero bytes present in binary network traffic. Before start-
ing execution from position i, a look-ahead scan is per-
formed to find the first zero byte after position i. If a zero
byte is found at position j, and j − i is less than a mini-
mum size S, then the positions from i to j are skipped and
the algorithm continues from position j+1. We have cho-
sen a rather conservative value for S = 50, given that

Network-level polymorphic shellcode detection using emulation 265

most polymorphic shellcodes have a size greater than
100 bytes.

In the rare case that a protected application accepts
NULL characters as part of the input data, this optimi-
zation should be turned off. On the other hand, if the
application protocol has other restricted bytes, which is
quite common [40], extending the above optimization to
consider these bytes instead of the zero byte would dra-
matically improve performance. For instance, the HTTP
protocol defines that the request header should be sepa-
rated from the message body by a CRLF byte combina-
tion. Since the two parts of an HTTP request are usually
treated separately by web servers, we could extend the
above optimization to also consider CRLF byte combi-
nations in case of HTTP traffic.

4.2.3 Detection heuristic

While the execution behavior of random code is unde-
fined, there exists a generic execution pattern inherent
to all polymorphic shellcodes, which allows us to accu-
rately distinguish polymorphic code injection attacks
from benign requests. Upon the hijack of the program
counter, the control flow of the vulnerable process is
diverted—sometimes through a NOP sled—to the
injected shellcode, and particular to the polymorphic
decryptor. During decryption, the decryptor reads the
contents of the memory locations where the encrypted
payload has been stored, decrypts them, and writes back
the decrypted data. Hence, the decryption process will
result in many memory accesses to the memory region
where the input buffer has been mapped to. Since this
region is a very small part of the virtual address space, we
expect that memory reads from that area would occur
rarely during the execution of random code.

Only instructions with a memory operand can poten-
tially result in a memory read from the input buffer. This
may happen if the absolute address that is specified by
a direct memory operand, or if the computation of the
effective address of an indirect memory operand, cor-
responds to an address within the input buffer. Input
streams are mapped to a random memory location of
the 4GB virtual address space. Additionally, before each
execution, the CPU registers, some of which normally
take part in the computation of the effective address, are
randomized. Thus, the probability to encounter an acci-
dental read from the memory area of the input buffer in
random code is very low. In contrast, the decryptor will
access tens or hundreds of different memory locations
within the input buffer, as depicted in Fig. 7, depending
on the size of the encrypted payload and the decryption
function.

This observation led us to initially choose the number
of reads from distinct memory locations of the input
buffer as the detection criterion. For the sake of brevity,
we refer to memory reads from distinct locations of the
input buffer as “payload reads.” For a given execution
chain, a number of payload reads greater than a certain
payload reads threshold (PRT) gives an indication for
the execution of a polymorphic shellcode.

We expected random code to exhibit a low payload
reads frequency, which would allow for a small PRT
value, much lower than the typical number of payload
reads found in polymorphic shellcodes. Preliminary
experiments with network traces showed that the fre-
quency of payload reads in random code is very small,
and usually only a few of the incoming streams had exe-
cution chains with just one to ten payload reads. How-
ever, there were rare cases with execution chains that
performed hundreds of payload reads. This was usually
due to the accidental formation of a loop with an instruc-
tion that happened to read hundreds of different mem-
ory locations from the input buffer. Since we expected
random code to exhibit a low number of payload reads,
such behavior would have been flagged as polymorphic
shellcode by our initial criterion, which would result in
false positives.

Since one of our primary goals is to have practically
zero false positives, we addressed this issue by defin-
ing a more strict criterion. As discussed in Sect. 4.1.2,
a mandatory operation of every polymorphic shellcode
is to find its absolute memory address through the exe-
cution of some form of getPC code. This led us to aug-
ment the detection criterion as follows: if an execution
chain of an input stream executes some form of getPC
code, followed by PRT or more payload reads, then the
stream is flagged to contain polymorphic shellcode. We
discuss in detail this criterion and its effectiveness in
terms of false positives in Sect. 5.1. The experimental
evaluation showed that the above heuristic allows for
accurate detection of polymorphic shellcode with zero
false positives.

Another option for enhancing the detection heuristic
would be to look for linear payload reads from a con-
tiguous region of the input buffer. However, this heu-
ristic can be tricked by splitting the encrypted payload
into nonadjacent parts which can then be decrypted in
random order [46].

4.2.4 Ending execution

An execution chain may end for one of the follow-
ing reasons: (i) an illegal or privileged instruction is
encountered, (ii) the control is transferred to an invalid

266 M. Polychronakis et al.

or unknown memory location, or (iii) the number of
executed instructions has exceeded a certain threshold.

4.2.4.1 Invalid instruction The execution may stop if
an illegal or privileged instruction is encountered
(line 10). Since privileged instructions can be invoked
only by the OS kernel, they cannot take part in the nor-
mal shellcode execution. Although an attacker could
intersperse invalid or privileged instructions in the
injected code to hinder detection, these should come
with corresponding control transfer instructions that
would bypass them during execution—otherwise the
shellcode would not execute correctly. In that case, the
emulator will also follow the real execution of the code,
so such instructions will not cause any inconsistency. At
the same time, privileged or illegal instructions appear
relatively often in random data, helping this way the
detector to distinguish between benign requests and
attack vectors.

