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Chapter 1

Introduction

In this document we discuss the deployment and evaluation of the EAR Early
Warning System for Internet-Based Cyber-Attacks. We provide a detailed offline
evaluation of the components using traces and describe a pilot deployment within
the ICS-FORTH network. Deployments at several other sites, including FORTH-
NET and the University of Crete are under way.

This document should be read in conjunction with the “System Design” and
“System Implementation” documents, which describe with detail the system eval-
utated in this document.

The rest of the document is organized as follows. In Chapter 2 we provide an
update of the implementation. In Chapter 3 we provide an offline evaluation of the
worm detection heuristics developed for this project using traces collected from
ICS-FORTHs network during a worm epidemic. In Chapter 4 we describe the first
deployment of the system. In Chapter 5 we tabulate the requirements of the system
and evalutate the conformance of the system. Finally, we conclude in Chapter 6.
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Chapter 2

Implementation Update

In this chapter we descrive some improvements made to the implementation used
for the results in this document relative to the one described in the “System Imple-
mentation” document.

As described in the “System Implementtion” document, the system is com-
posed of three modules: a monitor, programmed in the low-level C language for
performance; a second component, programmed in the high-level Python language
for flexibility, that further processes the generated alerts; and the Graphical User
Interface (GUI), implemented in Python and GTK.

The main improvement compared to the version described in the “System Im-
plementation” document is the integration of the STRIDE detection mechanism
with the rest of the system. In the next sections we describe some implementation
details of STRIDE and the updated system.

2.1 STRIDE Implementation

The design of STRIDE has been described in the “System Design” document, but
was not included in the “System Implementation”. Here we elaborate on its imple-
mentation.

STRIDE is passed a buffer and returns the offset of the first detected sled or
−1 if no sled was found. As a first pass it will decode the buffer (using the decoder
from [6]) and for each position it will determine the instruction (jump or invalid)
terminating the sequence starting from each position and after how many bytes this
instruction appears.

The second pass would verify for each offset that a sled of lengthn can start at
that offset, by checking for a valid sequence of lengthn starting at that offset, then
for a valid sequence of lengthn− 4 starting atoffset + 4, and so forth. However,
this would requireO(n2) operations foreachoffset. Instead, we first use an ap-
proximation to STRIDE which can be applied incrementally. The approximation
scans forn −m bytes with valid sequences of lengthm. It is obviously a weaker
heuristic, but can be applied incrementally. Only if the approximation finds a sled
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will we run the full STRIDE to verify it.

2.2 Updated Screenshots

Usage: ear OPTIONS [ filter expression ]
-f, --offset=INT flow offset threshold
-p, --period=INT period threshold
-s, --select-mask=HEX select mask
-t, --targets=INT targets threshold
-l, --length=INT substring length
--skip-nul skip strings with ASCII nul characters
-n, --home-net=NET network under protection
-r file read packets from file
-i interface capture packets from interface
--disable-ear disable the EAR detection heuristic
--enable-stride enable the STRIDE detection heuristic
--stride-flow-depth=INT how deep within flows to apply STRIDE
--stride-sled-length=INT sled length parameter for STRIDE
-h, --help display this help message

Figure 2.1: Updated monitor command-line syntax.

Figure 2.2: STRIDE-generated alerts.

STRIDE alerts show the offending flow, as shown in Figure 2.2. In the future
we intend to add contagion and “number of targets” criteria for STRIDE alerts too,
as well as support for more intelligent fusion of alerts and gracefull degradation of
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the system’s sensitivity. For example, an alert may need to reach either a distinct
targets threshold of 10 together with a contagion threshold of 1, or, in the absence
of contagion, a higher distinct targets threshold of, say, 15.

The monitor parameters can be configured by selecting the EAR Configuration
menu entry from the Tools menu. Several parameters have been added in this
version. It is possible to configure the following additional parameters, as shown
in Figure 2.3:

Min. Sled Length STRIDE will be sensitive only to sleds longer than this value.

Max. Offset STRIDE will look for sleds only this deep into flows.

Figure 2.3: Configuration dialogs.
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Chapter 3

Evaluation

In this chapter we evaluate inidividually the following detection mechanisms, that
have been integrated into the worm detection system.

