
Operational Programme
“Competitiveness”

R&D Cooperations with Organizations of non-European Countries

EAR: Early warning system for automatic detection of Internet-based
cyberattacks

(Code G.S.R.T.:HPA-022)

D2.1 “System Design”

Abstract: This document describes the design of the early warning system and
presents the results of preliminary measurements.

Contractual Date of Delivery 12 January 2005
Actual Date of Delivery 12 January 2005
Deliverable Security Class Public
Editor Periklis Akritidis

The EAR Consortium consists of:

FORTH Coordinator Greece
GA Tech Principal Contractor USA
FORTHnet Principal Contractor Greece

Contents

1 Overview of the Architecture 6
1.1 System Metaphor . 6
1.2 Architecture . 6

2 Main Module 8
2.1 Worm Detection Algorithm . 8

2.1.1 Client Traffic . 9
2.1.2 Repetitive Packets vs. Repetitive Strings 10
2.1.3 Substring Length . 10
2.1.4 Multiple Destinations vs. Source-Destination Pairs 11
2.1.5 Stream Reassembly . 11
2.1.6 Performance . 11

3 Other Modules 14
3.1 Buffer Overflow Detection . 14
3.2 ASCII Nul Filter . 14
3.3 Scanning Detection . 15
3.4 Flow Limit . 15
3.5 Grouping per Destination Port 15
3.6 White-listing . 15
3.7 Flow Sampling . 15

4 Sled Detection 17
4.1 Classification of Sleds . 17

4.1.1 Simple NOP Sled . 17
4.1.2 One-byte NOP-equivalents Sled 17
4.1.3 Multi-byte NOP-equivalents Sled 18
4.1.4 Four-byte Aligned Sled 18
4.1.5 Trampoline-sled . 19
4.1.6 Obfuscated Trampoline-sled 20
4.1.7 Static Analysis Resistant Sleds 20

4.2 Existing Approaches . 21
4.2.1 NIDS Signatures . 21

1

4.2.2 Fnord . 22
4.2.3 Abstract Payload Execution - APE 22

4.3 STRIDE . 22
4.4 Complementary Techniques . 23

5 Preliminary Measurements 25
5.1 Network Traffic Traces . 25
5.2 Experiments . 25

5.2.1 Worm Detection Effectiveness 26

6 Non-Detection-Related Functionality 27
6.1 Configuration . 27

7 Future Optimizations 28
7.1 Load Balancing . 28
7.2 Replay Module . 29

8 Schedule 30

9 Conformance to the Requirements 31
9.1 Functional Requirements . 31

9.1.1 Detected Attacks . 31
9.1.2 Detection Delay . 32
9.1.3 False Positives . 32
9.1.4 Configuration - Customization 32
9.1.5 Security Constrains . 33
9.1.6 Privacy . 33

9.2 Performance Constrains . 34
9.2.1 Monitoring Capacity . 34

References 34

2

List of Figures

1.1 An overview of the system. 7

4.1 Example of a small sled. 18
4.2 The ideal trampoline-sled: flow of control is directed to the shell-

code in a single step from any position in the sled. 19
4.3 Example of a small trampoline-sled 19
4.4 Pseudo-code for STRIDE algorithm 24

5.1 Detection delay and zero false positives contour line with a string
length of 200. 26

3

List of Tables

1.1 Additional worm detection heuristics. 7

2.1 Pseudocode for worm fingerprinting algorithm without sampling. . 9
2.2 Traffic types and detection heuristics. 11
2.3 Total length, length of the attack portion, and protocols for various

worms. 13

4.1 Comparative effectiveness of various sled detection schemes. . . . 21

5.1 Characteristics of the trace used in the experiments. 25

4

Introduction

In this document, we describe the design of the EAR Early Warning System for
Internet Epidemics satisfying the requirements layed out in the Specification doc-
ument.

The rest of the document is organized as follows. In Chapter 1 we give an
overview of the system. In Chapter 2 we describe the main module of the system,
and in Chapter 3 the rest of the modules. In Chapter 5 we present preliminary mea-
surements which helped in the design and calibration of the detection techniques.
In Chapter 5, we present preliminary measurements, and in Chapter 7 we describe
future enhancements and optimizations. In Chapter 8 we give a timeline for the
implementation of the modules. In Chapter 9 we show how the design conforms to
the requirements.

5

Chapter 1

Overview of the Architecture

In this Chapter, we describe the overall architecture of the system. We provide a
system metaphor and an overview of the system’s modules.

1.1 System Metaphor

The basic function of the system is to passively monitor network traffic and identify
strings that belong to worms and can be used as signatures for filtering worms.

The main objectives of the system are (a) to detect previously unknown Internet
worms, (b) to detect them in time, (c) to detect them without false positives, and
(d) to detect them without human intervention.

1.2 Architecture

The system operates by detecting substrings in network stream contents that are
sent to more than a number of destination hosts within a certain period of time.
A fundamental condition for the system to detect a worm is that the attack must
contain an invariant string that can be used as a signature. This functionality is
provided by the main filter module, and is described in Chapter 2.

A number of additional heuristics employed to boost performance and reduce
false positives are described in Chapter 3. They are briefly listed in Table 1.1.
Depending on their computational cost and their parallelism, they can be placed
either before, or after the main filter. Computationally cheap filters are used to
preprocess traffic and reduce the strain on the main module. On the other hand,
computationally expensive mechanisms can be applied on the results of the main
filter to weed out false positives, or, if they are applicable on individual streams
without the need for communication, they can be applied before the main filter on
a cluster of processing nodes.

Some worm detection heuristics can be evaded by future worms, but using
them could nevertheless boost the detection of worms that are still susceptible.
Also sometimes evading such a heuristic comes with a cost to the attacker, such as

6

Filter Placement

Sled Detection Depends
Client Traffic Pre
Address White-list Pre
Content White-list Inside Main
Scan Detection Pre
ASCII nul Pre
Replay Post
Flow Limit Pre

Table 1.1: Additional worm detection heuristics.

Sampling
/Balancing

Preprocessing
Filter

Main
Filter

Postprocessing
Filter

Figure 1.1: An overview of the system. Traffic is first processed by a flow sam-
pling/balancing module, then by the preprocessing filters, then by the main worm
detection module, and then by the postprocessing filters.

a slowdown in spreading speed. To take advantage of such heuristics without sac-
rificing detection of more elaborate worms we propose using a two-tier approach
where instances of the worm detection system configured to higher sensitivity but
using the above mentioned heuristics and therefore blind to elaborate attacks are
used in combination with instances configured for less sensitivity but capable to
detect elaborate attacks.

