
Operational Programme
“Competitiveness”

R&D Cooperations with Organizations of non-European Countries

EAR: Early warning system for automatic detection of Internet-based
cyberattacks

(Code G.S.R.T.:HPA-022)

D3.1 “System Implementation”

Abstract: This document describes the implementation of the EAR Early Warning
System for Internet-Based Cyber-Attacks. The deliverable is accompanied by a
Compact Disc containing the relevant source code.

Contractual Date of Delivery 12 May 2005
Actual Date of Delivery 12 May 2005
Deliverable Security Class Public
Editor Periklis Akritidis

The EAR Consortium consists of:

FORTH Coordinator Greece
GA Tech Principal Contractor USA
FORTHnet Principal Contractor Greece

Contents

1 Introduction 3

2 Implementation 4
2.1 Overview . 4
2.2 Monitor . 4

2.2.1 Source code layout . 6
2.2.2 Compilation-time parameters 6
2.2.3 Substring cache . 6
2.2.4 Cache entry . 7
2.2.5 Hashing of cache entries 8
2.2.6 EAR . 8
2.2.7 Main . 9
2.2.8 Rabin Fingerprints . 9
2.2.9 Hex printing . 10
2.2.10 Flow reconstruction . 10
2.2.11 Excluding traffic . 10
2.2.12 Reporting . 10
2.2.13 Interface with higher-level modules 10
2.2.14 Act on Alerts . 11
2.2.15 Remote Monitor . 11
2.2.16 Monitor Command-Line Syntax 11

2.3 Logic . 12
2.4 Graphical User Interface . 12

References 13

1

List of Figures

2.1 System components . 4
2.2 Monitor components . 5
2.3 Sample alert message . 11
2.4 Sample status message . 11
2.5 Monitor command-line syntax 12
2.6 Contagion: The worm appears in both incoming and outgoing traf-

fic of a host. 12
2.7 Issued alerts and inspection of the detected worm substring. 14
2.8 Issued alerts and inspection of the flows that carried the offending

substring. 14
2.9 The EAR statistics panel. 15
2.10 The EAR configuration dialog. 15

2

Chapter 1

Introduction

In this document we discuss the implementation of the EAR Early Warning System
for Internet-Based Cyber-Attacks. The deliverable is accompanied by a Compact
Disc containing the relevant source code.

The system operates by passively monitoring network traffic and identifying
strings that belong to worms and can be used as signatures for filtering worms.
The main objectives of the system are (a) to detect previously unknown Internet
worms, (b) to detect them in time, (c) to detect them without false positives, and
(d) to detect them without human intervention.

The system operates by detecting substrings in network stream contents that
are sent to more than a number of destination hosts within a certain period of time.
A fundamental condition for the system to detect a worm is that the attack must
contain an invariant string that can be used as a signature. A number of additional
heuristics employed to boost performance and reduce false positives are described

During the course of this project several research articles were published. Ef-
ficient content-based fingerprinting of zero-day worms [1], published in the IEEE
International Conference on Communications (ICC 2005), describes the repetitive-
content-based worm detection heuristics. STRIDE: Polymorphic Sled Detection
using Instruction Sequence Analysis [2], published in the 20th IFIP International
Security Conference (IFIP/SEC 2005), discusses the detection of polymorphic at-
tacks. Design and Implementation of a High-Performance Network Intrusion Pre-
vention System [4] and Generating Realistic Workloads for Network Intrusion De-
tection Systems [3] , study mechanisms for enforcing the signatures generated by
the worm detection system.

3

Chapter 2

Implementation

In this chapter we discuss the implementation of the EAR Early Warning System
for Internet-Based Cyber-Attacks.

2.1 Overview

EAR was implemented on the GNU/Linux platform, but it is designed to be portable
to other platforms, including Microsoft’s.

EAR is composed of three major modules: a high-performance monitor, pro-
grammed in the low-level C language for performance, implements the main filter;
generated alerts are processed by a second component, programmed in the high-
level Python language, for flexibility; finally, the Graphical User Interface (GUI) is
implemented in Python and GTK. Figure 2.1 shows a component diagram.