• EAR The EAR detection mechanism is able to create signatures matching
non-polymorphic worms

• STRIDE The STRIDE detection mechanism is able to identify individual
obfuscated buffer overflow attacks.

3.1 EAR Evaluation

In this section we evaluate the effectiveness and efficiency of our approach for iden-
tifying substrings that belong to Internet worms and investigate its parameter space
using real network traffic traces that contain a real worm (Welchia). The traces
were collected from the same network that we later deployed the worm detetion
system, as described in Chapter 4.

3.1.1 Experimental Environment

Two sets of real network traffic traces have been used for our evaluation, gath-
ered from FORTH’s Local Area Network in early 2004, when the Welchia worm
had been active. The monitored networks contain about 150 hosts. Each trace is
about 5 Gbytes large and contains between 11.7 and 14.4 million network packets
that represent traffic from web clients, peer-to-peer programs, SMB shares, IMAP,
printers, etc. The traffic characteristics of the traces are shown in table 3.1.

3.1.2 Detection Delay and False Positives

In this section we explore the parameter space of the worm detector that we have
described. The parameters of the experiments are:

• substring length,
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Table 3.1: Characteristics of the traces used in the experiments.

Trace TCP Packets TCP (Payload) Bytes Duration Attacks
TRACE-I 11,746,790 5,108,857,877 2h 102
TRACE-II 14,429,618 5,333,977,518 2h30m 57

• distinct destinations threshold,

• substring cache size,

• flow offset limit, and

• sampling mask.

We measure the following quantities:

• false positives, which are defined to be the number of distinct flows that
triggered an alert but did not correspond to any real worm,

• detection delay, which is defined as the elapsed worm attacks up to the
detection of the worm.

Figure 3.1 shows the detection delay and the number of false positives incurred
by our approach as a function of the substring length for TRACE-I and TRACE-II.
We immediately notice that as the substring length increases, the number of false
positives decreases. This is as expected. Indeed, it is quite possible for unrelated
network packets to contain identical small substrings. Therefore, these identical
small substrings that can be found in unrelated (non-worm) network packets, will
generate a large number of false alarms. However, as the substring length is getting
larger, it is rather unlikely for unrelated network packets to contain large identical
substrings. The remaining false positives persist up to a substring length of 150
bytes and are caused by common strings such as protocol headers.

It is very encouraging to see in Figure 3.1 that as the string length increases
beyond 150, the number of false positives reaches zero, which implies that no
false alarms for worm outbreaks are generated by our approach. Given that most
worms are longer than 150 bytes (as seen in Table??), operating our approach
with substring length longer than 150 bytes, will probably be able to identify these
known worms without generating any false positives.

We also see that the detection delay is independent of the substring length and
therefore, is plotted as a line parallel to thex-axis. This is because all the true
positive alerts were generated by strings belonging to the Welchia worm, which
has size larger than 150 bytes.

However, the worm contains a few 150-byte strings that can also be found in
normal RPC traffic. Filtering these strings would result in inadvertent denial-of-
service attacks. This problem is solved by using a string length of 250 bytes or
above.

10



 0

 10

 20

 30

 40

 50

 60

 40  60  80  100  120  140
 0

 2

 4

 6

 8

 10
D

et
ec

tio
n 

de
la

y 
(e

la
ps

ed
 a

tta
ck

s)

F
al

se
 p

os
iti

ve
s 

(d
is

tin
ct

 fl
ow

s)

Substring length (bytes)

Detection delay
False positives

(a) TRACE-I

 0

 10

 20

 30

 40

 50

 60

 40  60  80  100  120  140
 0

 2

 4

 6

 8

 10

D
et

ec
tio

n 
de

la
y 

(e
la

ps
ed

 a
tta

ck
s)

F
al

se
 p

os
iti

ve
s 

(d
is

tin
ct

 fl
ow

s)

Substring length (bytes)

