

DESIGN AND IMPLEMENTATION
OF A HIGH-PERFORMANCE NETWORK

INTRUSION PREVENTION SYSTEM

Konstantinos Xinidis1, Kostas G. Anagnostakis2, Evangelos P. Markatos1
1Institute of Computer Science, Foundation for Research and Technology Hellas, P.O Box 1385
Heraklio, GR-711-10 Greece {xinidis, markatos}@ics.forth.gr ; 2Distributed Systems Laboratory,
CIS Department, Univ. of Pennsylvania, 200 S. 33rd Street, Philadelphia, PA 19104
anagnost@dsl.cis.upenn.edu

Abstract: Network intrusion prevention systems provide proactive defense against security threats by
detecting and blocking attack-related traffic. This task can be highly complex, and therefore,
software-based network intrusion prevention systems have difficulty in handling high speed links.
This paper describes the design and implementation of a high-performance network intrusion
prevention system that combines the use of software-based network intrusion prevention sensors
and a network processor board. The network processor acts as a customized load balancing splitter
that cooperates with a set of modified content-based network intrusion detection sensors in
processing network traffic. We show that the components of such a system, if co-designed, can
achieve high performance, while minimizing redundant processing and communication. We have
implemented the system using low-cost, off-the-shelf technology: an IXP1200 network processor
evaluation board and commodity PCs. Our evaluation shows that our enhancements can reduce the
processing load of the sensors by at least 45% resulting in a system that can handle a fully-loaded
Gigabit Ethernet link using at most four commodity PCs.

Key words: Network Intrusion Detection Systems, Network Intrusion Prevention Systems, network processors,
load balancing

1. INTRODUCTION

The increasing importance of network infrastructure and services along with the high cost
and difficulty of designing and enforcing end-system security policies has resulted in growing
interest in complementary, network-level security mechanisms, as provided by firewalls and
network intrusion detection and prevention systems.

High-performance firewalls are rather easy to scale up to current edge-network speeds
because their operation involves relatively simple operations such as matching a set of Access
Control List-type policy rules against fixed-size packet headers. Unlike firewalls, network
intrusion prevention systems (NIPSes) are significantly more complex and, as a result, are
lagging behind routers and firewalls in the technology curve. The complexity stems mainly
from the need to analyze not just headers but also packet content and higher-level protocols.
Moreover, the function of NIPSes needs to be updated with new detection components and
heuristics, due to the continuously evolving nature of network attacks.

Both complexity and the need for flexibility make it hard to design high-performance
NIPSes. Application-Specific Integrated Circuits (ASICs) lack the needed flexibility while
software-based systems are inherently limited in terms of performance. One design that offers
both flexibility and performance is the use of multiple software-based systems behind a
hardware-based load balancer. Although such a design can scale up to edge-network speeds, it

2 K. Xinidis, K. G. Anagnostakis, E.P. Markatos

still requires significant resources, in terms of the number of sensors, required rack-space, etc.
It is therefore important to consider ways of improving the performance of such systems.

This paper explores the role that high-speed network processors (NPs) can play in scaling
up network intrusion prevention systems. We focus on ways for exploiting the performance
and programmability of NPs for boosting in-line network intrusion detection. We describe the
architecture of a NIPS using commodity Personal Computers (PCs) as network intrusion
detection sensors, fed by an IXP12008 network processor. We present the allocation of
operations to components and the trade-offs we faced during designing and prototyping the
system. For further details please refer to 20.

The rest of this paper is organized as follows. In Section 2 we describe the architecture and
implementation of our system, called Digenisa. In Section 3 we examine the performance
benefits of using NP-based load balancing and acceleration. We discuss work that is related to
high-performance intrusion prevention in Section 4. Finally, we summarize and comment on
future research directions in Section 5.

2. DESIGN AND IMPLEMENTATION

We faced a number of design challenges in constructing Digenis with respect to
performance, flexibility and scalability:

Performance: The primary metric of interest in the design of a NIPS is throughput. That
is, to be able to operate at network speeds of at least 1 Gbit/s without packet losses, so as to
detect any attempted attack. Therefore, the system must be capable of analyzing all the
incoming traffic under the most stringent conditions. Network intrusion detection systems
(NIDSes) based on commodity PCs are able to monitor at speeds much lower than 1Gbit/s2,5.
This necessitates the use of a distributed design with several intrusion detection sensors
operating in parallel and supported by a load balancing traffic splitter4,11,19. At the same time,
we want to minimize cost and use as few resources as possible. The use of an NP
implementing the splitter appears reasonable, since it is likely to be cheaper than a custom
ASIC, while load balancing operations seem to be well within the processing capacity of
modern NPs. We also want to minimize the number of sensors needed. A key focus of our
work is therefore on how to exploit the processing capacity on the NP to reduce the load of
the sensors. A second important performance goal is minimizing the latency induced by the
NIPS. There is a direct relationship between latency introduced by a networking device and
the maximum throughput of TCP flowsb.

