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Abstract

Lack of trust is one of the main reasons for the limited
cooperation between different organizations. The privacy of
users is of paramount importance to administrators and or-
ganizations, which are reluctant to cooperate between each
other and exchange network traffic traces. The main rea-
sons behind reluctance to exchange monitored data are the
protection of the users’ privacy and the fear of information
leakage about the internal infrastructure. Anonymization
is the technique to overcome this reluctance and enhance
the cooperation between different organizations with the
smooth exchange of monitored data. Today, several organi-
zations provide network traffic traces that are anonymized
by software utilities or ad-hoc solutions that offer limited
flexibility. The result of this approach is the creation of un-
realistic traces, inappropriate for use in evaluation exper-
iments. Furthermore, the need for fast on-line anonymiza-
tion has recently emerged as cooperative defense mecha-
nisms have to share network traffic. Our effort focuses
on the design and implementation of a generic and flexi-
ble anonymization framework that provides extended func-
tionality, covering multiple aspects of anonymization needs
and allowing fine-tuning of privacy protection level. The
proposed framework is composed by an anonymization ap-
plication programming interface (AAPI). The performance
results show that AAPI outperforms existing tools, while of-
fering significantly more anonymization primitives.

1 Introduction

Monitored network traffic and traces are powerful means
for evaluation experiments, allowing the researchers to
study network characteristics and behavior. Furthermore,
network traces are used by network security people, in eval-
uating intrusion detection systems for example. In the ideal
case, network traces should be shared unchanged, provid-
ing full information. However, for both security and pri-
vacy reasons, monitored network traffic and traces have to
be modified before they become publicly available. This
modification is known as the anonymization process.

The anonymization process has three objectives. First,
to protect the privacy of monitored users. Revealing sensi-
tive information about the users is totally prohibitive. Ex-
amples of such information are the web pages that a user
has accessed, credit card numbers, unencrypted sessions
that might reveal passwords, peer-to-peer connections, e-
mail sent and received, etc. In fact, privacy protection is so
complicated that most administrators play on the safe side,
taking the “reveal nothing” policy. This approach instructs
that parts of traffic that might reveal sensitive information,
such as packet payload, are either completely removed or
replaced by random values.

Second objective is to hide any information about
the internal infrastructure of the network. Ideally, the
anonymized network traffic should not by any chance re-
veal the hosts inside the monitored network that are alive,
neither any other of their characteristics, such as operating
system identification. Also people which access the moni-
tored traffic should not be able to extract the monitored net-
work’s subnet formation – how many subnets exist and how
many hosts each one contains–. In order to achieve this
goal existing approaches randomize the IP addresses, thus
hiding the identity of hosts and subnet information, and re-
place header fields with constant values that might reveal
any of the network characteristics. Other approaches, like
encrypting IP addresses in prefix-preserving way [24], are
subject to network information leakage.

Finally, anonymized traffic traces have to be as realis-
tic as possible, that means as close as possible to the non-
anonymized packet stream. Many evaluation experiments
done by researchers rely on monitored traffic traces, thus the
results have to be close to those taken by plain traffic from
the network. As most anonymized traces that are currently
publicly available are unrealistic, most researchers collect
private traces to perform their experiments. However, the
extrapolation of their results to wide-area scale is difficult,
if not impossible.

It is clear that a generic global anonymization scheme
could not exist since different organizations have differ-
ent needs. Network administrators should be able to spec-
ify their anonymization policies at varying levels of detail
granularity. Existing anonymization tools are not adequate



enough to provide such flexibility and are not capable to ad-
dress all anonymization needs, since most of the times they
were build having a specific range of anonymization poli-
cies in mind. In all cases they work on predefined fields and
most of them perform only header-level anonymization.

In this work we propose and evaluate an anonymiza-
tion framework, which offers a wide range of anonymiza-
tion functions that can be applied to any field of a packet
or a record, up to the application level. The expressive-
ness of our framework allows creation of anonymized traf-
fic that is able to express any balance between privacy pro-
tection and realism. In order to simplify the development
of anonymization tools and make the anonymization policy
definition a quick and simple process our framework pro-
vides an Application Programming Interface (API) named
AAPI. AAPI is simple to use since any anonymization pol-
icy is expressed as a set of function calls without having
to use any unfamiliar scripting languages. Moreover, the
framework is extensible enough to provide the user the abil-
ity to implement new anonymization functions. Also it is
trivial to support anonymization for new application level
protocols and different traffic sources such as Netflow [5]
records. The performance of AAPI, in terms of process-
ing speed and resource needs, is comparable to other, much
simpler, anonymization tools (such as tcpdpriv) that offer
less functionality.