Traffic is first processed by a flow sampling and load balancing module that
picks an appropriate portion of the flows and distributes them to nodes running
preprocessing filters. These filters can be run separately and so we plan for the
possibility of distributing the computation on many machines. The output of these
filters is fed to the main filter, which searches for worm substrings. The generated
alerts are then sent to a notification mechanism, a worm containment mechanism,
or an alert verification mechanism. These mechanisms are beyond the scope of
this system. This flow of information through the components of the system is
presented in Figure 1.1.

The system will be implemented as plugin to the Snort NIDS. This allows the
reuse of infrastructure provided by Snort such as connection tracking, stream re-
assembly, and reporting. Appropriate scripts will be provided for hiding the com-
plexity introduced by the dependence on Snort.

7

Chapter 2

Main Module

2.1 Worm Detection Algorithm

In this section we present a worm detection method based on three observations
which are commonly found in known worms:

• Diversity of Destinations: The network packets that belong to the same
worm tend to have a very large number of destinations. Actually, this seems
to be an inherent property of all the worms: worms tend to spread to as many
victims as possible, and therefore, their network packets seem to have a large
number of destinations.

• Spread by Clients: Most worms are usually spread by clients, i.e. by com-
puters that initiate a (usually TCP) connection. This property, as well, seems
to be an inherent property of the aggressive worms. Indeed, in order for a
worm to spread fast, it needs to initiate connections to its potential victims,
rather than to wait for the potential victims to connect to it.

• Payload Repeatability: Several of the network packets that belong to the
same worm, tend to contain similar (if not identical) payloads.1

Well-known worms such as the CODE-RED, the Blaster/Welchia, the Slam-
mer/Sapphire, and the Witty worm [13], depicted all the above three properties.
Indeed, all CODE-Red, Blaster, and Slammer worms used identical packets to
propagate to as many destinations as possible. Interestingly enough, the Witty
worm used a naive form of polymorphism as it used random padding of its net-
work packets. Besides having payload repeatability, all the above worms have also
shown diversity of destinations as they propagated to many different destinations
on packets that had lots of common substrings in their payload.

1It has been proposed that future worms will be polymorphic and will be able to change the
payload of the network packets that carry the worm. The detection of such worms is outside the
scope of this work.

8

for each reassembled packet in trace
for each fingerprint in packet

if fingerprint in queue
if packet destination not recorded

record destination
increase count
if count > threshold

report
reset counter
clear destinations

promote to front
else

if queue full
evict last queue entry

create new entry for fingerprint
insert at front

Table 2.1: Pseudocode for worm fingerprinting algorithm without sampling.

Thus, to identify new worms, our algorithm identifies common substrings that
appear in the payloads of several (client) packets, which are heading for lots of
different destinations. To identify such packets we use an LRU queue of fixed
size. Each node of the queue contains an encountered string2 together with its
occurrence count and a list of distinct destinations where it was sent to. The nodes
are ordered in the queue by time of last occurrence and they are also indexed by
string using a hash table.

Our algorithm operates as follows:

• For each encountered string, if a corresponding queue entry exists and its
distinct destination list does not include the current destination, the entry is
promoted to the front, the current destination is recorded in the entry’s dis-
tinct destination list, and its distinct destination count incremented. The dis-
tinct destination count is then compared with a distinct destination threshold
and an alert is issued when the threshold is reached.

• Otherwise, if the string is not already represented in the queue, a new entry
is inserted in the front of the queue and the last entry of the queue is evicted.

The pseudocode can be found in table 2.1

2.1.1 Client Traffic

Given that rapidly-spreading worms spread mostly through clients, and not through
servers, in our implementation we wil discard server replies and process only client

2In order to save space the queue contains a 32-bit fingerprint of the string.

9

requests.
Only traffic originated from clients is examined. The rationale is that the at-

tack of an actively spreading worm (the kind of worm for which human mediated
responses are too slow) will be contained in the part of a session sent by the client
who initiated the connection to a victim server. The gain from this heuristic is two-
fold: (a) a huge reduction of the amount of traffic that has to be examined, because
the bulk of the data is usually in a response and not in a request (consider typical
http transfers), and (b) a reduction of false positives, since data contained in replies
is sent to multiple destinations and also is of sufficient length, and would therefore
easily trigger detection based on the criteria of multiple destinations and sufficient
length. Also, actual content distributed through p2p networks is typically down-
loaded through connections initiated for that purpose, and is therefore prevented
from causing a false positive.

We will rely on Snort’s [11] session tracking to decide the direction of a packet.

2.1.2 Repetitive Packets vs. Repetitive Strings

Many worms are spread using identical packet payloads, and therefore can be eas-
ily detected by identifying repetitive packets seen in the network. However, some-
times entire packets may be too course-grained for worm detection. For example,
the Witty worm [13], has actually implemented random padding of packets. There-
fore, in our approach, to identify payload repeatability, we will consider packet
substrings of a fixed length, instead of entire packets.

2.1.3 Substring Length

False positives due to peer-to-peer systems can be categorized either as protocol
messages or as downloads of popular content. An important observation is that
protocol messages have a relatively small length. which leads to a solution to the
false positives problems, we can Requiring that the substrings have sufficient length
can weed out such repetitive protocol messages. The same solution can be applied
for false positives caused by common headers of requests.

The substrings considered are required to be sufficiently long. Statistically,
shorter substrings are bound to occur more frequently. Moreover, protocol mes-
sages (such as those used by p2p networks) and requests (e.g. http requests) are
typically short in length.

Many recent worms operate in two phases, first an attack phase injects code
to the victim and then the injected code connects back to the infecting host to
download the rest of the worm. The client-only filter will discard such downloads,
and therefore the system must not rely on them, but instead rely on the attack part.
Table 2.3 presents the lengths of whole worms and of their initial attack parts.

Using large strings has the added benefit that the resulting signatures are less
probable to collide with legitimate traffic.

10

Table 2.2: Traffic types and detection heuristics. The combination of multiple cri-
teria can separate worm traffic among other types that could cause false positives.