Detection delay
False positives

(b) TRACE-II

Figure 3.1: Detection delay and false positives as a function of substring length
for a cache size worth of 500 msec, distinct destination threshold of 10, sampling
mask value of 0xf, and an offset limit of 100K. We observe that we have zero false
positives for substring lengths above 150 bytes, while at the same time we have
detection after about 10–20 attacks.
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Figure 3.2: Detection delay and false positives as a function of cache size for a
fixed substring length of 250 bytes, distinct destination threshold of 10, sampling
mask value of 0xf, and an offset limit of 100K. We observe that we have zero false
positives for cache sizes less than 600 msec, while at the same time we have detec-
tion after about 10–20 attacks. We also observe that smaller cache sizes increase
detection delay, and eventually prevent detection.
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Figure 3.3: Detection delay and false positives as a function of distinct destina-
tion threshold for a fixed substring length of 250 bytes, cache size of 500 msec,
sampling mask value of 0xf, and offset limit of 100K. We observer that we have
zero false positives for a threshold of 10 or greater, while at the same time we have
detection after about 10–20 attacks.
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Figure 3.4: Detection delay and false positives as a function of offset limit for a
fixed substring length of 250 bytes, cache size of 500 msec, distinct destination
threshold value of 10, and sampling mask value of 0xf. We observer that for a
limit of 100K or less, we have zero false positives, while at the same time we have
detection after about 10–20 attacks.
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Figure 3.2 shows the detection delay and the number of false positives as a
function of the substring cache size measured in milliseconds. By definition our
approach is incapable of detecting worms that are encountered less often than the
period that substring fingerprints are cached. Indeed, we observe that the worm
contained in the traces may evade detection for cache sizes less than 100 msec
(Figure 3.2(b)). On the other hand, we observe that larger cache sizes result in more
false positives, as expected, since strings with a lower rate of new destinations are
retained in the cache, and can trigger false detection.

Figure 3.3 shows the detection delay and the number of false positives as
a function of the distinct destination threshold. We observe that decreasing the
threshold decreases detection delay. This is expected, since less worm attacks are
required to trigger detection. However, decreasing the threshold may also result
in false positives. This is expected too, since there exist legitimate strings that are
sent to more than one destinations.

Finally, in Figure 3.4 we investigate the effects of various offset limit values.
We observe that penalizing strings that appear deep in their flows significantly
reduces the encountered false positives. Inspection of these false positives revealed
that they are caused by peer-to-peer traffic and are encountered at random offsets
in long-lived connections.

Summarizing, Figures 3.1–3.4 suggest that our approach is able to identify the
worms contained in the studied traces within an acceptable time-frame without
generating any false alarms.

3.1.3 Performance

In our next set of experiments we evaluate the performance of our approach and
measure the effects of fingerprint selection. In our experiments we have used de-
terministic sampling using the0xf mask therefore the processed substrings have
been reduced by a factor of 16. We carried out these experiments without an offset
limit, to take into account the case where the smoother variation would be used as
described in the design document.

Table 3.2 shows the CPU time spent for the optimized and the unoptimized
version of the worm detection system to process TRACE-I: a trace of network
packets 5 Gbytes large. We see that the un-optimized version takes close to 13
minutes which corresponds to a processing rate of 57 Mbits/s, while the optimized
version takes close to 145 seconds, which corresponds to a processing rate of 307
Mbits/s.

Figure 3.5 demonstrates the savings in CPU-time that result from applying
different sampling masks. We observer that performance increases exponentially
with the number of bits in the sampling mask, as expected.
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Table 3.2: CPU time consumed by experiments with TRACE-I and extrapolated
throughput.

Sampling Mask CPU Time Throughput
0x0 13m 57 Mbits/s
0xf 145s 307 Mbits/s
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Figure 3.5: CPU-time as a function of the number of bits set in the sampling mask.

3.2 STRIDE Evaluation

In this section we evaluate STRIDE, a buffer overflow detection mechanism that
has been designed to counter future polymorphic worms.

As discussed in the “System Design” document, many existing detection mech-
anisms have also focused on detecting the sled component in order to detect buffer
overflow attacks. For example, signatures to match simple sleds have been in-
cluded in the shellcode rule set of the Snort NIDS [3]. In addition, Snort has been
extended with the Fnord plugin [4] that searches for obfuscated sleds. Finally, Toth
and Kr̈ugel proposed the Abstract Payload Execution (APE) method [5] which fur-
ther improves the sensitivity of obfuscated sled detection. However, existing de-
tection mechanisms cannot detect all obfuscated sleds presented in the “System
Design” document.

Since no polymorphic worms exist to this date, we evaluate STRIDE by com-
paring it to alternative buffer overflow detection techniques.
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Figure 3.6: Distribution of URI lengths in the real trace used for the evaluation.