If the NIPS will be used at the boundary between an enterprise network and the Internet,
latencies in the order of a few milliseconds may be tolerable. If the NIPS is deployed
internally, and the network needs to support high-bandwidth local services (such as file
sharing, etc.) the latency requirements are even more stringent. Particularly, there is a critical
value for the round trip time (RTT) of a packet in each network. If the latency is below this
critical value, TCP throughput is unaffected -- it is the line speed of the underlying network
which becomes the bottleneck -- above this critical value, however, TCP throughput is
negatively impacted. The critical value for RTT in a network supporting Gigabit speeds is 0.5
milliseconds. Thus, if we want the throughput of TCP to be unaffected, we must ensure that
the latency imposed by our NIPS is less than 0.5 milliseconds.

However, Gigabit Ethernet links will rarely carry only a single TCP connection. Rather, a
Gigabit Ethernet link supports hundreds, if not thousands of TCP connections, and this
multiplexing mitigates the impact of latency on the overall throughput of the link9. In other
words, it is possible

a Digenis Akritas, the ideal medieval Greek hero, is a bold warrior of the Euphrates frontier. He was a proficient

warrior by the age of three and spent the rest of his life defending the Byzantine Empire from frontier invaders.
b Recall that TCP Throughput=Window/RTT where Window is the maximum TCP window size (default value is

64 Kbytes) and RTT is the round trip time in the network.

Design and Implementation of a High-Performance NIPS 3

G1

G0 F0

F1

F2

FN

P1

P2

P0

PN

Ethernet
Gigabit

Interfaces

Ethernet
Fast

Interfaces

Sensors

P
l
u

i
n
s

g
-

Splitter

Entry Point

Exit Point

Load
Balancer

Figure 1. Architecture of Digenis.

to impose latency greater than 0.5 milliseconds without affecting the throughput of a link due
to the high number of TCP connections.

Flexibility and Scalability: A NIPS needs to be flexible and scalable, both for scaling up
to higher link speeds and more expensive detection functions, as well as for updating the
detection heuristics. If the protection of a faster link or a more fine-grained detection is
required, it would be desirable to reuse as much as possible of the existing hardware. Clearly,
this property does not hold for ASIC-based NIPSes. However, it is remarkable that almost all
NIPS providers ignore this dimension8,13,19. Furthermore, a prerequisite of flexibility is
simplicity as extending a complex system may be hard and error-prone. It is therefore
desirable for the hard-to-program elements of our system to be as generic as possible.

2.1 Architecture

Digenis is composed of a customized load balancing splitter and a number of content-
based network intrusion detection sensors connected with the splitter (Figure 1). The splitter
is the entry and exit point of the traffic that runs through the system. The basic task of the
splitter is to evenly distribute the traffic across the sensors and to transmit the non-attack
packets back to their destination. The sensors are responsible for the heavy task of inspecting
the traffic for intrusion attempts. They maintain the required information for recognizing all
the malicious traffic and deciding whether to forward or drop the packet. For every input
packet, the splitter computes which sensor will be responsible to analyze this packet. Then, it
forwards the packet to this sensor for inspection. The sensor searches for known attack
patterns contained in the packet. If a pattern is found, then the packet is blocked, otherwise
the packet is forwarded back to the splitter. The splitter receives the analyzed packet and
transmits it to its destination.

Additionally, Digenis supports plug-ins that implement operations necessary to improve
the performance of the system. A plug-in has two parts, one running on the splitter and one
running on the sensors. These two parts cooperate in order to accomplish their task. In the
context of this work we have designed a plug-in for Digenis that attempts to minimize the cost
of sending a packet from a sensor to the splitter.

Splitter: The functionality of the splitter can be divided into the basic operations and the

plug-ins that provide adequate operations to boost performance. The basic part of the splitter
integrates the functionality of a load balancer -- it is responsible for distributing the incoming
traffic across the output interfaces (ports). However, it differs from a common load balancer
in that it must be flow-preserving, that is, all the packets belonging to the same flowc must be
forwarded to the same output interface.

c In case of TCP/UDP traffic, we define a flow to consist of all the traffic of a TCP or UDP connection. Otherwise,

a flow consists of all the traffic originating from a particular IP address and destined to a particular IP address.