Long Sent to many Sent from client
P2P messages No Yes Yes
P2P downloads Yes Yes No
Server requests No Yes Yes
Server replies Yes Yes No

Worm Yes Yes Yes

2.1.4 Multiple Destinations vs. Source-Destination Pairs

Intuitively, worm traffic is best characterized by a large number of distinct source-
destination pairs. However, to detect a worm we chose to consider the number
of distinct destinations instead, because multiple source-destination pairs are also
characteristic of traffic caused by client requests to popular (web) servers. Worms
not only cause traffic with a large number of source-destination pairs, but in or-
der to spread, also target a large number of destinations. In the early stages of
worm spread, when re-infection attempts are less likely, the two numbers should
be roughly equal. Note that the traffic caused by the server replies, which, like
worm traffic, is also characterized by a large number of destinations, is not a con-
cern, since we specifically filter out such traffic.

2.1.5 Stream Reassembly

Clever attackers may easily hide their attack into several different fragmented pack-
ets that may be sent out-of-order. To solve this problem, we plan to use the packet
reassembly mechanisms provided by the Snort NIDS [11]. We will integrate our
filters with Snort in the form of a Snort preprocessor plugin. This way we can
take advantage of the existing stream4 preprocessor that comes with Snort and re-
assembles raw packets into larger ones. The reassembled packets are then fed to
the worm fingerprinting algorithm.

2.1.6 Performance

Counting of Destinations

For each encountered substring, the system records all the destinations to which it
has been sent. Fortunately, most substrings will only be sent to a single destination
before they are evicted from the queue and therefore the space required for record-
ing more than one destination does not have to be allocated for the majority of the
encountered substrings.

11

Rabin Fingerprints

The system has to process substrings included in network streams. It considers all
substrings of a certain length, and has to store them and be able to look them up.
To perform these operations, it has to compute a hash for each substring, and use it
as a key.

To efficiently compute the hash values of consecutive overlapping packet sub-
strings we employ Rabin fingerprints [10]. The Rabin fingerprintfα of ann-gram
a is computed according to the formulafα(a0, a1, . . . , an−1) =

∑n−1
i=0 aiα

n−i−1.
Rabin fingerprints can be used to incrementally update the hash value of a sliding
window over the packet payload, by considering the contribution to the hash of the
next byte and removing the contribution to the hash of the last byte of the previous
window according to propertyfα(a1, a2, . . . an, an+1) = α(fα(a0, a1, . . . , an) −
αna0) + an+1. In order to be able to perform the arithmetic modulo232, α must
not be a power of two.

However, even Rabin fingerprints employ a constant number of operations for
each and every byte of network traffic. Given that modern networks deliver up to
10 Gigabytes of traffic per second, even Rabin fingerprints impose a substantial
computational overhead to the system. Further more, having to account for each
and every overlapping substring is undesirable. We use three mechanisms to reduce
these overheads in our detection scheme:

• Flow limit

• Discard server replies

• Fingerprint sampling

Flow Limit

The worm attack is typically carried out in the first few kilobytes of connections
created by the worm with the purpose of infecting other machines. Therefore, a
very effective performance optimization is to discard traffic known not to belong
to the initial traffic of flows.

Discard Server Replies

We have already mentioned in section 2.1.1 that we discard server replies and focus
only on client requests as a measure to reduce false positives. The same mechanism
is used to improve performance as well. Indeed, server replies are typically large
contributors to Internet traffic. Focusing our detection algorithm in client requests,
instead of server replies, we reduce the load of our detection mechanism by having
to compute fewer Rabin fingerprints without reducing its accuracy.

12

Table 2.3: Total length, length of the attack portion, and protocols for various
worms.

Worm Total Length Attack Length Protocol
Witty 600 Bytes (+padding) 600 Bytes UDP

Sapphire/Slammer 376 Bytes 376 Bytes UDP
CodeRedII 3,8KBytes 3,8KBytes TCP

Welchia 10KBytes 1,7KBytes TCP

Fingerprint Sampling

Processing each substring that starts at each and every byte of the network traffic,
may result in unnecessary overhead. For example, assume a network packet that
is packetsize characters long. Assume also that our algorithm searches for sub-
strings which aren-bytes long. Then, for this specific example, we will end up
processingpacketsize − n + 1 substrings. Given that these substrings are highly
overlapping, we might be able to reduce the overhead of our approach without re-
ducing its accuracy. For example, instead of considering all Rabin fingerprints we
may sample them based on their value [14]. The frequency of the sampling can
be determined by the number of bits set in a sampling mask. The fingerprint it
further processed only if the result of applying the mask to it is not zero. A string
that matches the sampling criteria is always sampled, so no loss of sensitivity is in-
curred and no memory lookup is required to determine whether a string is sampled
or not.

With this technique the number of strings contained in a worm that are visible
to the system is reduced by a factor of2m, wherem is the number of bits set in the
sampling mask. Judging from the data in Table 2.3, reducing the number of strings
by a factor of4-16 is safe enough. The critical length is that of the attack, since the
rest of the worm body may be downloaded from the infecting machine and thus be
ignored based on thesent by clientfilter.

Note, that is is theoretically possible for an attacker to exploit this sampling
mechanism. Indeed, if the attacker knows the exact value of the mask, (s)he will
create worms whose content will never match the mask and therefore will never be
sampled. On the other hand, the mask bits could be shuffled at regular intervals,
so that it would be practically impossible for an attacker to avoid detection by
carefully crafting the body of the worm to avoid sampling.

13

Chapter 3

Other Modules

In this chapter, we describe functionality that is not essential, but rather is an addi-
tion to the main functionality. This extra functionality takes the form of additional
filters, which can be applied either before the main filter or after it, depending on
their computational cost. Filters which are cheap to apply can offload the main
filter and therefore should be applied before it. On the other hand, filters which
introduce considerable overhead should only be applied on suspect strings.

3.1 Buffer Overflow Detection

Most worms rely on buffer overflow vulnerabilities for their spread, and several
buffer overflow detection mechanisms have been proposed [15, 9]. These mecha-
nisms, however, are not without false positives, but can help to improve the overall
robustness of the system. In the context of the EAR project we have designed
our own buffer overflow attack detection mechanism, called STRIDE, which is
described in Section 4.