Monitor Logic User Interface���

Figure 2.1: System components: a high-performance monitor, programmed in the
low-level C language, implements the main filter; generated alerts are processed
by a second component, programmed in the high-level Python language; finally,
the Graphical User Interface (GUI) is implemented in Python and GTK.

In the following sections we describe each of the three components.

2.2 Monitor

TheMonitor module is implemented in C, for performance reasons. It communi-
cates with theLogic module by emitting records in ASCCI format on its standard
output.

4

It has several submodules, which are illustrated in Figure 2.2, and are described
below and in the following subsections.

main This module drives the rest of the system. It uses theOptions module to
parse the command-line arguments and the Libnids library to capture net-
work traffic. It drives theEAR module, which is the API of the worm detec-
tion system.

options This module is responsible for parsing command line arguments, and is
used by theMain module.

libnids This is a third-party library for TCP flow reconstruction.

ear This module implements and provides an API to the EAR worm detection
algorithms. It uses theCache, Rabin, andReport modules.

cache This module is responsible for the storage of substring fingerprints, and
implements the appropriate data-structures.

rabin This module is responsible for computing substring fingerprints using the
Rabin algorithm.

report This module is responsible for reporting results on the standard-output.

EarCache

Report

Main

OptionsRabin

Libnids

Figure 2.2: Monitor components

5

2.2.1 Source code layout

Here we describe the files that make up the source code of theMonitor .

cache.h and cache.cThese files implement the substring cache (Cachemodule).

ear.h and ear.c These files contain the ear API (EAR module).

report.h and report.c These files handle reporting (Report module).

main.c Source file containing the main function and libnids calls (Main module).

options.h and options.cHandling of command-line arguments (Optionsmodule).

rabin.h and rabin.c Implementation of incremental Rabin fingerprints (Rabin mod-
ule).

The following files contain helper routines possibly used by many modules.

config.h This file contains parameters tunable during compilation-time.

timer.h Inline timer manager functions (xtimeradd, xtimersub, xtimercmp)

cputime.h and cputime.c CPU time utilities.

hex.h and hex.cThese files contain hex printing utility functions

2.2.2 Compilation-time parameters

The compile time parameters are configured in config.h which is included from
other source files. They include:

MAX DST This parameter controls the size of the table allocated for storing mul-
tiple destinations. The destinations threshold used for triggering an alert is
tunable at runtime, but it cannot exceed this value.

VERBOSE This flag controls whether additional information is stored, such as
the source addresses, ports, and offsets of the captured substrings. If this
flag is not set, then the corresponding fields in the reported results are set to
”N/A”.

2.2.3 Substring cache

The substring cache is responsible for storing information about the fingerprints of
encountered substrings. It is implemented in files cache.h and cache.c.

The substring cache is represented by thestruct cacheADT, which is a con-
tainer of cache entries, represented bystruct cacheentry. struct cachesupports
the following operations:

6

struct cache *cachecreate(int capacity, int threshold) Creates a cache that will
store information about substrings for a number of msec given by thecapac-
ity argument. Thethreshold parameter corresponds to the distinct destina-
tions threshold.

void cachedestroy(struct cache *cache)Frees the resources used by the cache’s
data structures.

int cache usage(struct cache *cache)Returns the number of substrings currently
tracked by the cache.

struct cacheentry *cache entry create(struct cache *cache, uint32 t hash) Create
and returns a cache entry initialized with the given hash, clean flags, desti-
nation count of zero and set expiration time

struct cacheentry *cache entry lookup(struct cache *cache, uint32 t hash) Looks
up a cache entry by its substring fingerprint.

void cachetouch(struct cache *cache, struct cacheentry *cache entry) Renews
the expiration time of the given cache entry.

The current time is maintained using the timestamp of the last processed packet.
This way the system works reliably with traces and a syscall is avoided. TheCUR-
RENT TIME macro provides this information.