3.2.1 Experimental Environment

We evaluate the accuracy of the detection rate of our proposed algorithm STRIDE,
Snort’s shellcode signatures [3], Fnord mutated sled detection plugin for Snort [4],
and APE [5], by generating 10,000 different sleds of each type using the Metasploit
Framework v2.2 [2], modified to generate sleds ranging from type-1 (simple NOP
sleds) up to type-6 (obfuscated trampoline).

We also evaluate the false positives rate of the four methods as in [5], by ap-
plying them to HTTP URIs. The URIs were captured from our institution’s LAN,
which contains about 150 hosts. Figure 3.6 shows the distribution of URI lengths
in our traces.

For STRIDE and APE the attacks were fed as HTTP requests, while for Snort
NIDS signatures and the Fnord plugin we created packets containing the attacks. In
all cases, we ensured that the detection method was applied to the unquoted URI.

Sled detection methods which are based on instruction decoding, employ the
decoder used in [6].

3.2.2 Detection Rate

The results of applying all four detection methods on the generated sleds are shown
in Table 3.3. We observe that Snort’s shellcode signatures detect simple NOP sleds
with 100% success, but fail to detect more elaborate sleds. Fnord is able to detect
simple NOP sleds with 100% success too, and in addition is able to detect sleds
with one-byte NOP-equivalent instructions with a 55.4% rate. Although it could
have achieved a 100% rate for one-byte NOP-equivalent sleds, it achieves a lower-
rate due to an incomplete NOP-equivalent instruction list. Fnord also fails to detect
sleds with multi-byte NOP-equivalent instructions, but it should be possible to up-
date its list of NOP-equivalents to include them as well. However, this is as far
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Scheme

Sled Type in Trace Snort Fnord APE STRIDE

NOP instructions 100% 100% 100% 100%

One-byte NOP-eq-
uivalents

0% 55.4% 100% 100%

Multi-byte NOP-eq-
uivalents

0% 0% 100% 100%

Four-byte Aligned 0% 0% 100% 100%

Trampoline-sled 0% 0% 0% 100%

Obfuscated Trampo-
line-sled

0% 0% Fig. 3.7 100%

Table 3.3: Detection rates of the various detection schemes for traces containing
10,000 different generated sleds of a single type.

 0

 1

 2

 3

 4

 5

 6

 7

 30  35  40  45  50

D
et

ec
tio

n 
R

at
e 

(%
)

MEL (Number of instructions)

APE - Obfuscated Trampoline Sled

Figure 3.7: Detection rate for APE when applied to obfuscated trampoline sleds as
a function of MEL.
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as Fnord can get. Indeed, Table 3.3 shows that Fnord fails to detect sophisticated
sleds, such as 4-byte aligned and trampoline sleds.

Table 3.3 suggests that the APE method is able to detect simple NOP sleds,
sleds with one-byte and multi-byte NOP-equivalent instructions, as well as four-
byte aligned sleds with a 100% success rate. However, APE cannot detect tram-
poline sleds. This was expected, because trampoline sleds reach the core attack
code by executing only a small number of jump instructions, while APE bases its
detection method on the sequential execution of a long sequence of instructions.

It is interesting, however, to point out that although APE can not detect tram-
poline sleds, it is able to detect some of the more difficult obfuscated trampoline
sleds. Indeed, as Figure 3.7 shows, APE is able to detect as many as 6% of the
obfuscated trampoline sleds for small MEL. This is because the NOP-equivalent
instructions that are used for the obfuscation cause an increase of the overall exe-
cution steps of the sled, which can now reach a low MEL threshold. Nevertheless,
the detection rate of APE is still very low, at 6%, even for the minimum suggested
MEL value.

Finally, STRIDE is able to detect simple NOP sleds, sleds with one-byte or
multi-byte NOP-equivalent instructions, as well as four-byte aligned sleds and
plain or obfuscated trampoline sleds with 100% success, as expected.

3.2.3 False Positives

The results of the false positives rate evaluation for the four methods with real
traces are shown in Figure 3.8. In this experiment STRIDE has a sled length pa-
rameter of 130 bytes and APE has a MEL value of 35 instructions with 100 samples
per kilobyte. With these parameters APE is sensitive, like STRIDE, to sled lengths
of about 130 bytes and above.