The rest of this paper is organized as follows. In Sec-
tion 2 we present the related work. In Section 3 we describe
the detailed design of our generic anonymization frame-
work, and in Section 4 we evaluate our framework in terms
of performance and expressiveness. Finally, we summarize
our work and results in Section 5.

2 Related Work

Tcpdpriv [12] is the most known anonymization tool.
It takes as input traces written in tcpdump [3] format
and removes sensitive information by operating only on
packet headers. TCP and UDP payload is simply re-
moved, while the entire IP payload is discarded for pro-
tocols other than TCP or UDP. The tool provides multiple
levels of anonymization, from leaving fields unchanged up
to performing more strict anonymization, like mapping IP
addresses to integers or prefix-preserving anonymization.
Ip2anonip [8], a tool based on tcpdpriv, is a simple fil-
ter that turns IP addresses into host names or anonymous
IPs. Ipsumdump [9] dumps packets into ASCII format and
uses tcpdpriv to anonymize IP addresses if specified by
the user.

The main drawback of all the above tools is that they
work up to the network level and cannot anonymize infor-
mation on the application level, like for example randomiz-
ing the URL field of an HTTP request. Furthermore, they
provide only a few anonymization primitives such as se-
quential mapping or prefix preserving which can be applied
only to a few predefined fields such as IP addresses and TCP
ports.

Peuhkuri in [17] deals with persistent anonymization of
IP address among different packet traces. The proposed al-

gorithm is only for anonymization of IP addresses. This
algorithm makes use of cryptography, thus the mapped ad-
dress is produced by merging a part of the original address
with a value encrypted with a key provided by the user. This
approach maintains the mapping of addresses to encrypted
values along anonymization sessions, however its function-
ality is limited to IP addresses only.

Xu, Fan, Ammar et al. in [24, 25] focus on the problem
of prefix-preserving IP anonymization. Existing implemen-
tations, such as tcpdpriv [12], have many drawbacks like
memory consumption, inconsistent mappings across differ-
ent anonymization sessions and lack of parallel processing
of traces. The approach described in [24, 25] uses state-
less cryptography algorithms that require small memory
amount. As long as the cryptographic key is the same, the
anonymized addresses are preserving their original prefix,
that is if two real addresses belong to the same subnet then
the anonymized ones will also belong to the same –but dif-
ferent from the original– subnet. As prefix-preserving map-
ping is a stateless function applied to IP addresses, while
parallel anonymization is also feasible. An implementa-
tion for prefix-preserving anonymization, called Crypto-
PAn [6], is publicly available from Georgia Tech University.
Although this implementation has several advantages com-
pared to tcpdpriv, including prefix-preservation, mem-
ory consumption and consistent mapping across traces, its
functionality is also limited only to IP addresses, thus it can
not be considered as a full anonymization suite that is able
to express any anonymization policy.

Prefix-preserving anonymization has also been applied
to Netflow [23]. The Crypto-PAn software has been used
and modified in order to generate the cryptographic key
that is used from a pass phrase. Anonymization is applied
only to IP addresses of flows, while all other fields are left
unchanged. The authors have extended their tool in [22]
where the users are able to anonymize the eight most com-
mon fields of a NetFlow record.

Paxson and Pang in [16] introduce a way to anonymize
the payload of a packet and remove sensitive information in-
stead of removing the entire payload as the other approaches
do. Packets are reconstructed into data stream flows and ap-
plication level parsers modify the data streams as specified
by a policy written in a high-level language. The user can
specify the field to be altered using regular expressions and
the modification to be done. After the anonymization of the
stream has taken place, stream is split again into packets and
merged with original packet headers, thus creating legiti-
mate traffic. In this way, anonymization and reconstruction
process becomes a transparent procedure for streams.