4.2.4.2 Invalid memory location Normally, during
the execution of the decoder, the program counter will
point to addresses of the memory region of the input
buffer where the injected code resides. However, highly
obfuscated code could use the stack for storing some
parts, or all of the decrypted code, or even for “pro-
ducing” useful instructions on the fly, in a way similar
to the self-modifications presented in Sect. 3.2. Thus,
the flow of control may jump from the original code
of the decryptor to some generated instruction in the
stack, then jump back to the input buffer, and so on.
In fact, since the shellcode is the last piece of code
that will be executed as part of the vulnerable process,
the attacker has the flexibility to write in any memory
location mapped in the address space of the vulnerable
process [47].

Although it is generally difficult to know in advance
the contents of a certain memory location, since they
usually vary between different systems, it is easier to
find virtual memory regions that are always mapped
into the address space of the vulnerable process. For
example, if address space randomization is not applied
extensively, the attacker might know in advance some
memory regions of the stack or heap that exist in every
instance of the vulnerable process.

The emulator cannot execute instructions that read
unknown memory locations because their contents are
not available to the network-level detector. Such instruc-
tions are ignored and the execution continues normally.
Otherwise, an attacker could trick the emulator by plac-
ing NOP-like instructions that read arbitrary data from
memory locations known in advance to belong to the
address space of the application. However, the emu-
lator keeps track of any memory locations outside of
the input buffer that are written during execution, and

marks them as valid memory locations where useful data
or code may have been placed. If at any time the pro-
gram counter points to such an address, the execution
continues normally from that location. In contrast, if the
PC points to an address outside the input buffer that has
not been written during the particular execution, then
the execution stops (line 15). In random binary code,
this usually happens when the PC reaches the end of the
input buffer.

Note that if an attacker knows in advance some mem-
ory locations of the vulnerable process that contain code
which can be used as part of the shellcode, then the emu-
lator would not be able to fully execute it. We further
discuss this issue in Sect. 6.

4.2.4.3 Execution threshold There are situations in
which the execution of random code might not stop
soon, or even not at all, due to large code blocks with no
backward branches that are executed linearly, or due to
the occurrence of backwards jumps that form seemingly
“endless” or infinite loops. In such cases, an execution
threshold (XT) is necessary for avoiding extensive per-
formance degradation or execution hang ups (line 16).

An attacker could exploit this and evade detection by
placing a loop before the decryptor which would execute
enough instructions to exceed the execution threshold
before the code of the actual decryptor is reached. We
cannot simply skip such loops, since the loop body could
perform a crucial computation for the further correct
execution of the decoder, e.g., computing the decryp-
tion key. Fortunately, endless loops occur with low fre-
quency in normal traffic, as discussed in Sect. 5.3. Thus,
an increase in input requests with execution chains that
reach the execution threshold due to a loop might be
an indication of a new attack outbreak using the above
evasion method.

4.2.5 Infinite loop squashing

To further mitigate the effect of seemingly endless loops,
we have implemented a heuristic for identifying and
stopping the execution of provably infinite loops that
may occur in random code. Loops are detected dynam-
ically using the method proposed by Tubella et al.[48].
This technique detects the beginning and the termina-
tion of iterations and loop executions in run-time using
a Current Loop Stack that contains all loops that are
being executed at a given time.

The following infinite loop cases are detected: (i)
there is an unconditional backward branch from address
S to address T, and there is no control transfer instruc-
tion in the range [T,S] (the loop body), and (ii) there
is a conditional backward branch from address S to
address T, none of the instructions in the range [T,S] is a

Network-level polymorphic shellcode detection using emulation 267

(a) (b)

Fig. 8 Infinite loops in random code due to (a) unconditional and
(b) conditional branches

control transfer instruction, and none of the instruc-
tions in the range [T,S] affects the status flag(s) of the
EFLAGS register on which the conditional branch
depends on.

Examples of the two infinite loop cases are presented
in Fig. 8. In example (b), when control reaches the ror
instruction at address 0x0F30, the parity flag (PF) is
already set as a result of some previous instruction. Ror
affects only the CF and OF flags, stc affects only the CF
flag, which it sets to 1, and mov and fnop do not affect
any flags. Since none of the instructions in the loop body
affects the PF, its value will not change until the jump-if-
parity instruction is executed, which will jump back to
the ror instruction, resulting to an infinite loop.

Clearly, these are very simple cases, and more com-
plex infinite loop structures may arise. Our experiments
have shown that, depending on the monitored traffic,
the above heuristics prune about 3–6% of the execution
chains that stop due to reaching the execution thresh-
old. Loops in random code are usually not infinite, but
seemingly “endless,” being executed for a very large
number of iterations until completion. Thus, the runtime
overhead of any more elaborate infinite loop detection
method will be higher than the overhead of simply run-
ning the extra infinite loops that may arise until they
reach the execution threshold.

4.3 Implementation

In this section we describe the prototype implementa-
tion of our network-level detector. The detector pas-
sively captures network packets usinglibpcap [49] and
reassembles TCP/IP streams using libnids [50]. The
input buffer size is set to 64KB, which is large enough for
typical service requests. Especially for web traffic, pipe-
lined HTTP/1.1 requests through persistent connections
are split to separate streams. Otherwise, an attacker
could evade detection by filling the stream with benign
requests until exceeding the buffer size.

Instruction set simulation has been implemented
interpretively, with a typical fetch, decode, and execute
cycle. Accurate instruction decoding, which is crucial
for the identification of invalid instructions, is performed
using libdasm [51]. For our prototype, we have

implemented a subset of the IA-32 instruction set,
including most of the general-purpose instructions, but
no FPU, MMX, SSE, or SSE2 instructions, except
fstenv/fnstenv, fsave/fnsave, and rdtsc.
However, all instructions are fully decoded, and if during
execution an unimplemented instruction is encountered,
the emulator proceeds normally to the next instruction.