4 K. Xinidis, K. G. Anagnostakis, E.P. Markatos

Regarding load balancing, there are two possible approaches that we could use: stateful
load balancing that requires from the system to hold state and hash-based load balancing3,10,16
that experiences greater load imbalances. For the purposes of this paper, we assume that load
imbalances are tolerable and use the simpler hash-based method. The input of the hash
function is composed of the source and destination IP addresses of the packet.

Sensor: A sensor is a commodity PC that runs a modified popular NIDS and is connected

with the splitter (through an Ethernet connection). A sensor receives traffic from the splitter
and analyzes it for possible known attacks. In case that an attack is found, it notifies the
splitter to block the offending packet(s), otherwise it informs the splitter that the packet(s)
should be forwarded. A sensor maintains state about the traffic it analyzes in order to operate
correctly. The maintained state includes the active TCP connections it has captured in the near
past, TCP connections tagged as offending, fragmented packets and statistics about the
connections per second to TCP/UDP destination ports.

2.1.1 Reducing Redundant Packet Transmission

We have designed a plug-in for Digenis that is responsible for reducing redundant packet
transmission on the system. The idea behind this plug-in is the following: Suppose that the
splitter stores temporarily (for a few milliseconds) the packets that it forwards to the sensors
for analysis. Then there is no need for the sensors to send back to the splitter the analyzed
packet, but only a unique identifier of that packet (PID). Because the splitter has previously
stored the packet with this PID, it can infer the referenced packet and forward it to the
appropriate destination. The only extra work for the splitter is to tag each packet with a PID,
which is a trivial task. Although the additional processing cost to the splitter from this plug-in
is minimal, the reduction to the load of the sensors is remarkable. However, this technique
requires from the splitter to be equipped with additional memory for the buffering of the
packets. As we will present in Section 3, the memory requirements are easily satisfied by
modern NPs. Subsequently, we discuss how a sensor communicates the packet information
back to the splitter.

Communication between Splitter-Sensor: The splitter communicates with the sensors in

order to decide the action that should be performed, that is, forward or drop the packet. This is
done with acknowledgments (ACKs) from the sensors to the splitter. An ACK is an ordinary
Ethernet packet. It consists of an Ethernet header, followed by two bytes denoting the number
of packets acknowledged (ACK factor) and followed by a set of four-byte integers
representing the PIDs. There are other possible formats requiring less bytes and supporting
higher ACK factors for this configuration. However, this approach is more scalable. There are
several options regarding the information that these packets should contain. The sensors may
send back to the splitter the following responses:

1. Positive ACKs: an ACK for every packet not related to any intrusion attempt.
2. Positive cumulative ACKs: an ACK for a set of packets not related to any intrusion

attempt.
3. Negative ACKs: an ACK for every packet that belongs to an offending session.
4. Negative cumulative ACKs: an ACK for a set of packets that belong to an attack session.
5. The packet received.

Each of these solutions has its pros and cons. The packet received (PR) scheme, although

it has the advantage that it does not require the splitter to temporary hold the packet in
memory, it suffers from low performance. In Section 3, we evaluate some of these
approaches, with regard to performance. Among positive and negative cumulative ACKs
(CACKs) we have chosen the former ones. Negative CACKs have two major drawbacks:

Design and Implementation of a High-Performance NIPS 5

First, in order to be able to distinguish when a packet must be forwarded, we have to use a
timeout value. Recall that, our NIPS must not drop any packet or an attack might be missed.
As a result, we would be forced to choose a timeout for the worst case scenario. The side-
effect is that packets will experience a high latency. Second, it is impossible for the splitter to
differentiate the case where the analyzed packet contained no intrusion from the case where
the packet was dropped due to an error condition. We have chosen positive CACKs (P-
CACKs) because they supersede positive ACKs.

2.2 Implementation

We have implemented Digenis using low-cost, off-the-shelf technology: an Intel IXP1200
Ethernet evaluation board and commodity PCs.