2.2.4 Cache entry

Each cache entry contains the 32-bit fingerprint of the corresponding substring, the
time when the entry will expire, the distinct destination count, the destinations,
and some flags. If theVERBOSE compile-time flag has been defined, the cache
entry also contains the destination ports, the sources, the source ports, and the flow
offsets of the substrings. The entry also contains a synonymcount field, used for
hashing.

A single destination can be stored within the entry, but for more than one desti-
nations, an additional table is allocated and used (struct cachedest). So the cache
entry also contains a pointer to the extra table, but this pointer could be allocated
as a C union with the single destination stored within the entry, as the two variables
are never used at the same time.

Each cache entry can have one or more of the following flags set:

CACHE EMPTY The slot is unused.

CACHE MULTIPLE DST Substring has multiple destinations stored in extra ta-
ble

CACHE TRACK Substring should be tracked

CACHE IGNORE Substring should be ignored

7

CACHE PIN Substring should not be evicted

2.2.5 Hashing of cache entries

The cache entries are stored in a hashtable in thestruct cachedata structure.
The hashtable uses linear probing as a collision resolution scheme. To deter-

mine whether a slot can be reused, the current time is compared against an entry’s
time of insertion. Therefore, old entries are implicitly evicted after a time out.

More specificaly, a slot can be used if it is empty (the CACHEEMPTY flag
is set) or it has been expired. A entry is considered expired if it has been for long
enough in the cache and the CACHEPIN flag is not set.

The following hash statistics are maintained by cacheentry lookup(), and printed
in status reports:

hash lookups The number of hashtable lookup operations.

hash probes The number of probes (a lookup may require multiple probes in the
event of collision).

hash collisions The number of hash functions collisions.

2.2.6 EAR

The EAR module is the interface to the worm detection algorithms. It provides the
following operations:

struct ear *ear create(int span, int capacity, int dst threshold, int stream limit, uint32 t sampling mask, int skip nul)
Creates an instance of the monitor.

void ear process(struct ear *ear, struct tcpstream *a tcp, char *data, int dsize, int offset, struct ear flow *ear flow)
Process a chunk of data.

void ear destroy(struct ear *ear) Destroys an instance of the monitor.

struct ear flow *ear flow create(void) Creates a flow state object. Theear process()
function requires such an object for storing per flow state.

void ear flow destroy(struct ear flow *) Destroys a flow state object.

Theear create()function takes the following parameters:

span The substring size.

capacity The capacity of the cache in milliseconds.

dst threshold The distinct destination threshold.

stream limit The size of the portion of the flows that is processed.

8

mask The substring sampling mask. The system will ignore substrings whose
fingerprints do not match the sampling mask.

skip nul Whether to process substrings that contain ASCII nul characters.

Theear process()function accepts a data buffer and a stream descriptor (struct
tcp stream, defined by libnids). It maintains statistics (bytes processed, samples
memory usage) and computes incremental rabin fingerprints.

Individual fingerprints are further processed by theprocesshash() function,
which performs deterministic sampling, and then looks up the substring in the
cache. If the hash is found, and it is not ignored (CACHE IGNORE flag is not
set), and the current destination has not been recorded in the cache entry, then it
records the current destination and renews the expiration time of the entry. It also
allocates and populates a table for storing multiple destinations if that has not been
done already.

If the distinct destinations threshold has been reached, thetrigger() function is
called, which involes theReport module.

If the hash is not found in the cache, a cache entry is created and the substring
destination is recorded.

If the VERBOSE compile-time option is set, additional information is recorded
together with the destination.

2.2.7 Main

The main function creates a struct ear instance using the command line arguments
parsed by the options module, and then registers a tcp callback with libnids and
invokes libnids. The callback instructs libnids to collect only traffic sent to TCP
servers. It invokesear process()for each data portion captures and instructs lib-
nids to buffersubstringlength− 1 bytes.

The options module provides a function to parse command line arguments, and
exports variables with option values.

2.2.8 Rabin Fingerprints

To compute rabin fingerprints, we use a state common for all flows and a separate
hash for each flow. The common state includes a lookup table and the shift out
multiplier. The hash has to be initialized to zero. The following functions are
provided:

rabin t *rabin create(int spansize) Creates the common state.