The implemented subset suffices for the complete and
correct execution of the decryption part of all the tested
shellcodes (cf. Sect. 5.2.1). Even the highly obfuscated
shellcodes generated by the TAPiON engine [20], which
intersperses FPU instructions among the decoder code,
are executed correctly, since the FPU instructions are
used only as NOPs and do not take part in the useful
computations of the decoder.

5 Experimental evaluation

In this section we evaluate the performance of the pro-
posed approach using our prototype implementation.
In all experiments, the detector was running on a PC
equipped with a 2.53 GHz Pentium 4 processor and 1 GB
RAM, running Debian Linux (kernel v2.6.7). For trace-
driven experiments, we used full packet traces of traffic
from ports related to the most exploited vulnerabilities,
captured at ICS-FORTH and the University of Crete.
Trace details are summarized in Table 1. Since remote
code-injection attacks are performed using a specially
crafted request to a vulnerable service, we keep only
the client-to-server traffic of network flows. For large
incoming TCP streams, e.g., due to a file upload, we
keep only the first 64KB. Note that these traces rep-
resent a significantly smaller portion of the total traf-
fic that passed by through the monitored links during
the monitoring period, since we keep only the client-
initiated traffic.

5.1 Tuning the detection heuristic

The major drawback of anomaly-based or heuristics-
based attack detection methods is their relatively high
false positive ratio. Such methods should have negligible

Table 1 Characteristics of client-to-server network traffic traces

Service Port Number Number Total size
of streams

www 80 1759950 1.72 GB
NetBIOS 137–139 246888 311 MB
microsoft-ds 445 663064 912 MB

268 M. Polychronakis et al.

false positive ratio in order to be useful. Since the
proposed approach is based on a heuristic detection
method, we first assess the possibility that the detection
algorithm incorrectly detects benign data as polymor-
phic shellcode.

As discussed in Sect. 4.2.3, the detection criterion
requires the execution of some form of getPC code,
followed by a number of payload reads that exceed
a certain threshold. Our initial implementation of this
heuristic was the following: if an execution chain con-
tains a call, fstenv, fnstenv, fsave, or fnsave
instruction, followed by PRT or more payload reads,
then it belongs to a polymorphic shellcode. There exist
four different versions of the call instruction in the
IA-32 instruction set. The existence of one of these eight
instructions serves just as an indication of the potential
execution of getPC code. Only when combined with the
execution of several payload reads, it gives a good indi-
cation of the execution of a polymorphic shellcode.

5.1.1 Evaluation with real traffic

We evaluated this heuristic using the client-to-server
requests from the traces presented in Table 1 as input
to the detection algorithm. Only 13 out of the 2,669,902
streams were found to contain an execution chain with a
call or fstenv instruction followed by payload reads,
and all of them had non-ASCII content. In the worst
case, there were five payload reads, allowing for a min-
imum value for PRT = 6. However, since the false pos-
itive rate is a crucial factor for the applicability of our
detection method, we further explored the quality of the
detection heuristic using a significantly larger data set.

5.1.2 Evaluation with synthetic requests

We generated two million streams of varying sizes uni-
formly distributed between 512 bytes and 64 KB with
random binary content. From our experience, binary
data is much more likely to give false positives than
ASCII only data. The total size of the data set was 61 GB.
The results of the evaluation are presented in Table 2,
under the column “Initial Heuristic.”

From the two million streams, 556 had an execution
chain that contained a getPC instruction followed by
payload reads. Although 475 out of the 556 streams had
at most six payload reads, there were 44 streams with
tens of payload reads, and 37 streams with more than 100
payload reads, reaching 416 payload reads in the most
extreme case. As we show in Sect. 5.2.1, there are poly-
morphic shellcodes that execute as few as 32 payload
reads. As a result, PRT cannot be set to a value greater

Table 2 Streams that matched the detection heuristic with a given
number of payload reads

Payload Streams

Reads Initial Heuristic Improved Heuristic

% # %

1 409 0.02045 22 0.00110
2 39 0.00195 5 0.00025
3 10 0.00050 3 0.00015
4 9 0.00045 1 0.00005
5 3 0.00015 1 0.00005
6 5 0.00025 1 0.00005
7–100 44 0.00220 0 0
100–416 37 0.00185 0 0

than 32 since it would otherwise miss some polymorphic
shellcodes. Thus, the above heuristic incorrectly identi-
fies these cases as polymorphic shellcodes.

5.1.3 Defining a stricter detection heuristic

Although only the 0.00405 % of the total streams resulted
to a false positive, we can devise an even more strict cri-
terion to further lower the false positive rate.

Payload reads occur in random code whenever the
memory operand of an instruction accidentally refers to
a memory location within the input buffer. In contrast,
the decoder of a polymorphic shellcode explicitly refers
to the memory region of the encrypted payload based
on the value of the instruction pointer that is pushed in
the stack by a call instruction, or stored in the mem-
ory location specified in an fstenv instruction. Thus,
after the execution of a call or fstenv instruction,
the next mandatory step of a getPC code is to (not nec-
essarily immediately) read the instruction pointer from
the memory location where it was stored.

This observation led us to further enhance the detec-
tion criterion as follows: if an execution chain contains
one of the eight different call, fstenv, or fsave
instructions, followed by a read from the memory loca-
tion where the instruction pointer was stored as a result of
one of the above instructions, followed by PRT or more
payload reads, then it belongs to a polymorphic shellcode.