Buffer overflow detection can be relatively costly, so it could be applied after
anomaly detection. However, it has extreme locality, since each network stream
can be processed individually. So if the cost can be distributed to a number of pro-
cessors, it is reasonable to place buffer overflow detection before worm substring
identification.

3.2 ASCII Nul Filter

Typical buffer overflow attacks must not contain the ASCII nul character because it
would prevent the overflow by terminating the copying into the vulnerable buffer.

Checking for the ASCII nul character is a very cheap filter, and can be applied
as a filter within the processing loop of the main module. A counter will have to
be maintained along with the incremental computation of Rabin fingerprints. The
counter is increased on every processed byte, except on ASCII nul, in which case

14

it is reset to zero. The computed fingerprints are only considered further if the
counter has a value greater than the assumed minimum vulnerable buffer size.

3.3 Scanning Detection

Worms to day have used variations of random scanning as a method of finding
targets to infect. Detecting nodes that frequently probe other nodes, and then pro-
cessing only their traffic, could be applied as a filter before worm substring iden-
tification. However, hitlist worms, worms that use a precompiled list of targets,
can minimize failed connections and possibly evade scanning detection. On the
other hand, it should be possible to detect scanning worms faster, if the scanning
is exploited by the detection mechanisms. Therefore, we plan to allow using an
optional scanning detection preprocessing filter, and recommend running two in-
stances of the system, one calibrated to high sensitivity to detect scanning worms
and one less sensitive but not blind to worms that evade scan detection.

3.4 Flow Limit

Arguments similar to the ones used for scanning detection hold for the flow limit
heuristic, which relies on the observation that all worm attacks to day were con-
tained in the initial portion of the stream that carried them. It can be evaded, but it
can give a boost to detection of worms which are exposed.

3.5 Grouping per Destination Port

Worms to day have targetted specific ports. This can be exploited by the system by
not relating strings that are sent to different ports. However, a worm that spreads
using multiple ports, for example a topological worm that spreads from one peer-
to-peer node to its neighbours by targeting the peer-to-peer service itself, would
have its strings appears as belonging to several less aggressive worms (one for
each port) and perhaps evade detection.

3.6 White-listing

Known content strings that cause false positives can be white-listed.
Additionally, in a LAN environment certain hosts can cause false positives. All

traffic from these hosts hosts could be filtered out.

3.7 Flow Sampling

The system should monitor as much traffic as possible in order to detect an outbreak
early and reliably. As the amount of monitored traffic increases, temporary and

15

local popularity bursts are flattened out and a worm outbreak can be detected easier.
It is usefull, however, to monitor more traffic that the amont require for timely

detection because of the concern of resisting against faked worm outbreaks. With
a low threshold, a few connections are enough for triggering a worm alert, but this
problem can be handled by sampling as much flows as are required for reliable de-
tection from a much larger pool of flows. Only the sampling device has to operate
at the speed of the high bandwidth line. Without knowing which flows are sampled,
the attacker would have to create enough worm-like flows against the entire traffic.

16

Chapter 4

Sled Detection

In this chapter we describe STRIDE, our new sled detection mechanism which,
compared to previous approaches, is able to detect more types of sleds with less
false positives.

4.1 Classification of Sleds

The sled is a sequence of instructions responsible for directing the flow of control
towards the core code of a buffer overflow attack. Although execution of the sled
can start at any position, it always ends up “sliding” inside the core code of the
attack. There are many different ways for a sled to achieve its functionality. In
this section, we present several types of sleds in order of increasing (perceived)
difficulty to detect.

4.1.1 Simple NOP Sled

The simplest sled consists of a series of NOP (no-operation) instructions. A NOP
instruction has no effect on program behavior: it simply advances the program
counter. Execution of the sled may start at any position, and the NOPs are used to
transfer control, step by step, to the shellcode right after the sled. This simple sled
has been demonstrated in the buffer overflow examples of [4] and has been used in
many other attacks.

4.1.2 One-byte NOP-equivalents Sled

A NOP sled can be easily obfuscated by replacing literal NOP instructions with
one-byte instructions which have no significant effect, and, for the purposes of the
attacker, are practically equivalent to NOPs. For example, instructions that increase
or decrease a register which is not used by the attacker, instructions that set or clear
a flag, and instructions that push or pop a register, can all be used in a sled instead
of NOPs.

17

Figure 4.1: An example of a small sled, executable at every byte offset, which is
constructed by interleaving one-byte and multi-byte NOP-equivalent instructions.

Current polymorphic buffer overflow attack generators use such sleds to avoid
detection. The ADMmutate [6] engine uses this technique with a list of of 55
one-byte NOP-equivalent instructions. The Metasploit framework [3] extends the
ADMmutate engine with 3 additional single-byte NOP replacements. We have
enumerated 66 such instructions in the Intel IA-32 architecture [1]. Although not
yet seen in the wild, obfuscated sleds are already available to attackers.

4.1.3 Multi-byte NOP-equivalents Sled

A straightforward extension to one-byte NOP-equivalent sleds is to use multi-byte
NOP-equivalent instructions, which, like their one-byte counterparts, simply just
advance the program counter in order to reach the core of the exploit. However,
it is not possible to useany multi-byte NOP equivalent instruction available in
the instruction set, because a sled must be executable atevery offset. There-
fore, a straightforward way to generate multi-byte NOP-equivalents sleds is to re-
strict the operands of multi-byte instructions to correspond only to the opcodes
of one-byte NOP-equivalent instructions, or to the opcodes of multi-byte NOP-
equivalents. Consider for example the multi-byte NOP-equivalents sled shown
in Figure 4.1. If control is transferred to the leftmost byte, it will execute in-
structionscmp $0x35, %al , sub $0x40, %al , add $0x249b0c68,
%eax, etc. Note that the first argument of the first instructioncmp $0x35,
%al , is 0x35 , which corresponds to the opcode of instructionxor . Therefore,
if control is transferred to the penultimate byte from the left, it will execute in-
structionsxor , or , and , etc. leading to the end of the sled. This is true for all
instructions in this type of sleds: their arguments are such that if control is trans-
ferred to any byte inside the sled, the execution will eventually lead to the end of
the sled.

4.1.4 Four-byte Aligned Sled

Although traditional NOP sleds had to be executable at each and every byte, stack
alignment can relax this restriction by constraining the possible placements of the
vulnerable buffer. The default behavior of modern compilers is to align the stack at

18

Figure 4.2: The ideal trampoline-sled: flow of control is directed to the shellcode
in a single step from any position in the sled.