The Snort shellcode signatures have zero false positives, because there was
no sufficiently long NOP-sequence in our traces. Fnord also has almost 0% false
positives, because there were very few sequences of bytes in the traces which cor-
responded to sequences of NOP-equivalent instructions. Although both Snort and
Fnord have an attractive practically 0% of false positives rate, they are severely lim-
ited in their ability to detect elaborate sleds, such as trampoline sleds. Figure 3.8
shows that APE has a false positive rate of 0.006%. Finally, STRIDE has a false
positive rate of 0.00027%, close to an order of magnitude smaller than APE. Over-
all, we see that STRIDE seems to strike a good balance between true positives and
false positives. That is, it is able to find more true positives than any other method,
while keeping the false positives as low as those of Fnord and Snort.

The interested reader should notice that the exact value of false positives for
APE and STRIDE depends heavily on their parameters. To explore the influence
of the parameters to the false positive rate of APE and STRIDE, we investigate the
false positives rate for both methods as a function of MEL and sled length, and
display the results in Figure 3.9. We see that as the size of MEL increases, the
percentage of false positives for APE decreases. However, we should point out
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that larger MEL values also decrease the number of detected true positives, as can
be seen in Figure 3.7. Figure 3.9 also shows that the percentage of false positives
for STRIDE decreases with the sled length, and reaches zero for sled length larger
than 230 bytes. This is an encouraging result, since typical sleds are usually longer
than 250 bytes. Overall, our results suggest that STRIDE is able to have a true
positive rate of 100% (as shown in table 3.3), while having a false positive rate of
(close to) 0%.

However, MEL is not directly related to the sled length in bytes. First, an
instruction can be multiple bytes long, and, second, APE uses sampling. In Fig-
ure 3.10 we attempt to determine the detectable sled length for APE with the default
parameters of the APE implementation by applying it on traces of type-4 sleds with
varying lengths. The results show that the actual detectable sled length is about 150
bytes, so the comparison was fair.

3.2.4 Performance

Besides being accurate, a worm detection method should also be fast, so as to be
able to detect worms in real-time. To evaluate the speed of STRIDE we measured
the CPU time consumed by STRIDE with a sled length value of 200 bytes, and
compared it to the execution time of APE with a MEL count of 35 on a Pentium
4 machine (2.6GHz clock speed, 512KB cache size) for a trace with 1,093,249
requests, and show the results in Table 3.4. We see that STRIDE outperforms APE
by a factor of 5. This is mostly due to the different handling of branch instructions
by the two algorithms. Indeed, when APE encounters a branch instruction, whose
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Figure 3.9: False positives rate for APE and STRIDE with varying parameters.
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Figure 3.10: Sensitivity of the APE method to various sled lengths of type-4 sleds.
For the recommended MEL parameter value of 35, the detectable sled length is
about 150 bytes.

target can be determined statically it follows both branches, a decision, which may
potentially lead to the exploration of an exponential number of execution paths.
Unlike APE, when STRIDE encounters a branch instruction, it assumes that it
found a valid sequence, without making any attempt to follow the branch. By being
conservative, STRIDE avoids the exponential explosion and significantly reduces
the associated run-time cost.

Table 3.4: Comparison of the processing cost of APE with a MEL count of 35 and
STRIDE with a sled length of 200 bytes, for a trace with 1,093,249 requests, using
the same instruction decoder on the same machine. STRIDE outperforms APE by
a factor of 5.

Total CPU Time CPU Time Per Request

APE 25sec 22.9µsec

STRIDE 4.85sec 4.4µsec
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Chapter 4

Deployment

We have already deployed the worm detection system on FORTH’s network and
several other deployments are under way, including FORTHNET and the Univer-
sity of Crete network.

4.1 Monitored Network

ICS-FORTH’s network consists of several LANs. The deployment covers more
than 200 machines in total. About half of them run the Windows OS, which is the
typical worm target. Table 4.1 shows the break down of the monitored population
to LANs.

4.2 Deployment Setup

The deployment involves a router, which has been instructed to mirror the traffic
from several of the institution’s LANs to a dedicated monitoring system running on
commodity hardware. The bulk of the traffic is processed by the dedicated monitor.
The results of worm detection are transered over a secure (SSH) connection to an
operator’s computer and are processed by the worm detection system user interface
which is running on that computer. This setup is illustrated in Figure 4.2.