SHIFT IN(rabin, hash, c) Adds a byte to a hash.

SHIFT OUT(rabin, hash, c) Removes a byte from the hash.

9

2.2.9 Hex printing

The following utility functions are used to print binary data:

void hex print(unsigned char *buf, int buflen, char *label) Print a chunk of data
in hex to standard output and prepend it with a label.

void hex print f(FILE *f, unsigned char *buf, int buflen, char *label) Print a chunk
of data in hex to given file and prepend it with a label.

int hex parse(char *hex, unsigned char **bufp) Parse hex representation, return
the length of the resulting data, and set pointer argument to a buffer with the
data, allocated withmalloc().

2.2.10 Flow reconstruction

For flow reconstruction we use the libnids library which emulates the IP stack
of Linux 2.0.x. Libnids offers IP defragmentation, TCP stream assembly and
TCP port scan detection. The library is available fromhttp://libnids.
sourceforge.net/ .

2.2.11 Excluding traffic

Libnids is instructed to process only traffic sent from clients to servers. In addition,
from each flow only the first X bytes are processed. X is configurable, and typical
values include 1K, 10K, 100K.

2.2.12 Reporting

TheReport module provides the following functions used for reporting alerts, at-
tacks, and statistics:

void report alert(struct ear *ear, struct ear result *result, struct cache entry *cache entry)

void report attack(struct ear *ear, struct tcp stream *a tcp)

void report stats(struct ear *ear)

2.2.13 Interface with higher-level modules

The interface between the monitor and the high-level components is ASCII-based.
Messages are headed by a keyword followed by message-dependend contents. An
alert message is denoted by the ALERT keyword, followed by a line with space
delimited data items including the hash of the string that triggered the alert. Figure
2.5 shows a sample alert message.

10

ALERT
0x0547c0f4 1115638576.348604 false
78 3f 6c 69 64 3d 31 30 33 33 0d 0a 41 63 63 65 x?lid=1033..Acce
70 74 2d 4c 61 6e 67 75 61 67 65 3a 20 65 6c 0d pt-Language: el.
0a 41 63 63 65 70 74 2d 45 6e 63 6f 64 69 6e 67 .Accept-Encoding
3a 20 67 7a 69 70 2c 20 64 65 66 6c 61 74 65 0d : gzip, deflate.
0a 55 73 65 72 2d 41 67 65 6e 74 3a 20 4d 6f 7a .User-Agent: Moz
69 6c 6c 61 2f 34 2e 30 20 28 63 6f 6d 70 61 74 illa/4.0 (compat
69 62 6c 65 ible

139.91.183.21:1558 -> 12.130.60.5:80 offset: 307 timestamp: 1115638574.068360
139.91.183.21:1559 -> 65.54.211.93:80 offset: 251 timestamp: 1115638574.651066
139.91.183.21:1560 -> 207.68.179.219:80 offset: 236 timestamp: 1115638575.258834
139.91.183.21:1561 -> 65.54.179.204:80 offset: 248 timestamp: 1115638575.820024
139.91.183.21:1562 -> 65.54.179.201:80 offset: 248 timestamp: 1115638576.348604

Figure 2.3: Sample alert message.

STATUS
timestamp: 1070367006.011381
elapsed_wallclock_time: 63.134552
elapsed_cpu_time: 0.69
bytes_processed: 336671
max_usage: 614
avg_usage: 146.909091
cur_usage: 267
hash_lookups: 7272
hash_probes: 851
avg_hash_access: 0.117024
avg_hash_collision: 0.479373

Figure 2.4: Sample status message.

2.2.14 Act on Alerts

The functionality of acting on an alert is implemented by passing the alert message
to a shell script. The script can process and forward the alert to external mecha-
nisms, such as content filtering firewalls.

2.2.15 Remote Monitor

It is often the case that theMonitor must run on a remote server, but theGUI
must run on an operator’s computer. This functionality is supporting by using the
rear.sh script instead of the actual monitor executable, which uses SSH to control
a remote ear monitor instance.