Figure 4.3: An example of a small trampoline-sled that is executable at every byte
offset. Control transfer instructions are placed at every second byte and their rela-
tive address operand is chosen so that it is a valid NOP-equivalent opcode.

word (4-byte) boundaries [5]. Reference [7] discusses the possibility of exploiting
stack alignment to construct sleds that have to be executable every 4 bytes. Pairs
of non-destructive 2-byte instructions can be used as NOP-equivalents, but it is
also possible to use longer instructions with techniques similar to the multi-byte
instruction sled discussed earlier. Code sequences starting at non-word-aligned
offsets may contain any kind of instruction, including instructions with destructive
side-effects or even illegal ones, which can hinder detection.

4.1.5 Trampoline-sled

Although typical sleds transfer control to the shellcode by sliding it along their
body —hence the name sled—, the same functionality can be achieved by jumping
directly to the shellcode, as illustrated in Figure 4.2. The body of such a sled
consists of control transfer instructions with relative addresses, all pointing directly
to the shellcode. As a result, the flow of control will reach the shellcode in asingle
step from any point it may have entered the sled.

Trampoline-sleds can be directly implemented, relying on four-byte alignment,
by cramming a jump instruction together with its operands into every four-byte-
long slot of the sled. Given that trampoline-sleds have to be executable at every
offset, they must carefully chose the operands of the jump instructions to be valid
NOP-equivalent opcodes, as explained in Section 4.1.3 An example of a small
trampoline-sled that is executable at every byte offset is illustrated in Figure 4.3.

The shortest control transfer instructions available are two bytes long. For ex-

19

ample, instructions such asjmp andloop take a one-byte operand that specifies
the relative address of the jump target. The use of two-byte control transfer instruc-
tions places an additional restriction on the maximum jump displacement that can
be used for sleds executable at each byte. Generally, the operand of these instruc-
tions is encoded as a signed 8-bit immediate value, which allows for a maximum
forward relative offset of 127 bytes. Additionally, since the operand must at the
same time act as a one-byte NOP-equivalent instruction, the maximum jump dis-
placement is further reduced to the NOP-equivalent opcode with the greater signed
integer value that is less than 128. The two NOP replacements with the largest such
opcodes that we have come across arepush imm8 andpush imm32 , which re-
sult to an offset of 106 and 104 bytes, respectively. Trampoline sleds are still fea-
sible, though, by solely using jumps with relatively large positive displacements,
which result to forward execution “bounces”. Thus, the flow of control “jumps”
and “strides” towards the shellcode.

4.1.6 Obfuscated Trampoline-sled

Since the number of control transfer instructions that can be used for the construc-
tion of trampoline-sleds is limited, one could argue that such sleds can be detected
by searching for the specific opcodes of these instructions, much in the same way
that Fnord does for NOP-equivalents (cf. Section 4.2.2).

The entropy of the basic trampoline-sled can be increased in order to evade de-
tection, by interleaving NOP-equivalent instructions along with the jump instruc-
tions. In this way, the shellcode is not reached in a single step, but in a number
of steps which can be tuned by the attacker. This will result to a sparse distribu-
tion of the control transfer instructions, which renders simple detection methods
ineffective.

4.1.7 Static Analysis Resistant Sleds

Sleds of this type attempt to evade detection by making it difficult for detection
heuristics to statically infer the outcome of the execution of the sled. When the
sled is actually executed, its behavior is that intended by the attacker, correctly
leading to the shellcode. This can be achieved by either using branches whose
target cannot be determined statically or by using self-modifying code.

Static analysis cannot follow branches that cannot be determined statically,
such as register or memory indirect jumps, because the contents of the registers
or memory are not known during the analysis. Therefore, it cannot continue with
the inspection of the corresponding code paths and cannot determine their outcome.
Such jumps, however, must specify the target as an absolute address.

Also, a sled could modify itself so that invalid instructions, appearing under
static analysis to terminate a code path, are overwritten during execution by pre-
vious instructions and are actually executed normally. However, the sled must
rely on stack alignment to avoid the execution of illegal instructions before they

20

Scheme

Sled Type Snort Fnord APE STRIDE

1. NOP instructions Yes Yes Yes Yes

2. One-byte NOP-eq-
uivalents

No Yes Yes Yes

3. Multi-byte NOP-eq-
uivalents

No No Yes Yes

4. Four-byte Aligned No No Yes Yes

5. Trampoline-sled No No No Yes

6. Obfuscated Trampo-
line-sled

No No No Yes

7. Static Analysis Res-
istant

No No No After
extension

Table 4.1: Comparative effectiveness of various sled detection schemes.

are fixed-up. Again, like indirect branches, write operations require an absolute
address.

To overcome the absolute address problem, present in both indirect branches
and self-modifying instructions, theesp register, which holds the stack frame’s
absolute address, can be used to find the buffer and sled addresses. However, the
use of theesp register could hint for static analysis resistant sleds, but, in fact, the
absolute address of the sled can be found even without using this register: knowing
the injected return address and maintaining a counter while sliding through the
sled provides knowledge of the absolute address of the current sled position. This
seems to be relatively hard to implement, especially considering the need for 4-byte
alignment.

4.2 Existing Approaches

In this section we briefly present three techniques which have been proposed for
sled detection: NIDS signatures, the Fnord mutated sled detection plugin, and
APE. Table 4.1 summarizes the effectiveness of each technique, along with our
proposed detection mechanism, for each sled type.

4.2.1 NIDS Signatures

Detecting simple NOP sleds such as those described in section 4.1.1 is relatively
straightforward. On the Intel IA-32 architecture,nop is a single-byte instruction
with opcode 0x90. Thus, to detect a simple sled consisting only ofnop instruc-
tions, a pattern matching rule searching for a sufficiently long sequence of bytes
with value 0x90 is enough. Indeed, such rules exist for popular NIDS, such as
Snort [11].