Splitter: We have implemented the splitter using an IXP1200 network processor. The

IXP1200 chip contains six micro-engines with four hardware threads (contexts) each. Also,
this chip has a general-purpose StrongARM processor core, a FIFO Bus Interface (FBI) unit
and buses for off-chip memories (SRAM and SDRAM). The maximum addressable SRAM
and SDRAM memory are 8 Mbytes and 256 Mbytes respectively. The FBI unit interfaces the
IXP1200 chip with the media access control (MAC) units through the IX bus. The FBI also
contains a hash unit that can take 48-bit or 64-bit data and produce a 48- or 64-bit hash index.
In our evaluation board, an IXF440 MAC unit (with eight Fast Ethernet interfaces) and an
IXF1002 MAC unit (with two Gigabit Ethernet interfaces) are connected to the IX bus.

We have developed the application using micro-engine assembly language. The
assignment of threads to tasks is done as follows: we assign eight threads for the receive part
of the Gigabit Ethernet interface, one thread for the receive part of each of the eight Fast
Ethernet interfaces, four threads for the transmit part of the eight Fast Ethernet interfaces, and
four threads for the transmit part of the Gigabit Ethernet interface.

For the implementation of hash-based load balancing, we use the hash unit of the
IXP1200. Also, for the temporary storage of the incoming packets until they are
acknowledged we use a circular buffer which resides in SDRAM memory. This circular
buffer must be large enough to prevent overwriting packets before their matching ACK is
received.

Sensor: The functionality of the sensor has been implemented by modifying the popular

NIDS Snort version 2.0.215. The functionality of the sensor can be divided into three different
phases: (1) the protocol decoding phase, (2) the detection phase, and (3) the prevention phase.
In the first phase, the raw packet stream is separated into connections representing end-to-end
activity of hosts. A connection, in case of IP traffic, can be identified by the source and
destination IP addresses, transport protocol and UDP/TCP ports. Then, a number of protocol-
based operations are applied to these connections. The protocol handling ranges from network
layer to application layer protocols. Some of the operations applied by the protocol-based
handling are IP defragmentation, TCP stream reconstruction and identification of the URI in
HTTP requests. The second phase consists of the actual detection. Here, the packet (or an
equivalent higher-level protocol data unit) is checked against a database of detection
heuristics representing attack patterns. Then follows the prevention phase. The action of this
phase depends on the result of the previous one. If no attack is found, the sensor informs the
splitter to forward the packets. If malicious activity is observed, then the prevention engine
blocks the suspicious traffic by informing the splitter to not forward the packets belonging to
the offending connection(s).

Extra Implementations: In addition to our splitter, for comparison purposes, we have

implemented the following three configurations on the IXP1200:

6 K. Xinidis, K. G. Anagnostakis, E.P. Markatos

• A forwarder (FWD) that transmits the traffic arriving at an input Gigabit Ethernet interface
to an output Gigabit Ethernet interface.

• A load balancer (LB) that implements a flow-preserving load balancer with the same load-
balancing characteristics as our splitter. The IXP1200 receives traffic from a Gigabit
Ethernet interface and transmits the traffic to eight Fast Ethernet interfaces.

• The last configuration (LB + FWD) implements the basic functionality of our splitter
(without optimizations).

3. EVALUATION

In this Section we examine the performance of our architecture. We focus on the impact of
our enhancements to sensor-splitter communication. In particular, we compare the
performance of P-CACK vs. the PR scheme. We also show that such techniques can be
efficiently supported by current network processors and that they do not significantly impair
forwarding latency.

3.1 Experimental Environment

Splitter: The performance of the configurations running on the IXP1200 is measured
using the IXP1200 Developer Workbench (version 2.01a)7. Specifically, we use the
transactor provided by Intel. The transactor is a cycle-accurate architectural model of the
IXP1200 hardware. We simulate the configurations as they would run on a real IXP1200 chip.
We assume a clock frequency of 232 MHz and a 64-bit IX bus with a clock frequency of 104
MHz.

Sensor: We use a 2.66 GHz Pentium IV Xeon processor with hyper-threading disabled.

The PC has 512 Mbytes of DDR DRAM memory at 266 MHz. The PCI bus is 64-bit wide
clocked at 66 MHz. The host operating system is Linux (kernel version 2.4.20, Red-Hat 9.0).
The Gigabit Ethernet network interface is an Intel PRO/1000 MT Dual Port Server Adapter6.
The sensor software is a modified Snort version 2.0.2, compiled with gcc version 3.2.2. We
turn off all preprocessing in Snort. Unless noted otherwise, Snort is configured with the
default rule-set.