2.2.16 Monitor Command-Line Syntax

TheMonitor module produces a single executable calledear, that has the follow-
ing command-line syntax:

11

Usage: ear OPTIONS [filter expression]
-f, --offset=INT flow offset threshold
-p, --period=INT period threshold
-s, --select-mask=HEX select mask
-t, --targets=INT targets threshold
-l, --length=INT substring length
--skip-nul skip strings with ASCII nul characters
-n, --home-net=NET network under protection
-r file read packets from file
-i interface capture packets from interface
-h, --help display this help message

Figure 2.5: Monitor command-line syntax.

2.3 Logic

The alerts that are issued by the high-performance monitor, are futher processed
by theLogic module. The following checks are currently supported:

Sources thresholdThe number of distinct sources appearing to spread the attack
is required to be above a threshold.

Contagion threshold Contagion is the number of targets that also appear to act
as sources, further propagating the attack. It is required that this number is
above a threshold. Figure 2.6 illustrates this.

Figure 2.6: Contagion: The worm appears in both incoming and outgoing traffic
of a host.

The polymorphic sled detection algorithm (STRIDE) that has been designed in
the context of the EAR project, will be eventually integrated here as well.

2.4 Graphical User Interface

We have provided a Graphical User Interface (GUI) for the management of the
system by operators. The GUI allows the configuration of the monitor’s runtime
parameters, and provides a listing of issued alerts.

The main screen of the GUI shows the alerts issued so far. By selecting an
alert it is possible to inspect the offending substring, as shown in Figure 2.7. It
is also possible to inspect the flows that carried the substring and the offset of the
substring withing each flow, as shown in Figure 2.8.

12

The statistics maintained by the monitor can also be inspected, as shown in
Figure 2.9. The following statistics are provided:

Last updated The time that the statistics were last updated.

Current usage The number of currently tracked substrings.

Maximum usage The maximum memory usage.

Average usageThe average memory usage.

Utilization The CPU time/ Wallclock time ratio over the last interval.

The monitor parameters can be configured by selecting the EAR Configura-
tion menu entry from the Tools menu. It is possible to configure the following
parameters, as shown in Figure2.10:

Min. Targets A worm must have target at least this many targets.

Min. Length A worm must have at least this length.

Max. Offset A worm must occur at most at this offset within its flow.

Max. Period A worm must occur with a period at most equal to this value.

Filter A filter that is applied on network traffic before it is processed. It can be
usefull to exclude certain hosts.

Tracking Mask This value control the deterministic sampling rate.

Skip substrings with ASCII nul Whether to process substring with the ASCII
nul character.

Min. Sources A worm must be spread by at least this many sources.

Min. Contagion The value of the contagion threshold.

Home Net The network under protection.

13

Figure 2.7: Issued alerts and inspection of the detected worm substring.

Figure 2.8: Issued alerts and inspection of the flows that carried the offending
substring.

14

Figure 2.9: The EAR statistics panel.

Figure 2.10: The EAR configuration dialog.

15

References

[1] P. Akritidis, K. Anagnostakis, and E. P. Markatos. Efficient content-based
fingerprinting of zero-day worms. InProceedings of the IEEE International
Conference on Communications (ICC 2005), May 2005.

[2] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. Anagnostakis. STRIDE:
Plymorphic sled detection through instruction sequence analysis. InPro-
ceedings of the 20th IFIP International Information Security Conference
(IFIP/SEC 2005), June 2005.

[3] E. P. Markatos S. Antonatos, K. G. Anagnostakis. Generating realistic work-
loads for network intrusion detection systems. InProceedings of the Fourth
International Workshop on Software and Performance (WOSP2004), January
2004.

[4] Kostas Xinidis, Kostas D. Anagnostakis, and Evangelos P. Markatos. Design
and implementation of a high-performance network intrusion prevention sys-
tem. InProceedings of the 20th IFIP International Information Security Con-
ference (IFIP/SEC 2005), June 2005.

16