Using the same data set, the enhanced heuristic results
to significantly fewer matching streams, as shown in
Table 2, under the column “Enhanced Heuristic.” In
the worst case, one stream had an execution chain with
a call instruction, an accidental read from the mem-
ory location of the stack where the return address was
pushed, and six payload reads. There were no streams
with more than six payload reads, which allows for a
lower bound for PRT = 7.

Network-level polymorphic shellcode detection using emulation 269

5.2 Validation

5.2.1 Polymorphic shellcode execution

We tested the capability of the emulator to correctly
execute polymorphic shellcodes using real samples pro-
duced by off-the-shelf polymorphic shellcode engines.
We generated mutations of an 128 byte shellcode using
the Clet [18], ADMmutate [17], and TAPiON [20]
polymorphic shellcode engines, and the Alpha2 [45],
Countdown, JmpCallAdditive, Pex, PexFnstenvMov,
PexFnstenvSub, and ShigataGaNai shellcode encryp-
tion engines from the Metasploit Framework [40].

TAPiON, the most recent of the engines, produces
highly obfuscated code using anti-disassembly and anti-
emulator techniques, many garbage instructions, code
block transpositions, and on-the-fly instruction genera-
tion. In several cases, the decryptor produces on-the-fly
some code in the stack, jumps to it, and then jumps back
to the original decryptor code.

For each engine, we generated 1000 instances of the
original shellcode. For engines that support options
related to the obfuscation degree, we split the 1000 sam-
ples evenly using all possible parameter combinations.
The execution of each sample stops when the complete
original shellcode is found in the memory image of the
emulator.

Figure 9 shows the average number of executed
instructions that are required for the complete decryp-
tion of the payload for the 1000 samples of each engine.
The ends of range bars, where applicable, correspond
to the samples with the minimum and maximum num-
ber of executed instructions. In all cases, the emula-
tor decrypts the original shellcode correctly. Figure 10
shows the average number of payload reads for the
same experiment. For simple encryption engines, the
decoder decrypts four bytes at a time, resulting to 32
payload reads. ADMmutate decoders read either one
or four bytes at a time. On the other extreme, shell-
codes produced by the Alpha2 engine perform more
than 500 payload reads. Alpha2 produces alphanumeric
shellcode using a considerably smaller subset of the
IA-32 instruction set, which forces it to execute much
more instructions in order to achieve the same goals.

Given that 128 bytes is a rather small size for a func-
tional payload, these results can be used to derive an
indicative upper bound for PRT = 32 (a higher value
would miss such small shellcodes). Combined with the
results of the previous section, which showed that the
enhanced heuristic is very resilient to accidental pay-
load reads, this allows for a range of possible values
for PRT from 7 to 31. For our experiments we choose
for PRT the median value of 19, which allows for even

ADMmutate
Clet

Alpha2
Countdown

JmpCallAdditive
Pex

PexFnstenvMov
PexFnstenvSub

ShikataGaNai
TAPiON

Executed instructions

32 64 128 256 512 1024 2048 4096 8192

Fig. 9 Average number of executed instructions for the complete
decryption of an 128 byte shellcode encrypted using different poly-
morphic and encryption engines

ADMmutate
Clet

Alpha2
Countdown

JmpCallAdditive
Pex

PexFnstenvMov
PexFnstenvSub

ShikataGaNai
TAPiON

Payload reads

8 16 32 64 128 256 512

Fig. 10 Average number of payload reads for the complete
decryption of an 128 byte shellcode encrypted using different poly-
morphic and encryption engines

more extreme cases of accidental payload reads not to be
misclassified as true positives, while at the same time can
capture even smaller shellcodes.

5.2.2 Detection effectiveness

To test the efficacy of our detection method, we launched
a series of remote code-injection attacks using the
Metasploit Framework [40] against an unpatched Win-
dows XP host running Apache v1.3.22. Attacks were
launched from a Linux host using Metasploit’s exploits
for the following vulnerabilities: Apache win32 chunked
encoding [52], Microsoft RPC DCOM MS03-026 [53],
and Microsoft LSASS MS04-011 [54]. The detector was
running on a third host that passively monitored the
incoming traffic of the victim host. For the exploit pay-
load we used the shellcode win32_reverse, which
connects back to the attacking host and spawns a shell,
encrypted using different engines. We tested all com-
binations of the three exploits with the engines pre-
sented in the previous section. All attacks were detected
successfully, with zero false negatives.

5.3 Processing cost

In this section we evaluate the raw processing speed of
our prototype implementation using the network traces

270 M. Polychronakis et al.

Execution threshold

256 512 1024 2048 4096 8192 16384 32768

T
hr

ou
gh

pu
t (

M
bi

t/s
)

0

40

80

120

160 port 139
port 445
port 80

Fig. 11 Processing speed for different execution thresholds

Execution threshold
256 512 1024 2048 4096 8192 16384 32768

S
tr

ea
m

s
re

ac
he

d
th

re
sh

ol
d

(%
)

0

2

4

6

8

10

12

14
port 139
port 445
port 80

Fig. 12 Percentage of streams that reach the execution threshold

presented in Table 1. Although emulation is a CPU-
intensive operation, our aim is to show that it is feasible
to apply it for network-level polymorphic attack detec-
tion. One of the main factors that affect the processing
speed of the emulator is the execution threshold beyond
which an execution chain stops. The larger the XT, the
more the processing time spent on streams with long
execution chains. As shown in Fig. 11, as XT increases,
the throughput decreases, especially for ports 139 and
445. The reason for the linear decrease of the through-
put for these ports is that some streams have very long
execution chains that always reach the XT, even when
it is set to large values. For higher execution thresholds,
the emulator spends even more cycles on these chains,
which decreases the overall throughput.