Packet Traces: For the evaluation of Digenis we use three packet traces. The

FORTH.WEB trace was captured at ICS-FORTH and only contains HTTP traffic. The
FORTH.LAN trace was also captured at ICS-FORTH and contains traffic from an internal
Local Area Network (LAN). Both traces contain the real payload of the packets. The
IDEVAL traces are taken from MIT Lincoln Laboratory and were used in the 1999 DARPA
Intrusion Detection Evaluation12.

3.2 Results

3.2.1 Performance of the Splitter

All the IXP1200 configurations described in Section 2 (LB, FWD, our splitter, and
LB+FWD) handle at most the IP and UDP/TCP header of the incoming packets. Thus, we
argue that the most demanding traffic for these configurations is the traffic consisting of a
high percentage of small packets, namely 64-byte packetsd. We simulate the above
configurations and the results show that all the configurations are capable of sustaining line

d This is the smallest possible packet in an Ethernet link including the 4-byte Ethernet CRC.

Design and Implementation of a High-Performance NIPS 7

speed even with traffic consisting of only 64-byte packetse. This is expected as the theoretical
forwarding capacity of the IXP1200 chip is greater than 1600 Mbit/s7.

While all the configurations sustain line speeds, we use as a metric for comparison the
utilization of the micro-engines and the utilization of SRAM and SDRAM memoriesf. These
are some of the resources that may become the bottleneck, considering that the IXP1200
specification states that the maximum IX bus throughput is 6 Gbit/s. In Figure 2 we present
the average utilization of the micro-engines and the utilization of the SRAM and SDRAM
memories for the described configurations. We observe that our approach is efficient and does
not consume all the resources of the IXP1200, leaving headroom for even more offloading of
the sensors. Particularly, the results suggest that the extra cost of the splitter compared to the
load balancer is affordableg.

Packet Size (bytes)
64 512 1024 1518

U
til

iz
at

io
n

of
 M

ic
ro

en
gi

ne
s(

%
)

20

30

40

50

60

70

80
FWD
LB
SPLITTER
LB+FWD

Packet Size (bytes)
64 512 1024 1518

U
til

iz
at

io
n

of
 S

D
R

A
M

(%
)

10
15
20
25
30
35
40
45
50

FWD
LB
SPLITTER
LB+FWD

Packet Size (bytes)
64 512 1024 1518

U
til

iz
at

io
n

of
 S

R
AM

(%
)

5

10

15

20

25

30

35
FWD
LB
SPLITTER
LB+FWD

Figure 2. Utilization of the IXP1200 micro-engines, SDRAM and SRAM memories for different packet sizes. It is
obvious that the splitter configuration does not consume all the resources of the IXP1200.

3.2.2 Performance of the Sensor

We first measure the processing cost of a sensor for different coordination schemes using
the default rule-set. In this experiment Snort simply reads traffic from a packet traceh,
performs all the necessary NIPS functionality, and then transmits the coordination messages
to a hypothetical splitter through a Gigabit Ethernet interface. Figure 3, shows the time that
Snort spends to process all the packets for the FORTH.WEB trace including user and system
time breakdown. The results show that the higher the P-CACK factor, the less the total
running time for Snort. The running time is practically the same with the unmodified Snort for
P-CACK with factor equal to 128. Also, Snort finished 45% faster for P-CACK with factor
equal to 128 compared to the PR scheme. Moreover, we observe that the system time is lower
than the user time. This confirms the fact that Snort spends most of its processing time in
header and content matching which is counted in user time.

We also observe (Figures 3 and 4) that the improvement of the P-CACK scheme
compared to the PR scheme depends very much on the trace used: the P-CACK scheme is
from 45% to 3.8 times more efficient than the PR scheme. The reason is that the improvement
depends on the detection load of the sensor. The smaller the detection load, the bigger the
relative improvement. This becomes clearer if we determine where the improvement is
coming from. The improvement stems from the fact that the P-CACK scheme reduces the
overhead required for sending a packet to the network (system time in Figures 3 and 4). If the
detection engine of a sensor is overloaded, then this overhead is a small fraction of the total
workload of the sensor and reducing it does not lead to much improvement. In contrast, if the
detection engine of a sensor is lightly loaded, this overhead consumes a significant fraction of

e The splitter uses P-CACK scheme with a factor of eight.
f More accurately, we measure the utilization of the buses of SRAM and SDRAM memories.
g We have to mention that the increased utilization of the micro-engines in the case of the splitter configuration is

caused by the instrumentation code we add to measure the performance of the splitter. While in the other
configurations we do not add code for evaluation purposes, we are obliged to do so in the case of the splitter.

h We confirm that the hard disk is not the bottleneck by measuring the throughput of the hard disk and the transmit
rate of Snort. As expected, the transmit rate of Snort is smaller than the throughput of the disk.