21

4.2.2 Fnord

The Fnord [12] mutated sled detection plugin for Snort detects sleds by searching
network traffic for long series of one-byte NOP-equivalent instructions. It is, there-
fore, capable to detect type-2 sleds, such as those described in Section 4.1.2. It may
be the case that its list of NOP-equivalents could be extended with the opcodes of
multi-byte NOP-equivalents, making it capable to detect type-3 sleds such as those
described in Section 4.1.3, but we use the standard version here. However, Fnord
definitely fails to detect type-4 sleds and above, that exploit the alignment of stack
variables.

There also exist various other tools that offer similar sled detection capabili-
ties with Fnord [2, 8]. Since these tools, along with Fnord, all rely on the NOP-
equivalents list contained in ADMmutate in order to detect mutated sleds, it is
sufficient to consider just one of them.

4.2.3 Abstract Payload Execution - APE

APE [15] is a detection mechanism that enables the detection of sleds by looking
for sufficiently long series of valid instructions: instructions which decode cor-
rectly and whose memory operands are within the address space of the process be-
ing protected against attacks. To reduce its runtime execution overhead, APE uses
sampling to pick a small number of positions in the data from which it will start
abstract execution. The number of successfully executed instructions from each
position is called the Maximum Executable Length (MEL). When APE encounters
a conditional branch, it follows both branches and considers the longest one as the
MEL. If the destination of the branch can not be determined statically, APE termi-
nates execution and uses the MEL value computed so far. A sled is detected if a
sequence has a MEL value greater than 35. Although APE can be used to detect
sleds of type-1 through type-4, it fails, however, to detect sleds of type-5 (tram-
poline sleds), type-6 (obfuscated trampoline), and type-7 (static-analysis-resistant
sleds).

Indeed, although the purpose of type-5, and type-6 sleds is to transfer program
control to the shellcode in as few steps as possible using jump instructions, the
mechanism that is used by the APE scheme is based on the detection of a suffi-
ciently long execution sequence of instructions, and thus, trampoline-sleds evade
detection by having a short sequence of executed instructions. Static analysis re-
sistant sleds also confuse APE, because it errs on the unsafe side when it cannot
decide about a code sequence.

4.3 STRIDE

STRIDE is given some input data, such as an alert generated by the main module,
and searches each and every position of the data to find a sled. If a sled is found,
the input data are considered part of an attack.

22

To detect a sled spanning over at leastn bytes and starting at positioni of the
input data, STRIDE searches for all sequences of instructions of lengthn− j bytes
starting at offseti + j of the input data, for allj ∈ {0 . . . n− 1}. If STRIDE finds
all n sequences of instructions to bevalid sequences , it then concludes that
a sled of lengthn starts at positioni.

We call a code sequence, starting at a certain pointi in the input data, a “valid
sequence of instructions of lengthn at positioni,” (1) if it either decodes correctly
for n bytes without encountering privileged instructions, or (2) if a jump instruction
is encountered along the way.

Informally, a valid sequence of instructions is a sequence of instructions which
can be used to construct a sled. Such a sequence may only contain valid instruc-
tions, and may not contain privileged instructions, i.e. instructions which can be
invoked only by the operating system kernel.

Figure 4.4 gives the pseudo-code for STRIDE. The main routine,stride ,
consists of a loop which tries to find a sled of lengthsled length at each and
every position of input datainput . Routinefind sled (data,len) finds
a sled by attempting to valid all valid sequences of lengthlen-i which start at
positiondata+i , for al values ofi . Aligned sleds are accounted-for by checking
for valid sequences at every four bytes instead of at every byte but the check is
applied for all four possible displacements.

4.4 Complementary Techniques

STRIDE can only be applied to buffer-overflow-based attacks which use sleds. If
an attack does not make use of a sled, then it can not be detected by STRIDE. In
this section we discuss some complementary buffer overflow detection techniques,
for detecting buffer overflow attacks without a sled.

The so-calledjmp esp technique can be used to avoid using a sled at all; it
works as follows. At the time of the attack theesp register points to the current
stack frame — right after the overwritten return address. By making the return
address point to ajmp esp or call esp instruction somewhere in memory, control
can be directed to the shellcode without the need for a sled, because when the func-
tion returns, thejmp esp instruction is executed and control is transfered exactly
to the bytes after the overwritten return adress, where the shellcode can be placed.
The technique may make the attack depend on the OS version or the version of
the vulnerable application, depending on where the instruction used resides. The
Metasploit [3] project’s web site even includes a tool to search for the addresses
of appropriate instructions that are available across different OS versions. How-
ever, such a list of addresses can also be searched-for in network traffic, as in the
Buttercup system [9], and used to detect attempts to use this technique.

Another way to avoid using a sled it to brute-force the return address: to re-
peatedly try the attack with a different return address each time. Yet another related
possibility of confusing detection methods is that of partial sleds, sleds that are not

23

stride(input, input_size, sled_length)
{

for (i=0 ; i < input_size-sled_length; i++) {
if (find_sled(input+i,sled_length))

return TRUE ;
}
return FALSE ;

}

find_sled(data, len)
{

for (j = 0 ; j < 4 ; j++) {
for (i = j ; i < len ; i+=4) {

if (!valid_sequence(data+i, len-i))
return FALSE ;

}
}

return TRUE;
}

is_valid_sequence(data,len)
{

// decode "len" instructions in buffer "data"
res= decode(data, len)
if (res == VALID_DECODE) return TRUE;
if (res == ENDS_IN_JMP) return TRUE;
return FALSE;

}

Figure 4.4: Pseudo-code for STRIDE algorithm

executable at every offset; the attacker may choose to sacrifice some efficiency in
order to confuse detection schemes. Both techniques may result in reduced effi-
ciency of the attack and crashed connections — the latter could be detected at the
network level.

Yet another way to avoid using a sled is the so-calledjump-to-libctechnique:
instead of executing a shellcode, the attack transfers control to an application or
system function, with appropriate parameters placed on the stack. For example, an
attacker could invoke thesystem() function and execute an arbitrary command. A
sled is not needed because the absolute address of the invoked function is known
beforehand. However, the function does not expect its parameters to be encrypted
so machine-language polymorphism is not applicable to such attacks.

24

Chapter 5

Preliminary Measurements

In this chapter we evaluate the effectiveness and efficiency of our approach and
investigate its parameter space using real network traffic traces.

5.1 Network Traffic Traces

Real network traffic traces, gathered from FORTH’s Local Area Network in early
2004, have been used for our evaluation. The monitored networks contain about
100 hosts. The trace is about 5 Gbytes large and contains 11.7 million network
packets that represent traffic from web clients, peer-to-peer programs, SMB shares,
IMAP, printers, etc. The traffic characteristics of the traces are shown in table 5.1.