We further explore this effect in Fig. 12, which shows
the percentage of streams with an execution chain that
reaches a given execution threshold. As XT increases,
the number of streams that reach it decreases. This effect
occurs only for low XT values due to large code blocks
with no branch instructions that are executed linearly.
For example, the execution of linear code blocks with
more than 256 but less than 512 valid instructions is

terminated before reaching the end when using a
threshold of 256, but completes correctly with a thresh-
old of 512. However, the occurrence probability of such
blocks is reversely proportional to their length, due to
the illegal or privileged instructions that accidentally
occur in random code. Thus, the percentage of streams
that reach the execution threshold stabilizes beyond the
value of 2048. After this value, XT is reached solely due
to execution chains with “endless” loops, which usually
require a prohibitive number of instructions in order to
complete.

In contrast, port 80 traffic behaves differently because
the ASCII data that dominate in web requests produce
mainly forward jumps, making the occurrence of end-
less loops extremely rare. Therefore, beyond an XT of
2048, the percentage of streams with an execution chain
that stops due to reaching the execution threshold is
negligible, reaching 0.12 %. However, since ASCII web
requests do not contain any null bytes, the zero-delim-
ited chunks optimization does not reduce the number
of execution chains per stream, which results to a lower
processing speed.

We should stress at this point that these results refer
to the raw processing speed of the detector, which means
that under normal operation will be able to inspect traf-
fic of higher speeds, since usually the incoming traffic
to some service is less compared to the outgoing traf-
fic. For example, the outgoing traffic from typical web
servers is much more than the incoming traffic, because
usually the content of web pages is larger than the size
of incoming requests. Indeed, a study of the web server
traffic at FORTH and the University of Crete for one
week showed that from the total traffic, 1.5 % and 14 %
was incoming traffic, and 98.5 % and 86 % was outgoing
traffic, respectively.

Figures 11 and 12 represent two conflicting trade-
offs related to the execution threshold. Presumably, the
higher the processing speed, the better, which leads
towards lower XT values. On the other hand, as dis-
cussed in Sect. 4.2.4.3, it is desirable to have as few
streams with execution chains that reach the XT as possi-
ble. This leads towards higher XT values, which increase
the visibility of endless loop attacks. Regarding this sec-
ond requirement, XT values higher than 2048 do not
offer any improvement to the percentage of streams
that reach it. After an XT of 2048, the percentage of
streams that reach it stabilizes at 2.65% for port 139 and
4.08% for port 445.

At the same time, an XT of 2048 allows for a quite
decent processing speed, especially when taking into
account that live incoming traffic will usually have rel-
atively lower volume than the monitored link’s band-
width, especially if the protected services are not related

Network-level polymorphic shellcode detection using emulation 271

Execution threshold

0 2000 4000 6000 8000 10000 12000 14000

P
ay

lo
ad

 r
ea

ds

0

100

200

300

400

500

600

700

Alpha2
TAPiON
ADMmutate
Clet

0 100 200 300 400 500 600
0

10

20

30

40

Fig. 13 The average number of payload reads of Fig. 10 that a
given execution threshold allows to be executed. All decryptors
perform approximately 20 payload reads within the first 300 exe-
cuted instructions

to file uploads. We should also stress at this point that
our prototype is highly unoptimized. For instance, an
emulator implemented using threaded code [55], com-
bined with optimizations such as lazy condition code
evaluation [56], would result to better performance.

A final issue that we should take into account is to
ensure that the selected execution threshold allows poly-
morphic shellcodes to perform enough payload reads
to reach the payload reads threshold and be success-
fully detected. As shown in Sect. 5.2.1, the complete
decryption of some shellcodes requires the execution
of even more than 10000 instructions, which is much
higher than an XT as low as 2048. However, as shown in
Fig. 13, even lower XT values, which give better through-
put for binary traffic, allow for the execution of more
than enough payload reads. For example, in all cases,
the chosen PRT value of 19 is reached by executing only
300 instructions.

6 Limitations

6.1 Non-self-modifying shellcode

A fundamental limitation of our method is that it detects
only polymorphic shellcodes that decrypt their body
before executing their actual payload. Plain or com-
pletely metamorphic shellcodes that do not perform
any self-modifications are not captured by our detec-
tion heuristic. However, we have yet to see a purely
metamorphic shellcode engine implementation, while
polymorphic engines are becoming more prevalent and
complex [20], mainly for the following two reasons.

First, polymorphic shellcode is increasingly used for
evading intrusion detection systems. Second, the ever

increasing functionality of recent shellcodes makes their
construction more complex, while at the same time their
code should not contain NULL and, depending on the
exploit, other restricted bytes, such as CR, LF, SP, VT,
and others. Thus, it is easier for shellcode authors to
avoid such bytes in the code by encoding its body using
an off-the-shelf encryption engine, rather than having
to handcraft the shellcode [1]. In many cases the latter
is non-trivial, since many exploits require the avoidance
of many restricted bytes [40]. There are also cases where
even more strict constraints should be handled, such as
that the shellcode should survive processing from func-
tions like toupper(), or that it should be composed
only by printable ASCII characters [19,45].