8 K. Xinidis, K. G. Anagnostakis, E.P. Markatos

the total workload of the sensor and reducing it results in a more notable improvement. For
example, if the traffic is ruleset-intensive, then the detection load of the sensor increases and
the relative improvement is small. On the other hand, for traffic that requires fewer rules to be
checked for every packet, the detection load of the sensor will be minimal and the
improvement will be greater.

Coordination Scheme

P
R

P
-C

A
C

K
1

P
-C

A
C

K
16

P
-C

A
C

K
12

8

P
-C

A
C

K
25

6

D
et

ec
tio

n
O

nl
y

S
ec

on
ds

0

10

20

30

40

50
User Time
System Time

Figure 3. Processing cost of a sensor (time to process
all packets in a trace), with user and system time
breakdown (FORTH.WEB trace). We observe that
the P-CACK scheme with factor 256 is 45% more
efficient than the PR scheme.

Coordination Scheme

P
R

P
-C

A
C

K
1

P
-C

A
C

K
16

P
-C

A
C

K
12

8

P
-C

A
C

K
25

6

D
et

ec
tio

n
O

nl
y

S
ec

on
ds

0
1
2
3
4
5
6
7
8

User Time
System Time

Figure 4. Processing cost of a sensor (time to process
all packets in a trace), with user and system time
breakdown (IDEVAL trace). We observe that the P-
CACK scheme with factor 256 is 3.8 times more
efficient than the PR scheme.

We also repeat the experiment on a PC with a slower Pentium III processor at 1.13 GHz

and the same PCI bus characteristics and Ethernet network interfaces. The results (Figure 5)
show that the improvement is smaller compared to the faster machine. When we examine
more carefully the results, we observe that while user time doubles, the system time increases
only by 30%. This happens because user time is mainly the time spent for content search and
header matching, which are processor intensive tasks. On the contrary, system time is
dominated by the time spent for copying the packet from main memory, over the PCI bus, to
the output network interface, handling interrupts and control registers of the Ethernet device.
As the speed of processors increases faster than the speed of PCI buses and DRAM memories,
we can argue that, as technology evolves, the effect of our enhancements will be even more
pronounced – common processors are already running at 3.8 GHz, so the previously reported
improvement is in fact a conservative result.

Design and Implementation of a High-Performance NIPS 9

Coordination Scheme

PR

P-
C

AC
K

1

P-
C

AC
K

16

P-
C

AC
K

12
8

P-
C

AC
K

25
6

D
et

ec
tio

n
O

nl
y

S
ec

on
ds

0
10
20
30
40
50
60
70
80 User Time

System Time

Figure 5. Processing cost of a slower sensor
(FORTH.WEB trace). We can see that the
improvement is smaller compared to the faster sensor.

Number of Rules

100 500 1000

Se
co

nd
s

0

100

200

300

Fu
ll 1 16 12
8

N
on

e

Fu
ll

1 16 12
8

N
on

e

Fu
ll 1

16 12
8

N
on

e

User Time
System Time

Figure 6. Performance of a sensor using incremental
number of synthetic rules. We notice that as the
number of rules increases the improvement of P-
CACK scheme versus PR scheme decreases.

Table 1. Synthetic rule example.

alert tcp any any → any any (ack: 1; flags: S; content: ”RPC overflow”;)

All the above experiments are performed using the default rule-set of Snort. To further

understand the correlation between the detection load of a sensor and the P-CACK scheme
improvement we also experiment with variable, synthetic rule-sets. An example rule is shown
in Table 1. Similarly to the previous experiment, Snort reads traffic from a packet trace and
sends packets over a Gigabit Ethernet interface. The results are shown in Figure 6. We
observe that as the number of rules increases the improvement of P-CACK scheme versus PR
scheme decreases. In other words, as detection load increases, improvement decreases.

Another interesting point is that the maximum relative improvement of P-CACK over PR
is for small packets of 64 bytes. Small packets require less time for content matching user
time and communication system time is the dominant cost factor. In addition, in the case of
64-byte packets, the bottleneck is not the processor, as in the case of larger packets, but the
PCI bus. This is clearly shown in the experiments involving the IDEVAL traces (Figure 4),
which contain many small packets for emulating certain types of attacks such as SYN
flooding. For this trace, the P-CACK scheme is 3 times more efficient compared to the PR
scheme. This is also a nice side effect of the P-CACK scheme, in that it makes the NIPS more
robust against TCP SYN flood attacks, given that such attacks consist of a big fraction of
small packets.

