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Abstract. Although several available bandwidth measurement tools ex-
ist, they usually require access at both ends of the measured path. This
important requirement significantly limits the usefulness, applicability,
and ease of deployment of existing tools. This work presents a novel avail-
able bandwidth measurement tool, called abget, that runs in “single-end”
mode. Our measurement tool can connect to any TCP-based (usually
web) server in the Internet, pretending that it is a normal client, and
then estimate the variation range of the available bandwidth from the
server to the client within a few seconds. Contrary to existing available
bandwidth tools, which are based on UDP and ICMP protocols, our
methodology is based on the widely prevalent TCP protocol, which en-
ables us to perform accurate measurements even in environments where
ICMP and UDP packets are blocked by firewalls or rate-limited.

1 Introduction

The area of end-to-end available bandwidth (avail-bw) estimation has recently
received significant attention. The average avail-bw of a network path is deter-
mined by the link with the minimum “residual capacity”, which is equal to the
link capacity minus the average traffic load. For more precise definitions, as well
as for a survey of the related work in this area, we refer the reader to [4].

Despite the large number of avail-bw tools and estimation techniques (TOPP,
Pathload, Spruce, PathChirp, IGI/PTR, and others), measuring avail-bw is still
considered more difficult than measuring the round-trip time or loss rate of a
path. One of the main reasons is that most existing avail-bw estimation tools
require the execution of measurement code at both path ends. This constraint
limits the applicability of these tools in just a few paths where the user has
access at both the sender and the receiver. An additional problem with existing
avail-bw estimation tools is that they rely on UDP/ICMP probing packets. Such
traffic is often blocked, rate-limited, or handled differently than TCP traffic. A
measurement tool that only uses TCP traffic would be ideal.



In this paper, we present a new avail-bw estimation tool called abget. There
are three key points about abget. First, it can be run in single-end mode, requiring
access only at the path’s receiving host. The sender can be any TCP-based
server. Second, abget uses TCP packets, and it appears as a normal client for
the corresponding server. The server cooperates indirectly by servicing the client
with normal TCP-based transfers. In the current version of the tool, the abget

client connects to Web servers, but it is straightforward to change the client so
that it works with any other TCP-based server that can send relatively large
files (more than 50-100KB). Third, the abget estimation methodology is very
similar to that of pathload [2]. Pathload has been validated by several research
studies and, in comparison with other avail-bw estimation tools, it was shown
to be the most accurate [7]. Also, abget is able to estimate the variation range
of the avail-bw, rather than just the average, similar to what pathload does.

Three related tools are Sting [6], SProbe [5], and Pathneck [1]. Sting and
SProbe are also single-end tools using TCP. Sting measures the packet loss rate
on both the forward and reverse paths from an instrumented client to any TCP-
based server, relying on TCP’s loss recovery algorithms. SProbe estimates the
bottleneck bandwidth (i.e., capacity, rather than avail-bw) in both the upstream
and downstream directions. In the downstream direction, SProbe uses TCP SYN
and RST packets to force the server to send packet pairs. In the upstream di-
rection, from the client to the server, SProbe performs a normal HTTP GET
request, and it then analyzes the dispersion of the received packet pairs during
TCP’s slow start. abget also performs HTTP GET requests, but it generates
“fake ACKs”, with appropriate ACK numbers and advertised window values, so
that the server will transmit periodic packet trains at a certain rate that the
client chooses. Pathneck is also a single-end measurement tool, but it relies on
ICMP and it attempts to detect the location of the avail-bw bottleneck along
the path. Pathneck cannot estimate end-to-end avail-bw.

2 Measurement Methodology and Tool

2.1 Basic idea

We use an iterative algorithm that is similar to the Self-Loading Periodic Streams
(SLoPS) technique used in pathload [2]. However, in pathload, the sender trans-
mits periodic UDP packet streams to the client at a certain rate that is controlled
by the latter. In our case, the sender is a TCP-based server that sends packets
based on TCP’s self-clocking, flow control and congestion control algorithms.
Fortunately, there is a way to force a TCP server to send packets at a given rate.
The idea is based on the use of a limited advertised window and on the genera-
tion of paced “fake” ACKs. Specifically, if the client acknowledges only one MSS
(Maximum Segment Size) with each ACK and it advertises a window of only
one MSS, then the server will be forced to send one MSS upon receiving each
ACK, as long as the server has at least MSS bytes available in the send socket
buffer. In order to achieve a certain rate R, the client’s “fake” ACKs should be
generated periodically with a period T = MSS/R.



abget emulates the TCP protocol, through the raw IP socket interface, and
sends fake ACKs to the server. The ACKs are “fake” because they are generated
by the client before the corresponding data segments have been received. Each
ACK advances the acknowledge number by one MSS, and it sets the advertised
window to one MSS. To verify this idea we used an instrumented server, pas-
sively monitored with tcpdump. Figure 1 shows a sample flow of ACKs and data
segments between an abget client and a TCP server. ACKs are generated with
a period of 247 microseconds at the abget client, and the transmission of data
segments by the server has the same period. Figure 2 plots the interarrivals of
data packets for three different ACK generation periods, and validates that the
server transmits most segments, with just a few exceptions, very close to the
desired rate.