The anonymization process described in [16] has been
implemented as a plug-in for Bro [15], a Unix-based Net-
work Intrusion Detection System (IDS), thus permitting it
to anonymize both on-line traffic as well as offline traces.
Although this approach is quite flexible, it has several limi-
tations and drawbacks. First, it provides limited anonymiza-
tion primitives —constant substitution, sequential number-
ing, hashing, prefix-preserving and adding random noise—,
forcing the user to write his own functions in Bro language,
a custom scripting language. Our framework, on the con-
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trary, provides a larger set of primitives that can be applied
to all packet fields up to and including the application level.
Furthermore, the usage of a simple, lightweight API for a
standard programming language is more practical and ex-
tensible. Secondly, as Bro works with events, a user can
alter packet header fields only for those protocols which
have a registered event that supports trace transformation.
That is, the anonymization of the IP addresses of a trace
would require non-trivial effort to write the suitable policy
scripts, one for each protocol (HTTP, FTP, telnet, etc.). Us-
ing our API, implementing anonymization policies is a mat-
ter of few lines of code. To ease the users we also provide
separate tools that incorporate all the functionality of our
framework.

Work on anonymity has also been done in [11], [19], [13]
but in a different context. Their perspective is to hide the
identity of the sender/recipient of a message and provide
anonymity and privacy to users of these infrastructures.

3 The Anonymization Application Program-
ming Interface

The need for anonymization policies may vary from very
simple policies, like removing payload and sequential num-
bering of IP addresses, up to complex policies, like for ex-
ample the case of altering multiple fields in the HTTP pro-
tocol. One should be able to create a policy that reveals no
private information, but on the other side is useful enough
to meet his needs. The proposed Anonymization Appli-
cation Programming Interface (AAPI) addresses all these
needs and provides a flexible way to apply anonymization
policies to both live traffic and packet and record traces.

The AAPI is an API based on the C programming lan-
guage that allows users to apply anonymization primitives
on traffic. The selection of the C language was made for
three reasons. From the designers’ point of view, libraries
that capture traffic are also written in C, thus the AAPI can
directly communicate with them. From the users’ point of
view, it is much simpler to write a set of function calls,
rather than trying to describe a policy using unfamiliar
script notations. Finally, performance of the anonymization
process is very critical, especially in case of anonymizing
realtime traffic at very high speeds.

����� ���	�	
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A central notion of AAPI is that anonymization is a se-
ries of functions that are applied to a traffic stream. The
core functions of AAPI are divided into three main cate-
gories. First, we have the anonymization functions that al-
ter fields of the packets or records in the given traffic stream,
e.g randomize them or replace them, do prefix-preserving
anonymization on IP addresses, etc. Second, we have the
filtering functions, that are BPF filters and string search-
ing. Filtering functions allow to distinguish parts of the
traffic stream and apply complex policies such as “leave
all the UDP packets unchanged but randomize the payload
of all TCP packets” or “anonymize all packets that contain

  BPF_FILTER   BPF_FILTER

ANONYMIZE

ANONYMIZE

ANONYMIZE

ANONYMIZE

ANONYMIZE

ANONYMIZE

STR_SEARCH

. . .

set 2

 set 1

Figure 1. Function sets: Each packet is passed
through each set and for each set is processed by
its functions

the GNUTELLA-CONNECT pattern”. Finally, we have
application-level stream functions, which we call cooking
and uncooking, that provide our framework the ability to
compose and decompose application-level streams.

The main function call of AAPI is the
add function(set, function, ...), where
‘...’ denotes variable number of arguments, depending
on the specific function to be applied. AAPI expresses
each anonymization policy as a single or multiple sets
of functions. Each set is a logical group of functions
that are executed sequentially one after the other, in the
order they had been applied. Sets are created through the
create set() function. Once a packet is captured, is
passed through each set and for each set is processed by its
functions. We should note here that a function can prevent
the traversal of a packet in the subsequent functions by
simply returning zero. This behavior is extremely useful
in cases of filtering functions as we show in a following
example. The combined flexibility of sets and filtering
functions allows the user express “if-else” scenarios or
even express different anonymization policies within the
same program. The function sets are visualized in Figure 1.