6.2 Non-self-contained shellcode

Our method works only with self-contained shellcode.
Although current polymorphic shellcode engines pro-
duce self-contained code, a motivated attacker could
evade network-level emulation by constructing a non-
self-contained shellcode that involves registers or mem-
ory locations with a priori known values that remain
constant across all vulnerable systems. For example, if
it is known in advance that the address 0x40038EF0
in the vulnerable process’ address space contains the
instruction ret, then the shellcode can be obfuscated
by inserting the instruction call 0x40038EF0 at an
arbitrary position in the decoder code. Although this
will have no effect to the actual execution of the shell-
code, since the flow of control will simply be transferred
to address 0x40038EF0, and from there immediately
back to the decoder code, due to the ret instruction,
the network-level emulator will not execute it correctly,
since it cannot follow the jump to address0x40038EF0.

However, the extended use of hardcoded addresses
results in more fragile code [1], as they tend to change
across different software and OS versions, especially
as address space randomization schemes are becom-
ing more prevalent [57]. In our future work, we plan
to explore ways to augment the network-level detector
with host-level information, such as the invariant parts
of the address space of the protected processes, in order
to make it more robust to such obfuscations.

6.3 Endless loops

Another possible evasion method is the placement of
endless loops for reaching the execution threshold
before the actual decryptor code runs. Although this
is a well-known problem in the context of virus scan-
ners for years, if attackers start to employ such evasion
techniques, our method will still be useful as a first-stage

272 M. Polychronakis et al.

anomaly detector for application-aware NIDS like
shadow honeypots [58], given that the appearance of
endless loops in random code is rare, as shown in
Sect. 5.3.

6.4 Transformations beyond the transport layer

Shellcodes contained in compressed HTTP/1.1 connec-
tions, or unicode-proof shellcodes [47], which become
functional after being transformed according to the uni-
code encoding by the attacked service, are not executed
correctly by our prototype. This is an orthogonal issue
that can be addressed by reversing the encoding used in
each case by the protected service through appropriate
filters before the emulation stage.

Generally, network data that are being transformed
above the transport layer, before reaching the core appli-
cation code, cannot always be effectively inspected using
passive network monitoring, as for example in case of
encrypted SSL or HTTPS connections. In such cases,
our technique can still be applied by moving it from the
network-level to a proxy that first decrypts the traffic
before scanning it [59]. Another option is to integrate
the detector to the end hosts, either at the socket level, by
intercepting calls that read network input trough library
interposition [60], or at the application level as an exten-
sion to the protected service, e.g., as module for the
Apache web server [9].

7 Conclusion

We have considered the problem of detecting previously
unknown polymorphic code injection attacks at the net-
work level. The main question is whether highly obfus-
cated versions of such attacks can be identified purely
based on the limited information available through pas-
sive network traffic monitoring.

The starting point for our work is the observation
that previous proposals that rely on static analysis are
insufficient, because they can be bypassed using tech-
niques such as simple self-modifications. In response
to this observation, we explore the feasibility of per-
forming more accurate analysis through network-level
execution of potential shellcodes, by employing a fully-
blown processor emulator on the NIDS side. We have
examined the execution profiles of a large number of
shellcodes produced using various polymorphic shell-
code engines, and identified properties that can distin-
guish polymorphic shellcodes from normal traffic with
reasonable accuracy. Our analysis indicates that our
approach can detect all known classes of polymorphic
shellcodes, including those that employ certain forms of

self-modifications that are not detected by previous pro-
posals. Furthermore, our experiments suggest that the
cost of our approach is modest.

However, further analysis on the robustness of our
approach also revealed that attackers can succeed in
circumventing our techniques if the shellcode is not
self-contained. In particular, the attacker can leverage
context not available at the network level for building
shellcodes that cannot be unambiguously executed on
the network level processor emulator. Detecting such
attacks remains an open problem.

One way of tackling this problem is to feed the nec-
essary host-level information to the NIDS, as suggested
in [61], but the feasibility of doing so is yet to be proven.
A major concern is that, in most cases, bypassing shell-
code detection techniques, including our own, has been
relatively straightforward, and appears to carry no addi-
tional cost or risks for the attacker. Thus, these tech-
niques do not necessarily “raise the bar” for the attacker,
while their cost for the defender in terms of the resources
that need to be devoted to detection can be significant.
At this point, it remains unclear whether accurate net-
work level detection is feasible. Nevertheless, we believe
that the work described in this paper brings us one step
closer to answering this question.

Acknowledgment This work was supported in part by the projects
CyberScope, EAR, and Miltiades, funded by the Greek General
Secretariat for Research and Technology under contract numbers
PENED 03ED440, USA-022, 05NON-EU-109, respectively, and
by the FP6 project NoAH funded by the European Union under
contract number 011923. Michalis Polychronakis and Evangelos
P. Markatos are also with the University of Crete.