The parameters used to run the system were determined empirically during the
evalution in Chapter 3 and are as follows:

• Min. Targets: 10 (A worm must have target at least this many targets.)

• Min. Length: 200 bytes (A worm must have at least this length.)

• Max. Offset: 2000 bytes (A worm must occur at most at this offset within
its flow.)

• Max. Period: 500µ sec (A worm must occur with a period at most equal to
this value.)
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Table 4.1: Number of hosts in FORTH deployment

LAN Number of Hosts
Total 218
139.91.190 67
139.91.70 35
139.91.183 34
139.91.185 23
139.91.68 17
139.91.182 15
139.91.157 7
139.91.197 3
139.91.76 2
139.91.6 2
139.91.200 2
139.91.165 2
139.91.151 2
139.91.88 1
139.91.72 1
139.91.195 1
139.91.189 1
139.91.187 1
139.91.184 1
139.91.1 1

Figure 4.1: Deployment diagram.
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• Filter: dst port not 6346 (A filter that is applied on network traffic before it
is processed. We use it to exclude peer-to-peer traffic on the standard port.)

• Tracking Mask: 1 out of 32 (This value control the deterministic sampling
rate.)

• Skip substrings with ASCII nul = TRUE (Whether to process substring
with the ASCII nul character.)

• Min. Sources: 1 (A worm must be spread by at least this many sources.)

• Min. Contagion: 0 (The value of the contagion threshold.)

• Home Net: Unspecified (The network under protection. We did not limit
the monitoring to FORTH’s LAN in order to stress the system more.)

4.3 Deployment Expreriences

We have operated the system for several weeks trying to verify the parameter val-
ues found in the evaluation with traces for longer time intervals with live traffic.
Our experience was successfull, with the only problem being false positives caused
by Gnutella traffic on the standard Gnutella port. Several adjustments of the pa-
rameters supressed these false positives:

• Increasing the number of sources to a value greater than one

• Increasing the contagion threshold to a value greater than zero

• Excluding the Gnutella port using a filter expression

We deemed the third option as the more appropriate for our setup because with
the sacrifice of detecting worms targetting the standard Gnutella port we did not
have to lower our sensitivity for worms in general.

Apparently, the best of both worlds would be possible if the thresholds could
be adjusted per port. For example, traffic on every port other than the standard
Gnutella protocol port could require low thresholds, but traffic on the Gnutella port
would require a larger source or contagion threshold. We plan to add support for
this feature.
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Chapter 5

Conformance to the
Requirements

In this chapter, we discuss how the implementation conforms to the requirements
laid out in the Specifications document. We list each requirement and discuss the
relevant implementation features.

5.1 Functional Requirements

5.1.1 Detected Attacks

F 1.1 The system should detect attacks that use unfragmented packets, as well
as fragmented packets to spread their payload over multiple packets in order to
obfuscate their signatures.

By employing flow reassembly mechanisms, the design ensures that detection
cannot be evaded by breaking signatures across packet boundaries. Specifically, in
the implementation we have used the libnids [1] for flow reassembly.

F 1.2 The system should detect worms with an attack that contains at least 300
consecutive bytes.

The relevant parameter of the system is substring size, the evaluation shows
that a substring size of 300 bytes is sufficient to detect worms.

F 1.3 The system must detect worms that spread over the TCP protocol. However,
it is highly desirable, but not initially required, to include support for UDP worms
as well.

There is support for the TCP protocol, including session tracking and stream
reassembly. We are considering UDP support as a future extension.

F 1.4 The system is not expected to detect stealth worms.
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The system is capable of detecting stealth worms as long as they are detected
by the STRIDE heuristic. However, some logic needs to be added for managing the
information generated from STRIDE in order to detect and report stealth worms.

F 1.5 Strings of small length are often popular without belonging to a worm. For
example, many unrelated HTTP requests contain the stringGET /, or HTTP/1.1.
Therefore, a minimum detectable string length must be established.

The system has a substring length threshold that controls the minimum de-
tectable signature length. By adjusting it to more than about 200 bytes the number
of false positives due to such string is greatly reduced. In addition, the option of
white-listing some popular strings should help. Finally, the contagion heuristic
almost completely eliminates such false positives.