The argument function defines which specific
function will be applied. Natively, AAPI supports
“ANONYMIZE” (field anonymization),“BPF FILTER”
(BPF filtering), “STR SEARCH” (string search-
ing),“COOK” (stream reassembly) and “UNCOOK”
(splitting a stream to its original form). As it will be shown
in later sections, user functions can also be added in order
to extend the function support.

Whenever we apply the function “ANONYMIZE”,
which is the main anonymization function, the
add function is refined as add function(set,
function, protocol, field, parameters).
function in this case specifies the particular anonymiza-
tion function will be applied. AAPI provides a variety
of anonymization functions, including hashing (MD5,
SHA, CRC32, AES and DES algorithms), random for
generic fields and for filenames/URIs, mapping to either
sequential values or based on some distribution (uniform,
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Gaussian, etc.), replacing with constant integers or strings,
prefix-preserving for IP addresses (cryptographic and
map based), regular expression substitution, checksum
adjustments for all protocols, and removing fields mainly
used for application-level protocols, thus providing ade-
quate functionality for every user needs. Moreover new
functionality can be added by the user as described later.

The parameter protocol describes which specific pro-
tocol and layer the anonymization function will work on.
Our current implementation supports IP, TCP, UDP, ICMP,
HTTP or FTP. At application level currently we fully sup-
port HTTP (including HTTP/1.1 features such as persistent
connections) and FTP but the modular design of AAPI per-
mits easily the support for other protocols. The field pa-
rameter defines the field of the protocol on which the func-
tion will be applied. As an example, “time-to-live” (TTL)
and “source IP” are two valid fields for the IP protocol.

Finally, the last parameter is a list of parameters that
need to be passed to the function. Note that we cannot ap-
ply all anonymization functions to all fields. For example it
does not make any sense to remove (STRIP) the source ad-
dress from the IP header since the packet will not be valid
any more. A simple map to constant will have the same
anonymization effect without compromising the usefulness
of the trace. Internally, AAPI performs such sanity checks
for each function applied before start processing packets
and inform user for wrong usage of functions.

In the following example we will describe an
anonymization policy and we will show how it can be
implemented with AAPI.The policy is: “remove the TCP
payload for TCP packets, remove of IP payload for all
other packets, all packets must have their IP addresses
anonymized by mapping them to random integers”.

Before we proceed to the AAPI code, we should ob-
serve that this policy divides the packets into two cate-
gories, TCP and non-TCP. It is thus very useful to apply
filtering functions to distinguish the packets and then for
each category apply the appropriate anonymization func-
tions. “BPF FILTER” function returns zero if the filter does
not match, elsewhere returns one and the packet is pro-
cessed by subsequent functions. The given anonymization
policy is implemented as follows with our AAPI:

int set1=create_set();
int set2=create_set();

add_function(set1,"BPF_FILTER",
"tcp");

add_function(set1,"ANONYMIZE",
IP,SRC_IP,MAP);

add_function(set1,"ANONYMIZE",
IP,DST_IP,MAP);

add_function(set1,"ANONYMIZE",
TCP,PAYLOAD, STRIP);

add_function(set2,"BPF_FILTER",
"ip and not tcp");

add_function(set2,"ANONYMIZE",

IP,SRC_IP,MAP);
add_function(set2,"ANONYMIZE",

IP,DST_IP,MAP);
add_function(set2,"ANONYMIZE",

IP,PAYLOAD, STRIP);

Note that each packet will match to only one set (it can be
either TCP or not) and in case of TCP the “STRIP” function
is applied to the TCP payload.

����� ���	������� ��	� �  ��� ��� ��
�
�� 
	� �  ��������	����
� ��������� �

Information on high-level protocols, like HTTP or FTP,
spans across multiple packets, thus anonymization on this
level should be performed on top of a reassembled appli-
cation stream instead of on a per-packet basis. AAPI has
the ability to reassemble packets in order to form a cooked
packet, through the “COOK” function. It is thus highly and
strongly recommend that a “COOK” function must precede
the anonymization functions that work on high-level proto-
cols. Take as an example a user who wants to set the con-
tents of an FTP transfer to zero. The file being transferred is
usually split into multiple TCP/IP packets. If we try to apply
anonymization without cooking, then only the first packet of
the transfer will be classified as “FTP-packet” since it is the
only one that contains the protocol headers. The rest of the
packets composing the actual file transfer cannot be classi-
fied as such, and therefore cannot be anonymized. When
cooking is applied, the whole transfer is contained in a sin-
gle “application-level” packet so the contents of the whole
file can be set to zero.