References

1. sk, History and advances in windows shellcode. Phrack
11(62), (2004)

2. Kim, H.-A., Karp, B.: Autograph: toward automated, distrib-
uted worm signature detection. In: Proceedings of the 13th
USENIX Security Symposium, pp. 271–286, (2004)

3. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated
worm fingerprinting. In: Proceedings of the 6th Symposium
on Operating Systems Design & Implementation (OSDI),
(2004)

4. Newsome, J., Karp, B., Song, D.: Polygraph: automatically
Generating signatures for polymorphic worms. In: Proceed-
ings of the IEEE Security & Privacy Symposium, pp. 226–241,
(2005)

5. Tang, Y., Chen, S.: Defending against internet worms: a
signature-based approach. In: Proceedings of the 24th Annual
Joint Conference of IEEE Computer and Communication
societies (INFOCOM), (2005)

6. Wang, K., Stolfo, S.J.: Anomalous payload-based network
intrusion detection. In: Proceedings of the 7th International
Symposium on Recent Advanced in Intrusion Detection
(RAID), pp. 201–222, (2004)

Network-level polymorphic shellcode detection using emulation 273

7. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.:
Polymorphic worm detection using structural information of
executables. In: Proceedings of the International Symposium
on Recent Advances in Intrusion Detection (RAID), (2005)

8. Chinchani, R., Berg, E.V.D.: A fast static analysis approach to
detect exploit code inside network flows. In: Proceedings of
the International Symposium on Recent Advances in Intru-
sion Detection (RAID), (2005)

9. Wang, X., Pan, C.-C., Liu, P., Zhu, S.: Sigfree: a signature-
free buffer overflow attack blocker. In: Proceedings of the
USENIX Security Symposium (2006)

10. Li, Z., Sanghi, M., Chen, Y., Kao, M.-Y., Chavez, B.:
Hamsa: fast signature generation for zero-day polymorphic
worms with provable attack resilience. In: Proceedings of the
2006 IEEE Symposium on Security and Privacy, pp. 32–47,
2006

11. Ször, P.: The art of computer virus research and defense.
Addison-Wesley Professional, (2005)

12. Ször, P., Ferrie, P.: Hunting for metamorphic. In: Proceedings
of the virus bulletin conference. pp. 123–144, (2001)

13. Christodorescu, M., Jha, S.: Static analysis of executables to
detect malicious patterns. In: Proceedings of the 12th USE-
NIX Security Symposium (Security’03), (2003)

14. Roesch, M.: Snort: lightweight intrusion detection for net-
works. In: Proceedings of USENIX LISA ’99, November
1999, (software available from http://www.snort.org/)

15. Paxson, V.: Bro: a system for detecting network intruders in
real-time. In: Proceedings of the 7th USENIX Security Sym-
posium, (1998)

16. Jordan, C.: Writing detection signatures. USENIX
Login 30(6), 55–61 (2005)

17. K2, ADMmutate, http://www.ktwo.ca/ADMmutate-0.8.4.tar.
gz, (2001)

18. Detristan, T., Ulenspiegel, T., Malcom, Y., Underduk,
M.: Polymorphic shellcode engine using spectrum analysis.
Phrack 11(61), (2003)

19. Rix, Writing IA32 alphanumeric shellcodes. Phrack 11(57),
(2001)

20. Bania, P.: TAPiON, http://pb.specialised.info/all/tapion/,
(2005)

21. Toth, T., Kruegel, C.: Accurate buffer overflow detection via
abstract payload execution. In: Proceedings of the 5th Sym-
posium on Recent Advances in Intrusion Detection (RAID),
(2002)

22. Akritidis, P., Markatos, E.P., Polychronakis, M.,
Anagnostakis, K.: STRIDE: Polymorphic sled detec-
tion through instruction sequence analysis. In: Proceedings
of the 20th IFIP International Information Security
Conference (IFIP/SEC), (2005)

23. Crandall, J.R., Wu, S.F., Chong, F.T.: Experiences using
minos as a tool for capturing and analyzing novel worms
for unknown vulnerabilities. In: Proceedings of the Confer-
ence on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), (2005)

24. Pasupulati, A., Coit, J., Levitt, K., Wu, S., Li, S., Kuo, J.,
Fan, K.: Buttercup: on network-based detection of polymor-
phic buffer overflow vulnerabilities. In: Proceedings of the
Network Operations and Management Symposium (NOMS),
pp. 235–248, (2004)

25. Pincus, J., Baker, B.: Beyond stack smashing: recent
advances in exploiting buffer overflows. IEEE Security Pri-
vacy 2(4), 20–27 (2004)

26. Kreibich, C., Crowcroft, J.: Honeycomb–creating intrusion
detection signatures using honeypots. In: Proceedings of the
Second Workshop on Hot Topics in Networks (HotNets-II),
(2003)

27. Kolesnikov, O., Dagon, D., Lee, W.: Advanced polymor-
phic worms: evading IDS by blending in with normal
traffic. In: College of Computing, Georgia Institute
of Technology, Atlanta, GA 30332, http://www.cc.ga-
tech.edu/ ok/w/ok_pw.pdf, (2004)

28. Newsome, J., Karp, B., Song, D.: Paragraph: thwarting signa-
ture learning by training maliciously. In: Proceedings of the
9th International Symposium on Recent Advances in Intru-
sion Detection (RAID), (2006)

29. Payer, U., Teufl, P., Lamberger, M.: Hybrid engine
for polymorphic shellcode detection. In: Proceedings of
the conference on detection of intrusions and mal-
ware and vulnerability assessment (DIMVA), pp. 19–31,
(2005)

30. Linn, C., Debray, S.: Obfuscation of executable code to
improve resistance to static disassembly. In: Proceedings of
the 10th ACM conference on Computer and communications
security (CCS), pp. 290–299, (2003)

31. Aycock, J., deGraaf, R., Jacobson, M.: Anti-disassembly using
cryptographic hash functions. Department of Computer Sci-
ence, University of Calgary, Technical Report, pp. 793–824,
(2005)

32. Venable, M., Chouchane, M.R., Karim, M.E., Lakhotia, A.:
Analyzing memory accesses in obfuscated x86 executables.
In: Proceedings of the conference on detection of intru-
sions and malware and vulnerability assessment (DIMVA),
(2005)