5.1.2 Detection Delay

F 2.1 The detection delay of the system, measured in elapsed attacks before an
alert has been triggered, should be evaluated theoretically and experimentally for
worms with different levels of aggressiveness.

We have performed an evaluation of the detection delay as a function of various
detection parameters.

5.1.3 False Positives

F 3.1 Timely detection is worthless in the presence of false positives, therefore the
system is required to have a zero false positives rate.

The evaluation has shown that it is possible to detect worms without false pos-
itives. In addition, we have considered a number of mechanisms to further reduce
false positives, including buffer overflow detection and the contagion heuristic.

F 3.2 As a last means of preventing false positives, the system should support a
white-list that allows handling persistent false positives. Strings listed in the white-
list should not be considered as worm signatures.

The implementation allows the tagging of certain substrings with an “ignore”
flag. The user interface does not yet provide access to this functionality.

5.1.4 Configuration - Customization

F 4.1 It should be possible to adjust the sensitivity of the system using a threshold.
The system could be adjusted for faster detection with the cost of the false positives
rate going up.
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This tradeoff has been demonstrated in the evaluation and the requirement is
supported by allowing the tuning of parameters.

F 4.2 It must be possible to adjust the amount of information that will be recorded,
so as to cater for those that worry about their privacy being revealed.

The minimal amount of recorded information consists of the offending signa-
ture. We are currently not considering of providing more information.

F 4.3 It should be possible to configure whether log-files, result packets, or both
will be used to report alerts.

In the implementation the results are communicated from the monitor applica-
tion to the graphical user interface through its standard output. It is trivial for an
operator to add log-file support, and any other mechanisms by piping the output
of the monitor through any UNIX utility (for example the “tee” utility allows for
saving the data to a file).

F 4.4 It should be possible to configure the log-file location and the destination to
which result packets are sent.

This has been left to the operator. Sample configurations will be provided in
the future.

5.1.5 Security Constrains

F 5.1 The network where the system is hosted must not be exposed to vulnerabili-
ties because of the presence of the early warning system.

The monitoring application is written with security in mind and the “privilege
separation” principle has been applied by implementing as much functionality as
possible in an unprivileged process (the alert post processing and gui modules). In
the future, the monitoring application will be modified to drop its privileges soon
after openning the network interface.

F 5.2 The system must also be resilient to malicious traffic targeted to attack the
system itself. Finally it must be carefully engineered so that it will be immune to
any kind of attack. This is particular important as a poorly configured/engineered
system can pose a huge security risk for the whole network. Thus is essential that
the system is programmed with security practices in mind.

The chief security design concern is the abuse of the system by causing false
positives that match legitimate traffic. Acting on those false positives would effec-
tively mount a denial-of-service attack on the legitimate traffic. The main mech-
anism of defence against such an attack is sampling, which forces the attacker to
generate considerable traffic. Additional filters such as buffer overflow detection
reduce significantly the possibility of matching legitimate traffic.
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5.1.6 Privacy

F 6.1 The data gathered should be strictly used for analyzing, identifying a possi-
ble attack, implementing ways to protect and for absolutely no other reason. The
EAR framework will operate in a way that the data do not have to be shared among
various individuals and/or companies thus minimizing the risk of revealing impor-
tant information about the end-user or corporate data.

The processing of the data that takes place inside the monitor component pro-
vides protection of sensitive data.

F 6.2 The data analysis must take place within the organization data center which
is considered to be a trusted body.

The system has been designed as a centralized facility and the only information
that might be publicized are the detected signatures.

F 6.3 The issued alerts and reports must not include any information that will
reveal the identity of the user (eg. the IP addresses belonging to the infected hosts).
Furthermore, only content that belongs to traffic that has been identified as traffic
initiated by a worm is going to be included by the system in alerts.

F 6.4 The system should be able to integrate with an external application that will
take over the task of transmitting the alerts to the administrators.

Such an application has been implemented by the GUI component. In addition,
it can be trivially extended with additional notification mechanisms.

F 6.5 The necessary information should be recorded in log files. The format of log
files should be specified in detail when the system has been developed completely,
it shall contain enough information to create a filtering signature.

The monitor application emits records in a specific format.