5.2 Experiments

In this section we explore the parameter space of the worm detector that we have
described. The parameters of the experiments are:

• substring length

• sampling mask

• distinct destinations threshold

• queue size

The measured quantities are the following:

Trace TCP Packets TCP (Payload) Bytes Duration Attacks
TRACE-I 11,746,790 5,108,857,877 2h 102

Table 5.1: Characteristics of the trace used in the experiments.

25

• false positives, which are defined to be the number of flows that were flagged
but did not correspond to any real worm,

• detection delay, which is defined as the elapsed worm attacks up to the
detection of the worm.

 0
 10
 20
 30
 40
 50
 60
 70

de
te

ct
io

n
de

la
y

threshold

qu
eu

e
si

ze

 10 11 12 13 14 15
 16000

 32000

 48000

threshold

qu
eu

e
si

ze

zero false positives contour

 10 11 12 13 14 15
 16000

 32000

 48000

Figure 5.1: Detection delay and zero false positives contour line with a string length
of 200.

5.2.1 Worm Detection Effectiveness

Figure 5.1 explores detection delay and false positives as a function of threshold
and queue size, for TRACE-I and TRACE-II, and a substring length of 200 bytes.
The zero false positives contour is projected onto the parameters space, so that the
area below it corresponds to threshold and queue size combinations with zero false
positives.

We observe that decreasing the threshold decreases the detection delay. This
is expected, since more worm attacks are required to trigger detection. However,
decreasing the threshold may also result in false positives. This is expected too,
since there exist legitimate strings that are sent to more than one destinations.

We also notice the effect of queue size on the false positives. Even for higher
thresholds, an increased queue size may result in false positives. This is because a
larger queue size will hold strings with a lower rate of new destinations.

The bottom-right part of the graph, where the two areas of detection and zero
false positives overlap, represents a combination of parameters that result in worm
detection without false-positives.

Next we investigate the CPU time spent for the unoptimized version of the
worm detection system to process a trace of network packets 5 Gbytes large. We
see that the un-optimized version takes close to 16 minutes which corresponds
to a processing rate of 38.5 Mbps. We expect, however, a ten-fold increase in
performance through the use of fingerprint value sampling.

26

Chapter 6

Non-Detection-Related
Functionality

6.1 Configuration

The system will use a configuration file.
The parameters that will be configurable include:

• reporting method and its parameters (e.g. logfile location)

• enabled and disabled modules

• module parameters such as the various thresholds

27

Chapter 7

Future Optimizations

In this chapter, we describe future optimizations that should be considered, but not
necessarily for a first implementation. The first such consideration is provisions
for operating the system behind a load balancer in order to handle high network
speeds. The second future enhancement is support for repeating suspicious traffic
to a honeypot system, for verification.

7.1 Load Balancing

Traffic monitoring, and especially the detection of repetitive substrings, is a re-
source demanding task. At high network speeds, the available computational re-
sources are limited. The current design relies on sampling of streams for reducing
the load to a manageable level, but there is also the option of distributing the com-
putation to different nodes of a computer farm using a load balancer.

The load balancer would have to assign entire streams to individual nodes.
This can be achieved without stream reassembly or session tracking, by using the
fields of packet headers that identify a session to dispatch packets to the appropriate
nodes. Packets with the same source and destination addresses and port numbers
would be directed to the same node. Indeed, stream reassembly can be completely
offloaded to the nodes.

The distribution raises the issue of communication among the nodes. Main-
taining a common queue across the nodes would lead to excessive communication.
Instead, each node should have its own queue, and communicate only the finger-
prints that reach a local threashold. Forn nodes, the local threshold can have a
value ofthreshold/n, because if the streams are randomly assigned to nodes, we
expect the instances of a fingerprint to be distributed equally among the nodes.

Note that as the volume of the monitored traffic increases, the threshold used
to trigger detection can also be increased. So thethreshold/n ratio will not nec-
essarilly diminish with increasingn.

28

7.2 Replay Module

Any system based on anomaly detection is bound to have false positives. The
goal of this module is to provide support for redirecting suspicious traffic to a
honeypot system, for further verification. It should not impose any modification on
the system, rather it would receive the output from the detection system and verify
it, before forwarding it to an enforcement system.

29

Chapter 8

Schedule

In this chapter, we provide the anticipated schedule for the development of the
system.

• Prototype versions for the main filter and for the sled detection have been
developed already.

• The unifying framework for the various detection heuristics will be devel-
oped during January and February 2005.

• Reporting functionality will be developed during March 2005.

• A first version of the complete system will be ready on April 2005.

• The final version of the complete system will be ready on May 2005.

30

Chapter 9

Conformance to the
Requirements

In this chapter, we discuss how the design conforms to the requirements laid out
in the Specifications document. We list each requirement and discuss the relevant
provisions in the design.

9.1 Functional Requirements

9.1.1 Detected Attacks

F 1.1 The system should detect attacks that use unfragmented packets, as well
as fragmented packets to spread their payload over multiple packets in order to
obfuscate their signatures.

By employing flow reassembly mechanisms, the design ensures that detection
cannot be evaded by breaking signatures across packet boundaries.

F 1.2 The system should detect worms with an attack that contains at least 300
consecutive bytes.

The relevant parameter of the system is substring size, and the preliminary
evaluation shows that a substring size of 300 bytes is sufficient to detect worms.

F 1.3 The system must detect worms that spread over the TCP protocol. However,
it is highly desirable, but not initially required, to include support for UDP worms
as well.

There is support for the TCP protocol, including session tracking and stream
reassembly. We are considering UDP support as a future extension.

F 1.4 The system is not expected to detect stealth worms.

31

The system is based on repetitive content. Stelth worms, however, do not gen-
erate adequate amounts of traffic per time unit.

F 1.5 Strings of small length are often popular without belonging to a worm. For
example, many unrelated HTTP requests contain the stringGET /, or HTTP/1.1.
Therefore, a minimum detectable string length must be established.

The system has a substring length threshold that controls the minimum de-
tectable signature length.

9.1.2 Detection Delay

F 2.1 The detection delay of the system, measured in elapsed attacks before an
alert has been triggered, should be evaluated theoretically and experimentally for
worms with different levels of aggressiveness.