10 K. Xinidis, K. G. Anagnostakis, E.P. Markatos

Packet Traces
FORTH.WEBFORTH.LAN IDEVAL

M
LF

R
 (M

bp
s)

0
20
40
60
80

100
120
140
160
180
200
220
240
260 PR

P-CACK 1
P-CACK 16
P-CACK 128
Detection-Only

Figure 7. Maximum Loss Free Rate (MLFR) of a
sensor using default rule-set.

Forwarding Latency (milliseconds
0 2 4 6 8 10 1214 16 18 20

Fr
ac

tio
n

of
 p

ac
ke

ts

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

P-CACK 1
P-CACK 16
P-CACK 128
P-CACK 256
PR

Figure 8. CDF for latency of a sensor. We notice that
latency increases with the P-CACK factor.

3.2.3 Forwarding Latency of the Sensor

The highest portion of the latency imposed by our NIPS is due to content matching on the
sensors. This happens due to the fact that content matching is the single most expensive
operation in every NIPS. To measure forwarding latency, we use two hosts A and B with two
Gigabit Ethernet network interfaces each, eth0 and eth1. We connect the two interfaces of
host A with the two interfaces of host B back-to-back. Everything that host A sends to network
interface eth0/eth1 is received by host B on network interface eth0/eth1, and vice versa. Host
A reads a trace from a file and sends traffic to host B (using tcpreplay1). Host B runs Snort,
which receives packets from interface eth0 and sends replies to interface eth1. Host A matches
the packet transmission time with the arrival time of the reply and computes the latency.

Initially, we estimate the maximum loss free rate (MLFR) of a sensor by replaying a
packet trace and measuring the rate at which the sensor started dropping packets (Figure 7). In
this experiment we set the input packet buffer size to 16 Mbytes. We use MLFR to compute
the latency that a sensor imposes to analyzed packets when reaching its processing capacity.

In this experiment, host A replays FORTH.WEB trace at the maximum loss free rate of
each communication scheme. We observe that there are packets that experience very high
latency. To understand this phenomenon, we measure the time that Snort spends in content
and header matching using the rdtsc17 instruction of the Pentium IV processor. The results
show that the peaks in time spent for content and header matching coincide with the peaks in
latency. This means that, when the required per packet operations increase, so does the
latency. A consequence of this property is that packets that require a significant amount of
processing slow down other packets that do not. This is a form of head of line (HOL)
blocking.

Figure 8 shows the cumulative distribution function (CDF) for all ACK schemes when a
sensor receives traffic at the MLFR of FORTH.WEB trace. We notice that latency increases
with the P-CACK factor. An interesting observation is that the graph is heavy tailed, meaning
that while most of the packets experience low latency, 5% of the packets exhibit very high
latency (above 20 milliseconds). These are packets that are received from a sensor while the
sensor has a temporary excess load. This may happen because, for example, some packets
require too many rules to be checked. If too many such packets are received back-to-back, the
system reaches (or exceeds) its capacity and the latency increases considerably.

3.2.4 Forwarding Latency of the Splitter

We argue that the overall latency that a packet experiences by our NIPS is due to the
processing of the sensors and not the forwarding of the splitter. Also, the cycles spent by the
splitter to forward a packet from the input interface to an output interface depend only on the
packet length. This means that practically all packets of the same length experience almost the
same latency.

Design and Implementation of a High-Performance NIPS 11

3.2.5 Memory requirements

There is a direct relationship between latency imported by the sensors and required
memory on the splitter. The splitter needs memory to save incoming packets until they are
acknowledged by the sensors. The amount of memory the splitter needs depends on the
highest possible latency that our NIPS will tolerate. If we set this value in a reasonable value,
for example, 200 milliseconds then according to the fact that our NIPS analyzes traffic at 800
Mbit/s, the required memory is approximately 20 Mbytes. This means that the circular buffer
of the IXP1200 must be at least 20 Mbytes. This is a reasonable requirement considering that
the maximum addressable SDRAM memory of the IXP1200 is 256 Mbytes.