5.2 Performance Constrains

5.2.1 Monitoring Capacity

P 1.1 The system must be capable of operating at 100 Mbits/sec. However, it is
highly desirable to achieve operation speeds up to 1 Gbit/sec.

Depending on the detection parameters, the system can achieve a performance
of 300-400 Mbits/sec.

P 1.2 The system does not operate in-line and therefore does not impose any limi-
tations or delay on the traffic capacity of the monitored network.
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This requirement is supported by design.

P 1.3 It should be possible to operate the system by processing only part of the
traffic.

Several filtering mechanism are employed to reduce the load of the system.
The main provision is the processing of client to server flows only, and in addition
only the start of the flows is processed. Ignoring high-traffic hosts is also supported
by specifying appropriate filter expressions.

5.3 Deployment

5.3.1 Software and hardware platform

D 1.1 The system will be developed for the GNU/Linux operating system and the
x86 hardware platform.

The system was developed and deployed on Linux running on x86.

D 1.2 It should be easily portable to other platforms and Unix-class operating
systems.

The software does not depend on non-portable libraries and is itself written
in standard C and the high-level python language, which is ported to all major
platforms.

D 1.3 The system will require a dedicated machine for production operation.

We recommend using a dedicated machine.

5.3.2 Placement

D 2.1 The system will not be placed in-line, but will operate as a network tap,
processing all traffic visible to its network interface. Therefore, it will not be able
to interrupt the operations of other production systems.

The system conforms to this requirement.

5.3.3 Monitored area

D 3.1 The networks to be monitored will be selected by mirroring the appropriate
traffic to the monitoring system’s network interface.

The system has been deployed this way.

D 3.2 The number of the hosts that the system shall be capable of monitoring will
be in the order of hundreds.
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The system has been deployed in a network of 150 hosts.

D 3.3 The system must be able to see symmetric traffic. Sometimes routers only
see one direction of the traffic. This is called assymetric routing. Our system will
not have to tackle with this.

This is required for flow reassembly.

5.3.4 Software Distribution

D 4.1 The system relies on the Snort NIDS [3] and is distributed as a Snort plug-in
in the form of a non-intrusive patch against the standard Snort distribution. This
means that there are no compatibility issues with existing systems, thus it will be
easy to deploy.

The dependency on Snort NIDS has been dropped during the development of
the system. The flow reassembly is performed using libnids [1].

5.3.5 Initial Setup and Periodic Updates

D 5.1 Initial installation will require building the software from source. New ver-
sions or configuration file modifications may require stopping and starting the sys-
tem on software level.

This is the case, although the distribution of precompiled versions is also con-
sidered.

5.3.6 Hardware performance requirements

D 6.1 The system should be designed to operate on commodity PC-class hardware.
Sample specifications: 3GHz Processor, 1GByte RAM.

We have successfully deployed the system on a 2.6GHz processor with 1GBytes
of RAM.
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Chapter 6

Conclusions

In the context of this project we have developed a method to detect current gen-
eration Internet worms by finding strings with a high rate of transfer to different
targets and looking for them in the start of client-to-server traffic, and we have pro-
vided protection against future polymorphic worms by developing STRIDE, a new
mechanism for network-level detection of buffer overflow attacks that relies on the
identification of the sled component that is usually part of such attacks. Because it
operates at the network-level, STRIDE can be used for detecting worms that repli-
cate through buffer overflow exploits, even if they involve elaborate obfuscation.

During the evaluation described in this document, we have shown that on
the studied scale, of about 150 hosts, detection without false positives of non-
polymorphic worms is possible with a detection delay that suggests a 7-14% in-
fection. The detection was sensitive to worms generating collectively at least one
attack about every 500 msec. These results are very encouraging. Presumably,
higher aggregation (larger deployment) would further reduce detection time, and
also enable detection of less aggressive worms.

As for future polymorphic worms, the high accuracy, low false positive rate,
and low processing cost achieved by STRIDE make it highly useful as part of an
automated network-level defense mechanism against large-scale zero-day worm
outbreaks, especially as worms become more aggressive and more sophisticated.
STRIDE may be useful as a defense against target attacks as well.

In conclusion, we have presented an efficient method to detect current gener-
ation Internet worms with practically zero false positives, and have provided pro-
tection against future polymorphic worms.
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