Server
ACK packets

Data packets

abget client ack: 0
win: 1432
datalen: 0
time: 0

ack: 4296
win: 1432
datalen: 0
time: 741

ack: 2864
win: 1432
datalen: 0
time: 494

ack: 1432
win: 1432
datalen: 0
time: 247

seq: 0
win: 6432
datalen: 1432
time: 1059

seq: 4296
win: 6432
datalen: 1432
time: 1814

seq: 2864
win: 6432
datalen: 1432
time: 1562

seq: 1432
win: 6432
datalen: 1432
time: 1310

Fig. 1. An example of the flow of ACK and data segments between the abget client
and a TCP server.
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Fig. 2. Segment interarrivals at an instrumented TCP server when abget sends ACKs
every 123, 246 or 492 microseconds.

To detect if a rate is higher than the avail-bw, we need to measure the relative
One-Way Delay (OWD) of each packet. If the OWDs increase, then the probing
rate is higher than the avail-bw; otherwise, the rate of that packet stream is less
than the avail-bw. Since we cannot rely on the server to provide fine-resolution



timestamps at each segment, we estimate the OWDs from the interarrivals of
the received segments. Specifically, after forcing the server to send a stream of
packets at a certain rate, the abget client captures the data segments through
libpcap recording their receive timestamps. These timestamps provide us with the
packet interarrivals at the receiver. Let s(i) be the time (with the sender’s clock)
that the sender transmitted the i’th packet, r(i) the time (with the receiver’s
clock) that the receiver got the i’th packet, o the clock offset between the two
hosts, d(i) the OWD of packet i, t(i) the interarrival between packets i and
i− 1 at the receiver, and T the (assumed) constant interarrival between packets
i and i − 1 at the sender. Then, it is easy to see that s(i) = s(i − 1) + T ,
r(i) = s(i) + d(i) + o and t(i) = r(i)− r(i− 1) = T + d(i)− d(i− 1). So, we can
reconstruct the OWD time series as follows

d(i) = r(i) − s(i) − o = t(i) + r(i − 1) − s(i − 1) − T − o =

= d(i − 1) + t(i) − T (1)

Starting the recursion with d(1) = 0, we can estimate the sequence of OWDs,
and then use the techniques and fine-tuned thresholds developed for pathload in
the detection of increasing OWD trends.

2.2 Measurement tool: abget

abget uses an iterative algorithm, based on linear probing. Specifically, the user
specifies the probing range [Rmin, Rmax] (e.g., from almost zero to the capacity
of the client’s network interface) and the estimation resolution w. The abget algo-
rithm, summarized in Figure 3, starts probing at rate Rmin, gradually increasing
the probing rate in increments of w until the latter exceeds the Rmax. So, abget

probes at b(Rmax − Rmin)/w + 1c rates.
In each iteration, the abget client connects to the remote server and initiates

a download operation for a sufficiently large file3. Next, abget starts sending
ACKs with a period T that corresponds to the desired probing rate, with an
advertised window of one MSS. Each ACK advances the acknowledge number
by one MSS4. The number of ACKs is equal to the stream length parameter
K, which determines the number of packets in each stream. This parameter is
related to the variability of the estimated avail-bw, as discussed in more detail
in [3].

After receiving K segments from the server, abget estimates their OWDs, as
described earlier. The analysis of OWDs is similar to pathload. Specifically, we
split them in groups of successive values, calculate the median of each group, and
ignore the rest of the measurements. This is a useful technique for removing out-
liers. From the remaining median values, we calculate the Pairwise Comparison

3 To help users locate large files on the web server, we have developed a crawler that
finds suitable files through google searches and recursive crawling

4 It should be noted that not all data segments carry MSS bytes. We handle those
cases by sending again the corrected remaining ACKs.



for ( rate = Rmin; rate <= Rmax; rate += w ) {

for ( currStream=0; currStream<N; currStream++ ) {

TCP_Handshake( server );

GET_Request( server, filename );

send_fake_ACKs( stream length K, period T );

OWD_vector = compute_OWDs();

median_vector = get_medians( OWD_vector );

PCT = pairwise_comparison_test( median_vector);

if ( PCT > 0.65 ) increasing_streams++;

else if ( PCT < 0.54) non_increasing_streams++;

else grey_streams++;

}

if ( increasing_streams > N/2 )

if ( rate < high_bound ) high_bound = rate;

else if ( non_increasing_streams > N/2 )

if ( rate > low_bound ) low_bound = rate;

}

Fig. 3. abget pseudocode.