33. Collberg, C.S., Thomborson, C.: Watermarking, tamper-
proffing, and obfuscation: tools for software protection. IEEE
Trans. Softw. Eng. 28(8), 735–746 (2002)

34. Wang, C., Hill, J., Knight, J., Davidson, J.: Software
tamper resistance: Obstructing static analysis of pro-
grams. University of Virginia, Technical Report CS-2000–12,
(2000)

35. Madou, M., Anckaert, B., Moseley, P., Debray, S., Sutter, B.D.,
Bosschere, K.D.: Software protection through dynamic code
mutation. In: Proceedings of the 6th International Workshop
on Information Security Applications (WISA), pp. 194–206,
(2005)

36. Schwarz, B., Debray, S., Andrews, G.: Disassembly of exe-
cutable code revisited. In: Proceedings of the ninth working
conference on reverse engineering (WCRE), (2002)

37. Prasad, M., cker Chiueh, T.: A binary rewriting defense
against stack based overflow attacks. In: Proceedings of the
USENIX annual technical conference, (2003)

38. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Sta-
tic disassembly of obfuscated binaries. In: Proceed-
ings of the USENIX security symposium, pp. 255–270,
(2004)

39. Cohen, F.B.: Operating system protection through program
evolution. Comput. Sec. 12(6), 565–584 (1993)

40. Metasploit project, http://www.metasploit.com/, (2006)
41. Cifuentes, C., Gough, K.J.: Decompilation of binary pro-

grams. Softw. Prac. Exp. 25(7), 811–829 (1995)
42. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86

executables. In: Proceedings of the International Conference
on Compiler Construction (CC), (2004)

43. Noir, GetPC code (was: Shellcode from ASCII), http://www.
securityfocus.com/ archive/82/327100/2006-01-03/1, June 2003

44. Ionescu, C.: GetPC code (was: Shellcode from ASCII), http://
www.securityfocus.com/archive/82/327348/2006-01-03/1, July
2003

45. Wever, B.-J.: Alpha 2, (2004), http://www.edup.tudelft.nl/ bjw-
ever/src/alpha2.c

46. Perriot, F., Ferrie, P., Ször, P.: Striking similarities. Virus Bull.,
pp. 4–6, (2002)

274 M. Polychronakis et al.

47. Obscou, Building IA32 ‘unicode-proof’ shellcodes. Phrack
11(61), (2003)

48. Tubella, J., González, A.: Control speculation in multi-
threaded processors through dynamic loop detection. In:
Proceedings of the 4th International Symposium on High-
Performance Computer Architecture (HPCA), (1998)

49. McCanne, S., Leres, C., Jacobson, V.: Libpcap. http://www.tcp-
dump.org/, (2006)

50. Wojtczuk, R.: Libnids. http://libnids.sourceforge.net/, (2006)
51. jt, Libdasm. http://www.klake.org/∼jt/misc/libdasm-1.4.tar.

gz, (2006)
52. Apache Chunked Encoding Overflow. http://www.os-

vdb.org/838, (2002)
53. Microsoft Windows RPC DCOM Interface Overflow,

http://www.osvdb.org/2100, (2003)
54. Microsoft Windows LSASS Remote Overflow, http://www.

osvdb.org/5248, (2004)
55. Bell, J.R.: Threaded code. Comm. of the ACM. 16(6),

370–372 (1973)
56. Bellard, F.: QEMU, a fast and portable dynamic translator. In:

Proceedings of the USENIX Annual Technical Conference,
FREENIX Track, pp. 41–46, (2005)

57. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation:
an efficient approach to combat a broad range of memory
error exploits. In: Proceedings of the 12th USENIX Security
Symposium, (2003)

58. Anagnostakis, K., Sidiroglou, S., Akritidis, P., Xinidis, K.,
Markatos, E., Keromytis, A.D.: Detecting targeted attacks
using shadow honeypots. In: Proceedings of the 14th USE-
NIX Security Symposium, pp. 129–144, (2005)

59. Hsu, F.-H., Chiueh, T.-C.: CTCP: a transparent centralized
tcp/ip architecture for network security. In: Proceedings of
the 20th Annual Computer Security Applications Confer-
ence (ACSAC), pp. 335–344, (2004)

60. Liang, Z. Sekar, R.: Fast and automated generation of attack
signatures: a basis for building self-protecting servers. In: Pro-
ceedings of the 12th ACM conference on Computer and com-
munications security (CCS), pp. 213–222, (2005)

61. Dreger, H., Kreibich, C., Paxson, V., Sommer, R.: Enhanc-
ing the accuracy of network-based intrusion detection with
host-based context. In: Proceedings of the Conference on
Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), (2005)

	Network-level polymorphic shellcode detection using emulation
	Abstract
	Introduction
	Related work
	Static analysis resistant polymorphic shellcode
	Thwarting disassembly
	Thwarting control and data flow analysis
	Network-level execution
	Approach
	Position-independent code
	GetPC code
	Known operand values
	Detection algorithm
	Running the shellcode
	Optimizing performance
	Detection heuristic
	Ending execution
	Infinite loop squashing
	Implementation
	Experimental evaluation
	Tuning the detection heuristic
	Evaluation with real traffic
	Evaluation with synthetic requests
	Defining a stricter detection heuristic
	Validation
	Polymorphic shellcode execution
	Detection effectiveness
	Processing cost
	Limitations
	Non-self-modifying shellcode
	Non-self-contained shellcode
	Endless loops
	Transformations beyond the transport layer
	Conclusion