However, one of the targets of anonymization is that the
output should be as close to the input as possible, in order
to retain the usefulness of the trace. Therefore our approach
is, after we perform cooking and anonymize the application-
level stream, to split the cooked stream back to the original
series of TCP/IP packets. Splitting is implemented as an
AAPI function called “UNCOOK”. The cooking function
stores the list of headers of the original packets that form
the cooked packet. “UNCOOK” takes this list of head-
ers and adds them the appropriate portion of the payload
of the cooked and anonymized packet. In that way, “UN-
COOK” constructs as many TCP/IP packets as they were
originally in the incoming traffic, with each one having the
same header as before the application of cooking, though
the payload will be anonymized. It must be noted that af-
ter the uncooking some of the TCP/IP packets of original
incoming may not have any payload after the “UNCOOK”
function, although they originally had, when for example
we are replacing the whole application-level payload with a
hash value.

��� � �	��� 
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Function (re-)ordering is an optional component of the
anonymization framework that can be selectively enabled or
disabled by the user. The goal of re-ordering is dual. Firstly,
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we want to automatically detect common pitfalls in the list
of the anonymization functions, both in which anonymiza-
tion functions are applied and in which order. Secondly, we
want to ensure that the semantics of anonymization process
are correct. The function reordering is done before we start
processing any packet stream. There are three main tasks:

� All anonymization functions except “CHECK-
SUM ADJUST”, which adjusts the checksums to
correct value, that are applied on IP, TCP, UDP or
ICMP level are moved first. If they were placed
between a “COOK” and an “UNCOOK” func-
tion, then the headers stored by “COOK” would
not be anonymized and “UNCOOK” will emit
non-anonymized packets.

� “CHECKSUM ADJUST” and functions that alter the
packets length fields are applied at the end of the
anonymization. “CHECKSUM ADJUST” is called
last in order to reflect all changes, after the rest of the
anonymization functions have been applied. Updat-
ing the packet length is also applied at the end because
other anonymization functions may modify the origi-
nal packet’s size. As a result, explicit modifications to
the packet length must be performed at the end.

� If the policy requires to use functions that modify
an application-level protocol (HTTP, FTP, etc.), they
are all grouped together in order to apply “COOK”
and “UNCOOK” only once. If a “COOK” func-
tion exists, then it is placed before any application-
level anonymization function, otherwise it will auto-
matically applied by the AAPI. Similarly, if an ‘UN-
COOK” function exists, it is applied only after we
have performed all application-level anonymization,
otherwise it is manually applied. Having “COOK” be-
fore and “UNCOOK” after the functions that work on
HTTP or FTP level preserves both the correctness and
the transparency of the anonymization process. Addi-
tionally, if two or more “COOK” or “UNCOOK” func-
tions are accidentally added then duplicate functions
are removed in order to eliminate the overhead. We
should note here that since “COOK” is performed af-
ter all header level modifications, certain fields such as
TCP sequence number that are essential for reassem-
bly, should not be modified. Providing that no TCP or
IP header fields can be removed, altering fields such as
IP addresses or TCP ports using one-to-one mapping,
does not affect reassemble.

Reordering also detects and removes common pitfalls in
the anonymization policy. For example consider that a pol-
icy first hashes the URL and then removes it. When reorder-
ing is applied the first modification will be removed since it
is useless. The proper ordering of anonymization functions
is illustrated in Figure 2.

����� ��� ��� �	� ��� �����

Extensibility is one of the main design goals of AAPI.
Extensibility applies in three different aspects of AAPI, we

CHECKSUM and PACKET_LENGTH modifications

UNCOOK

Application-level modifications

COOK

IP, TCP, UDP, or ICMP modifications

Figure 2. The order of functions after applying
reordering

can easily a) add new anonymization functions, b) support
new protocols, and c) have as input different types of traffic
sources.