We have performed preliminary evaluation of the detection delay with a real
worm, but the complete evaluation will be provided in latter phases using the com-
plete system.

9.1.3 False Positives

F 3.1 Timely detection is worthless in the presence of false positives, therefore the
system is required to have a zero false positives rate.

Again, preliminary evaluation has shown that it is possible to detect worms
without false positives. In addition, we have considered a number of mechanisms
to further reduce false positives, including buffer overflow detection.

F 3.2 As a last means of preventing false positives, the system should support a
white-list that allows handling persistent false positives. Strings listed in the white-
list should not be considered as worm signatures.

The system will compute rabin fingerprints of the white-listed strings and place
appropriate flags in the corresponding hash table entries.

9.1.4 Configuration - Customization

F 4.1 It should be possible to adjust the sensitivity of the system using a threshold.
The system could be adjusted for faster detection with the cost of the false positives
rate going up.

This tradeoff has been demonstrated in the preliminary measurements, and the
requirement is supported by allowing the tuning of parameters.

F 4.2 It must be possible to adjust the amount of information that will be recorded,
so as to cater for those that worry about their privacy being revealed.

32

The minimal amount of recorded information consists of the offending signa-
ture. We are currently not considering of providing more information.

F 4.3 It should be possible to configure whether log-files, result packets, or both
will be used to report alerts.

The configuration file allows tuning of this behaviour.

F 4.4 It should be possible to configure the log-file location and the destination to
which result packets are sent.

The configuration file allows tuning of this behaviour.

9.1.5 Security Constrains

F 5.1 The network where the system is hosted must not be exposed to vulnerabili-
ties because of the presence of the early warning system.

F 5.2 The system must also be resilient to malicious traffic targeted to attack the
system itself. Finally it must be carefully engineered so that it will be immune to
any kind of attack. This is particular important as a poorly configured/engineered
system can pose a huge security risk for the whole network. Thus is essential that
the system is programmed with security practices in mind.

The chief security design concern is the abuse of the system by causing false
positives that match legitimate traffic. Acting on those false positives would effec-
tively mount a denial-of-service attack on the legitimate traffic. The main mech-
anism of defence against such an attack is sampling, which forces the attacker to
generate considerable traffic. Additional filters such as buffer overflow detection
reduce significantly the possibility of matching legitimate traffic.

9.1.6 Privacy

F 6.1 The data gathered should be strictly used for analyzing, identifying a possi-
ble attack, implementing ways to protect and for absolutely no other reason. The
EAR framework will operate in a way that the data do not have to be shared among
various individuals and/or companies thus minimizing the risk of revealing impor-
tant information about the end-user or corporate data.

F 6.2 The data analysis must take place within the organization data center which
is considered to be a trusted body.

The system has been designed as a centralized facility and the only information
that might be publicized are the detected signatures.

33

F 6.3 The issued alerts and reports must not include any information that will
reveal the identity of the user (eg. the IP addresses belonging to the infected hosts).
Furthermore, only content that belongs to traffic that has been identified as traffic
initiated by a worm is going to be included by the system in alerts.

F 6.4 The system should be able to integrate with an external application that will
take over the task of transmitting the alerts to the administrators.

F 6.5 The necessary information should be recorded in log files. The format of log
files should be specified in detail when the system has been developed completely,
it shall contain enough information to create a filtering signature. The task of the
application will vary according to the kind of output required and the actions that
need to be taken. The general o

9.2 Performance Constrains

9.2.1 Monitoring Capacity

P 1.1 The system must be capable of operating at 100 Mbits/sec. However, it is
highly desirable to achieve operation speeds up to 1 Gbit/sec.

The preliminary mesurements show that 200 Mbits/sec can be processed by the
detection mechanisms. During the implementation further optimizations will take
place.

The rest of the requirements are not relevant to the design of the system.

34

References

[1] IA-32 Intel Architecture Software Developer’s Manual vol. 1-3.
http://developer.intel.com/design/pentium4/manuals/
index_new.htm .

[2] Prelude IDS.http://www.prelude-ids.org/ .

[3] Metasploit project, 2004.http://www.metasploit.com/ .

[4] Aleph One. Smashing the stack for fun and profit.Phrack, 7(49), November
1996.http://www.phrack.org/phrack/49/P49-14 .

[5] Kang Su Gatlin. Windows data alignment on IPF, x86, and x86-64, February
2003. MSDN Library,http://msdn.microsoft.com/ .

[6] K2. ADMmutate.http://www.ktwo.ca/ADMmutate-0.8.4.tar.
gz .

[7] Oleg Kolesnikov, Dick Dagon, and Wenke Lee. Advanced polymorphic
worms: Evading IDS by blending in with normal traffic, 2004.http:
//www.cc.gatech.edu/˜ok/w/ok_pw.pdf .

[8] NGSEC. NIDSFindShellcode. http://www.ngsec.com/
downloads/misc/NIDSfindshellcode.tgz .

[9] A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. H. Li, R. C. Kuo, and K. P.
Fan. Buttercup: On network-based detection of polymorphic buffer overflow
vulnerabilities. InProceedings of The IEEE/IFIP Network Operations and
Management Symposium 2004 - NOMS 2004, pages 235–248, April 2004.

[10] M.O. Rabin. Fingerptinting by random polynomials. Technical Report 15-81,
Center for Research in Computing Technology - Harvard University, 1981.

[11] Martin Roesch. Snort: Lightweight intrusion detection for networks. InPro-
ceedings of USENIX LISA ’99, November 1999. (software available from
http://www.snort.org/).

[12] Dragos Ruiu. Fnord: Multi-architecture mutated NOP sled detector, February
2002.http://www.cansecwest.com/spp_fnord.c .

35

[13] C. Shannon and D. Moore. The spread of the witty worm, 2004.
http://www.caida.org/analysis/security/witty/.

[14] Neil T. Spring and David Wetherall. A protocol-independent technique for
eliminating redundant network traffic. InProceedings of the conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munication, pages 87–95. ACM Press, 2000.

[15] Thomas Toth and Christopher Krügel. Accurate buffer overflow detection via
abstract payload execution. InProceedings of the 5th International Sympo-
sium on Recent Advances in Intrusion Detection (RAID), October 2002.

36