4. SUMMARY AND CONCLUDING REMARKS

We have presented the design of Digenis, a high-performance Network Intrusion
Prevention System (NIPS). The system consists of a customized load-balancing component
built using the IXP1200 Network Processor, and a number of sensors implemented on
commodity PCs. In contrast to off-the-shelf load balancers used in NIPS products, our design
exploits the programmability of NPs to move part of the intrusion prevention functionality
from the sensors to the NP. We have focused on one method for boosting system performance
by optimizing the coordination between the load balancer and the sensors. The result is a 45%
improvement in performance, allowing the system to reach speeds of at least 1 Gbit/s.

There are several directions that we are currently pursuing. First, we are re-examining the
structure of the sensor software. In particular, we consider the possibility of using a more
fine-grained protocol processing model such as the one demonstrated by Bro14, and we try to
move part of the protocol processing functionality to the NP. Second, we are looking at ways
for building a 10 Gbit/s NIPS using third-generation NPs.

ACKNOWLEDGEMENTS

This work was supported in part by the IST project SCAMPI (IST-2001-32404) funded by the European Union,
the GSRT project EAR (GSRT code: USA-022), and by ESTIA, a PAVET-NE project funded by the Greek
General Secretariat of Research and Technology (PAVET-NE code: 04BEN8). Kostas Anagnostakis is also
supported in part by ONR under Grant N00014-01-1-0795. Konstantinos Xinidis and E. P. Markatos are also
with University of Crete. The work of Kostas Anagnostakis was done while at ICS-FORTH.

REFERENCES

1. Aaron Turner and Matt Bing. tcpreplay Tool. http://tcpreplay.sourceforge.net.
2. S. Antonatos, K. G. Anagnostakis, and E. P. Markatos. Generating realistic workloads for intrusion

detection systems. In Proceedings of the 4th ACM SIGSOFT/SIGMETRICS Workshop on Software and
Performance (WOSP 2004), January 2004.

3. Z. Cao, Z.Wang, and E.W. Zegura. Performance of hashing based schemes for internet load balancing. In
Proceedings of IEEE Infocom, pp. 323-341, 2000.

4. Y. Charitakis, K. G. Anagnostakis, and E. Markatos. An active splitter architecture for intrusion
detection (short paper). In Proceedings of the Tenth IEEE/ACM Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems (MASCOTS 2003), October 2003.

5. Y. Charitakis, D. Pnevmatikatos, E. P. Markatos, and K. G. Anagnostakis. Code generation for packet
header intrusion analysis on the IXP1200 network processor. In Proceedings of the 7th International
Workshop on Software and Compilers for Embedded Systems (SCOPES 2003), September 2003.

6. Intel Corporation. Intel PRO/1000 MT Dual Port Server Adapter. http://www.intel.com.
7. Intel Corporation. Intel IXP1200 Network Processor (white paper), 2000. http://developer.intel.com.
8. Internet Security Systems Inc. http://www.iss.net.

12 K. Xinidis, K. G. Anagnostakis, E.P. Markatos

9. Intrusion Prevention Systems Group Test - Edition 1, NSS Group Ltd. http://www.nss.co.uk/acatalog/.
10. L. Kencl and J. Y. L. Boudec. Adaptive load sharing for network processors. In Proceedings of IEEE

Infocom, June 2002.
11. C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful intrusion detection for high-speed networks.

In Proceedings of the IEEE Symposium on Security and Privacy, pp. 285-294, May 2002.
12. R. Lippmann, J.W. Haines, D. J. Fried, J. Korba, and K. Das. The 1999 DARPA off-line intrusion

detection evaluation. Computer Networks, 34(4):579-595, October 2000.
13. Network Associates, Inc. http://www.networkassociates.com.
14. V. Paxson. Bro: A system for detecting network intruders in real-time. In Proceedings of the 7th

USENIX Security Symposium, January 1998.
15. M. Roesch. Snort: Lightweight intrusion detection for networks. In Proc. of the second USENIX

Symposium on Internet Technologies and Systems, November 1999. (Software available from
http://www.snort.org).

16. R. Russo, L. Kencl, B. Metzler, and P. Droz. Scalable and adaptive load balancing on IBM Power NP.
Technical report, Research Report - IBM Zurich, August 2002.

17. Time-Stamp Counter. http://www.intel.com/design/Xeon/applnots/24161825.pdf.
18. TippingPoint Technologies Inc. http://www.tippingpoint.com.
19. Top Layer Networks. http://www.toplayer.com.
20. K. Xinidis, K. G. Anagnostakis, and E. P. Markatos. Design and Implementation of a High-Performance

Network Intrusion Prevention System. ICS-FORTH Technical Report 334, March 2004.