As far as the first issue is concerned, a user can easily add
more anonymization functions into the framework, taking
advantage of its modular design. As an example, one may
think and add to AAPI a new anonymization function for IP
addresses that hashes the first 8 bits and randomize the rest.
Moreover, we provide a callback functionality, meaning that
the user can specify a function that is called for each packet,
therefore get raw access to packets.

In our current implementation the only application-level
protocols supported are HTTP, FTP and NetFlow v10. It
may be desirable to add new protocol decoders in the frame-
work. For example, users are able to write a Simple Mail
Transfer Protocol (SMTP) decoder in order to anonymize
the content from emails.

Finally, it is straight forward to add support of dif-
ferent input sources. For example, snort alert logs [20]
can be supported by simply adding a new decoder that
reads such records and provide reference to each field.
Since our framework is generic in the sense that just ap-
plies anonymization functions to protocol fields, support
for snort alert logs is as simple as adding a new proto-
col, the “SNORT ALERT LOG” protocol, with its relative
fields. This way the framework can anonymize snort alert
logs, without any other change, using the same notation and
anonymization functions described in this paper.

���	� � ��
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Our AAPI works both offline with traces as well as on-
line with real traffic. The framework natively supports
live traffic from standard Ethernet interfaces as well as
DAG cards [10]. In case of offline traces, we support the
tcpdump and DAG format traces. The modular design of
our framework permits the addition of other sources both
on-line or offline, as discussed in section 3.4. Currently, all
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sets read traffic from a single source but we intend to sup-
port multiple sources in later versions.

The anonymization output packets in AAPI can be
recorded to an output trace (in standard tcpdump [3] for-
mat). As it would be impractical to have a separate out-
put trace created for each anonymized set, sets can share
their output trace. The sharing is simply done by setting
the same output filename in multiple sets. For example, two
sets can write their anonymized packets in the same output
file. In the absence of this functionality, the user would have
to merge the two output traces by using external tools. It
should be noted that if policy defines that a packet matches
multiple sets, e.g no filtering functions or not mutually ex-
cluded filters, then it would be recorded multiple times in
the shared output trace, probably with different form.

����� � ���#�$%��#� �  ����� ���� � � � �  � ��� ���	�� ���  � %

AAPI has been integrated with a real-time generic pas-
sive monitoring framework. In this section we give a brief
description of the passive monitoring framework and we list
the reasons that lead us to integrate it with AAPI.

The Monitoring API (MAPI) [2] was designed by the
IST project SCAMPI [1], and is presented in [18]. It is an
expressive programming interface, which enables users to
clearly communicate their monitoring needs to the underly-
ing traffic monitoring platform.

MAPI builds on a simple and powerful abstraction, the
network flow, that allows users to tailor measurements to
their own needs but in a flexible and generalized way. In
MAPI, a network flow is generally defined as a sequence of
packets that satisfy a given set of conditions. These condi-
tions can be arbitrary, raging from simple header-based fil-
ters, to sophisticated protocol analysis and content inspec-
tion functions.

AAPI was initially designed as a stand-alone framework.
We did decide to integrate the framework in MAPI in order
to offer anonymization functionality in a monitoring infras-
tructure and also to take advantage of the various optimiza-
tions and hardware support that are already integrated in
MAPI. MAPI is currently deployed to a distributed moni-
toring infrastructure, so the need for privacy is more than
necessary. Using the AAPI integrated in MAPI users can
be sure that no sensitive data is revealed to others. Also the
administrator can enforce certain anonymization policies to
all users using the monitoring sensor.

Also the AAPI can gain from the advantages of MAPI.
MAPI supports the collection of data from additional hard-
ware interfaces -such as the SCAMPI card [7]. Also, some
of the basic anonymization procedures could be imple-
mented by hardware in the near future, so the real-time
anonymization at very high speeds will be achievable.