Test (PCT) statistic, given in [2]. The PCT measures the fraction of consecutive
one-way delay pairs that are increasing. Based on the PCT value, we then clas-
sify that packet stream as higher than the avail-bw (increasing stream), or lower
than the avail-bw (non increasing stream). It is also possible that we cannot
reliably classify that stream (grey stream).

To decide whether a probing rate is larger than the avail-bw, abget repeats the
previous process N times for each probing rate. The parameter N corresponds to
the number of streams per probing rate. The final classiffication of a probing rate
is based on majority counting, i.e., if more than N/2 of the streams are increasing
(non-increasing), we infer that the corresponding probing rate is higher (lower)
than the avail-bw. The abget client stays idle for a user-specified time period Ti

between iterations, to control the measurement overhead.
Finally, abget reports a variation range [low bound, high bound]. This is

the range from the maximum probing rate that was estimated as lower than
the avail-bw (low bound) to the minimum probing rate that was estimated as
higher than the avail-bw (high bound). If it turns out that high bound is less
than low bound, the tool reports that the avail-bw process showed signs of non-
stationary behavior during the measurement.

2.3 Measurement duration and overhead

Reducing the measurement duration, we can achieve faster estimation and (typ-
ically) lower overhead. On the other hand, increasing the measurement duration
often leads to better accuracy, as the tool can probe each rate with more streams
or with longer streams. In abget, the trade-offs between measurement duration,
overhead, and accuracy can be controlled by the user through the selection of



the following parameters: stream length K, number of streams N , estimation
resolution w, idle time between streams Ti, and probing range [Rmin,Rmax].
Specifically, the measurement duration is:

⌊

Rmax − Rmin

w
+ 1

⌋

× N ×

(

K × MSS

Ravg

+ Ti

)

(2)

where Ravg = (Rmax + Rmin)/2. The measurement overhead, in terms of rate,
is

K × MSS

(K × MSS)/Ravg + Ti

(3)

We do not have a mathematical expression for the accuracy of the tool, as that
would greatly depend on the characteristics of the avail-bw process, together
with the previous parameters.

3 Validation Results

This section presents validation results for abget in a completely controlled
testbed and in an operational instrumented network path. In all the experi-
ments of this section, unless stated otherwise, the abget parameters were set as
follows: N=5 streams per probing rate, K=50 packets per stream, w=5Mbps es-
timation resolution, probing range Rmin=0 and Rmax=100Mbps, and idle time
Ti=500msec. The duration of a measurement with these parameters is about 50
seconds.

3.1 Validation in a local testbed

We set up a fully instrumented testbed to create a single-hop network with a
100Mbps tight link between two Ethernet switches. Note that the capacity of the
tight link at the IP layer (with Ethernet MTU packets) is about 97Mbps. A pair
of hosts (sender and receiver) were used to generate the cross traffic. Another
host was used as a web server, while a fourth host was running the abget client.
The cross-traffic sink and the abget client were connected to the first switch,
while the cross traffic source and the web server were connected to the second
switch.

In the first experiment, the sender generates constant-rate UDP traffic with
Iperf. We varied the UDP rate in the 10-90Mbps range. The results, both with
abget and pathload, are presented in Figure 4. We observe that abget produces
accurate estimates, compared to the actual avail-bw in the link. The results with
pathload are generally more accurate, but we should keep in mind that pathload

requires access at both ends of the path.
In the second experiment, we generated realistic traffic by “replaying” a

packet trace that was previously collected from the University of Crete access
link. The average rate of the original trace was about 11Mbps. So, to emulate
different values of avail-bw, we scaled the packet interarrivals by a certain factor
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Fig. 4. Validation in testbed with
constant-rate UDP cross traffic.
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Fig. 5. Validation in testbed with trace-
driven cross traffic emulation.

for each desired cross traffic rate. The results, presented in Figure 5, show that
abget provides accurate measurements, in the sense that the sum of the cross
traffic average rate and the center of the abget estimation range are close to the
path capacity (97Mbps). The results with pathload are of comparable accuracy.