4 Performance Evaluation

In order to measure the performance of the framework,
we have implemented some simple anonymization policies

policy tcpdpriv AAPI-based tool
MAP 10.78 7.41

Prefix-Preserving 10.85 9.39
MAP, no checksum 6.83 6.67

Table 1. Performance comparison between
tcpdpriv and AAPI-based anonymization

policy Bro AAPI-based tool
MAP 133.00 4.35

URL replace 134.48 58.85

Table 2. Performance comparison between
Bro and AAPI-based anonymization

both as AAPI applications, as well as tcpdpriv pro-
cesses. One simple anonymization policy we have imple-
mented states that: “IP addresses are mapped to sequen-
tial integers, IP and TCP options fields are set to zero,
the TCP/UDP payload is also zeroed while the packet’s
checksums are updated”. Also in order to check the perfor-
mance of prefix preserving anonymization schemes, which
are commonly proposed for anonymizing IP addresses, we
also applied the PREFIX PRESERVING MAP function in-
stead of the sequential mapping to IP addresses defined in
the original policy.

The AAPI allows us to implement the anonymization
functionality in less than 40 lines of code. In the experi-
ment we used a P4 at 3.0 GHz with 512 MB main mem-
ory. We used a 2 GB tcpdump trace as traffic input for
anonymization, consisted exclusively of TCP packets from
a web portal mirroring. In Table 1 we show the user time in
seconds for both the AAPI-based and the tcpdpriv ap-
plications. As it can be observed, that our tool is marginally
faster than tcpdpriv. The main reason for this dif-
ference is the poor implementation of checksum fix on
tcpdpriv. If we remove the checksum fix functional-
ity from both applications, their performance is equivalent.
Note that this result is indicative for the performance of the
tool since tcpdpriv is a highly specialized tool for simple
anonymization policies without offering all the functional-
ity supported by AAPI.

We compared AAPI with the Bro system, which in
contrast to tcpdpriv has support for application-level
anonymization. We conducted two experiments. In the first
we implemented the same policy we mentioned above that
also involves mapping the IP addresses to integers. In the
second experiment we implemented a policy that required
application-level anonymization; more specifically the pol-
icy is: “replace the URL in HTTP packets with the string
SAMPLE URL”. In Table 2 we present the measured user
time to complete the 2 GB trace anonymization in seconds.

Due to the limitations of Bro discussed in section 2,
even for a simple action like simply changing the IP ad-
dress in a packet, it had to reassemble the trace up to the
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HTTP level before it could anonymize the IP addresses. In
the case of mapping IP addresses, our approach is up to
30 times faster than Bro system, as we do not have to do
stream reassembly. In the case of URL replacement, where
both tools require to perform cooking, the AAPI application
needs about half the time required by the Bro application.
AAPI is faster because it is a framework specially designed
for anonymization in contrast with Bro that is an IDS sys-
tem and therefore functionality useless to anonymization in-
troduces this overhead.

� ��� � � ��� ��� � ��� ���	������� ��	� �  ��� �	��� 
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Having a complex anonymization policy with a long list
of anonymization functions does not come for free. In some
cases, like simply setting the Time-To-Leave (TTL) to zero,
an anonymization function may be fairly lightweight pro-
cess. On the other hand, some functions like “COOK” can
be very slow. So it is clear that the anonymization can be
a time consuming procedure. While for the non-realtime
anonymization of traffic traces stored on disks this perfor-
mance complexity may not be an issue, on-line anonymiza-
tion of realtime traffic has to be as fast as possible in order
to keep up with the incoming traffic from the high-speed
GBps links.

Infrastructures that work with live traffic from diverse
administrative domains, such as zero-day worm detection
systems [4], [21], emerge the need for real-time anonymiza-
tion. It is highly unlikely that organizations would share
their traffic without first anonymizing it. In order to have
a view of the cost of the various anonymization functions
in this section we try to quantify this cost by testing the
most commonly used functions and various combinations
of these functions. This will give to the the reader an insight
of what is the performance penalty of each one of them. All
experiments were performed on a PC with P4 processor at
3.0 GHz, with 512 MB main memory. As input source we
used a 2 GB tcpdump trace consisting of HTTP traffic.

Our results are summarized in Table 3. The metric we
use is user time, measured with the time command-line
utility. In our effort to express the results in terms of MBps,
we replayed the trace on a Gigabit speed link. The actual
transmission rate reached 630 MBps, a speed at which all
functions, except prefix-preserving, could handle the traffic
without inducing any packet loss.