3.2 Validation in a passively monitored operational network path

The next set of validation experiments was performed at an operational Internet
path in which we could passively monitor what we expect to be the tight link.
Specifically, the passive monitor is a packet collector that we placed at the access
link of the University of Crete (UoC, in Heraklion, Greece), as shown in Figure 6.
The capacity of this link is 34 Mbps. Figure 7 shows abget measurements in the

abget client

Web server

abget client

Web serverInternet

University of Crete

Monitored Link

Link capacity: 34 Mbps 

Passive monitor

Fig. 6. The monitored network path.

path from an external Web server (www.nytimes.com) to a client within the
University. Figure 8 shows similar results when we ran abget at a client located
outside the monitored network, at Georgia Tech (in Atlanta, USA), to a Web
server inside UoC. An abget measurement was performed every five minutes,
while the duration of each measurement was 50 seconds.

We attempted to estimate the variation range of the actual avail-bw at the
tight link as follows. During each 50-second abget measurement, we passively



measured the actual avail-bw at the tight link in consecutive time intervals of
length 12msec; this is the average duration of an abget packet stream in this
path. The variation range during the 50-second period is the range between the
minimum and the maximum 12-msec avail-bw measurement. Figures 7 and 8
show the variation range of the actual avail-bw together with the corresponding
abget estimated variation range.
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Fig. 7. Available bandwidth from
www.nytimes.com to UoC client.
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Web server to an abget client at Georgia
Tech.

A first observation is that the abget central estimates (the center of the
estimated variation range) are, for the most part, within the corresponding avail-
bw variation range at the UoC access link. The accuracy of the tool is not as good
in the path of Figure 8. One possible explanation is that the spesific path includes
more links, other than the UoC access link, that occasionally limit the end-to-
end avail-bw. Also, these results show that the abget variation range does not
always follow the variation range of the UoC access link. A plausible explanation
is that the variation range of abget depends on the avail-bw variability in the
entire path, not just at the UoC access link.

3.3 Robustness to reverse path traffic

So far, we have assumed that the ACKs can reach the server periodically, as sent
by the client. This will not be the case when the reverse (non-measured) path
from the client to the server is significantly loaded with traffic. Specifically, if LD

is the size of a data segment (sent at the forward path) and LA is the size of the
corresponding ACK segment (sent at the reverse path), then the load imposed
by the abget ACKs in the reverse path will be LD/LA times less than the probing
rate at the forward path. The load due to ACKs does not create a problem as
long as the avail-bw in the reverse path is no less than LD/LA times the avail-bw
in the forward path; otherwise, the ACKs saturate the reverse path and so they
do not arrive at the server periodically. Typically LD=1500B and LA ≈40B,
which means that the ratio LD/LA is about 40. We expect that only few paths



will have such a high degree of avail-bw asymmetry. We have also examined
these effects experimentally, with testbed measurements, verifying that abget is
indeed robust to significant traffic load in the reverse path.

4 Available Bandwidth Variability

This section presents timeseries for avail-bw measurements using abget, focus-
ing on the temporal variability of the available bandwidth process. We used
two different client hosts, one located at the University of Crete (UoC, in Her-
aklion, Greece), and another located at the Georgia Institute of Technology
(Gatech, in Atlanta, USA). We measured paths from two popular5 Web servers:
www.nero.com (in Germany) and www.chez.com (in France). The abget parame-
ters were set as in the previous section. Figure 9 shows the timeseries of avail-bw
measurements in the four paths. A new measurement is performed every 10
minutes during a 24-hour period.

In the case of the UoC client, both paths are limited by the 34Mbps access
link of the University of Crete. Also, both paths show the same diurnal pattern,
with the avail-bw reaching its maximum (around 20Mbps) in the early morning
hours and its minimum (around 5Mbps) in the afternoon and evening hours.
The variation range of the avail-bw is typically wider when the avail-bw is lower,
as described in [3].

The two rightmost graphs show avail-bw measurements from the two servers
to the Gatech client. Here, the two paths seem to have different tight links
and diurnal patterns. The avail-bw in the path from the Nero server seems
to go through diurnal variations, with significantly lower avail-bw during the
morning/afternoon hours (EST time). The path from the Chez server does not
show such diurnal variations, and it has significantly higher avail-bw. Notice
however that the avail-bw variation range in that path is often wider than 40-
50Mbps. As shown in [3], a wide variation range should be expected when the
tight link carries just a few flows (low degree of statistical multiplexing).
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