The prefix-preserving function is based on the Crypto-
PAn package, while prefix-preserving-map is a much sim-
pler algorithm for prefix-preserving anonymization without
using cryptographic methods. The prefix-preserving func-
tion based on the Crypto-PAn package presents low perfor-
mance. The optimization of this function is left for future
work.
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The anonymization policy defines the level of informa-
tion hiding on traffic. On one hand, we need anonymization
which “hides” information, while on the other hand, the in-
formation we delete from trace decreases its usefulness in

Function User time
Set TTL and IPid to constant 3.304
Map src/dst IP 4.356
Map IPs, set TTL and IPid constant 5.152
Prefix-preserving-map src/dst IP 7.068
No cooking,randomize URL 6.060
Map src/dst IP,randomize URL,
checksum adjust

12.777

Cooking 19.812
Cooking, URL replace, uncooking 28.580
Prefix-preserving src/dst IP 87.721

Table 3. Cost of basic anonymization func-
tions

terms of the characteristics that researchers can find within
that trace. In this section we will look into this trade-off.
We assume that the more flexible anonymization policy and
the more fine-grained it is, we get the most “useful” trace,
with the minimum lost information.

Existing tools do not provide enough flexibility for fine-
grained policies, thus their output is used in limited cases.
The goal of the following experiments is to demonstrate that
our approach allows for fine-grained anonymization poli-
cies that are able to produce output which hides the min-
imum needed information. The policy we want to apply
is “prefix-preserving anonymization of IP address, set the
TTL and IP identification number to constants, removal of
the HTTP payload — but not of HTTP headers”. The met-
ric of usefulness we use is the number of alerts that were
generated by the Snort [20] intrusion detection system. Our
input was a 400 MB trace, which was collected during the
DARPA evaluation test [14].

We anonymized the trace with both tcpdpriv and with
a simple application based on AAPI. We passed both the
output traces to Snort. We ran Snort with two different sets
of rules: one that contains header-only rules, i.e., rules that
do not need access to the packet payload, and one with con-
tent rules, i.e., rules that require access to both headers and
payload. The results are presented in Table 4. The last row
denotes the sum of the two cases.

tcpdpriv AAPI Plain
header-only rules 45 45 45

content rules 0 527 1892

complete snort ruleset 45 572 1937

Table 4. Number of alerts produced by Snort
IDS for web trace

As we can see, the tcpdpriv approach preserves only
a small percentage on the initial alerts, derived solely from
header rules. AAPI on the other hand, uses a less strict
approach, creates a much more useful trace.

It is clear that this example is not realistic since the
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HTTP header may contain sensitive information, for exam-
ple URI or host fields, that should be anonymized. Using
AAPI, one could create a policy that does not anonymize
packets which contain attacks and anonymize those that
does not. This way, alerts will be preserved in the output
trace and on the other hand no private information will be
revealed since all other packets will be anonymized. Ap-
proaches with other tools are more rough, as in the case of
content rules the output trace could not produce any alerts.
Even if we change the policy, tcpdprivwill still generate
zero alerts as it sets the payload to zero.

5 Summary and Concluding Remarks

In this paper we have presented the design and effective-
ness of a generic anonymization framework. The key point
is configurability where the user can define any anonymiza-
tion policy as a series of functions that are applied on pack-
ets. Our main design goal is to facilitate the development
of custom anonymization tools, that are able to implement
both simple and complex policies, in only a few lines of
simple code. The usefulness of the output trace depends
solely on the decisions of the user and the anonymization
policy that is defined and is not addressed in this work.
The major advantage of our framework is that it works up
to application-level offering a large set of anonymization
primitives and in parallel trying to optimize the necessary
functions. All in all this work constitutes currently the most
complete framework for anonymization of realtime traffic
and offline traces. Furthermore, the framework is imple-
mented in a modular way so it is fully extensible in terms
of functionality, protocols and new traffic sources. Finally,
we measured the performance of our anonymization primi-
tives and their combination. Our results have shown that in
most commonly used policies, AAPI outperforms existing
similar applications, which offer only a subset of the AAPI
functionality.

We intend to enhance the performance of the framework
in the future by parallelism of the existing algorithms, and
hardware support.

6 Availability

An implementation of AAPI, along with a fully func-
tional application based on it, can be found at http://
www.ics.forth.gr/˜koukis/aapi.html
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