
SCIENTIFIC and TECHNOLOGICAL COOPERATION

between

RTD ORGANISATIONS in GREECE

and RTD ORGANISATIONS in U.S.A, CANADA, AUSTRALIA, NEW ZEALAND,

JAPAN, SOUTH KOREA, TAIWAN, MALAISIA and SINGAPORE

HELLENIC REPUBLIC

MINISTRY OF DEVELOPMENT

GENERAL SECRETARIAT FOR RESEARCH & TECHNOLOGY

International S & T Cooperation Directorate, Bilateral Relations Division

Project MILTIADES: MultI-Layer TechnIques for Attack DEtection Systems

Deliverable 4.1: Experimental Evaluation and Real-world Deployment

This document presents the experimental evaluation of nemu, an network-level attack de-
tector based on code emulation, as well as attack statistics from long-term deployments of
nemu in production networks.

Due Delivery Date 31/03/2008

Actual Delivery Date 31/03/2008

Project Partners

FORTH-ICS Project Leader Greece

Columbia University Project Leader US

Virtual Trip Co-operating organisation Greece

1 Table of Contents

1 Table of Contents.. 2

2 Introduction... 3

2.1 IP address space randomization ... 3

2.2 Emulation-based polymorphic attack detection ... 3

3 Experimental evaluation of the Prototype Detector.. 5

4 Real-world Deployment.. 8

4.1 Educational network .. 8

4.2 National Research Network ... 9

5 Attack Network Trace Repository .. 12

5.1 Trace details ... 12

5.2 Anonymization... 13

6 References... 14

2 Introduction

As a response to the ever increasing number of automated Internet attacks, as well as to
the increasing levels of attack sophistication, the project MILTIADES explores novel at-
tack detection and defense approaches against modern cyber-attacks. Specifically, our
contributions revolve around the following two research directions: i) IP address space
randomization, and ii) emulation-based polymorphic attack detection.

2.1 IP address space randomization

To evade detection during their outbreak, and generate as little traffic as possible, sophis-
ticated worms gather information about their targets several weeks before they launch
their attack. During those weeks they probe a very large number of IP addresses, if possi-
ble all 4 billions of them available in the Internet today (IP version 4), in order to find
those hosts which are vulnerable to the planned attack. All vulnerable hosts found, are
included in a special list of targets, which is frequently referred to as the “hit-list”. In-
stead of attacking computers at random during the outbreak, as naive worms do, sophisti-
cated hit-list-based worms only attack computers included in the hitlist and therefore (1)
they generate the minimum traffic possible, and (2) they do not generate any unsuccessful
(TCP) Internet connections. Therefore, hit-list-based worms propagate at the maximum
possible speed, evading their timely detection by worm detection systems.

To slow down the rate of their spread, and if possible neutralize those hit-list worms, we
propose to conduct research towards mechanisms which will make the contents of the hit
list stale. Armed with a stale hit list, a worm will not be able to successfully infect hosts,
but it will also make several unsuccessful attempts to compromise non-vulnerable com-
puters, resulting in several unsuccessful TCP connections. These unsuccessful connec-
tions will probably be more visible to firewalls and intrusion detection systems, which
will quickly take notice of the spreading worm. To put it simply: a stale hit-list will slow
down the spreading worm, and make it visible to firewalls and Intrusion Detection Sys-
tems.

2.2 Emulation-based polymorphic attack detection

To protect themselves against malicious intruders, organizations usually employ Net-
work-level Intrusion Detection Systems (NIDSes) in their gateways to the Internet. NID-
Ses, inspect all incoming traffic against a preloaded set of known attack signatures (i.e.,
attack rules) in order to see whether any network packet(s) match any of the attack signa-
tures. As soon as the NIDSes find network packets which match any one of the attack
signatures, they log the offending packets and alert the system administrators of the intru-
sion attempt.

Although IDSes have been successfully used to identify and prevent traditional attacks,
they are getting increasingly less effective when faced with the next generation of poly-
morphic and metamorphic worms for several reasons. First, traditional Intrusion Detec-
tion Systems operate using predefined attack signatures, which means that they cannot

detect previously unknown (“zero day”) attacks for which no signature exists. Second, as
organizations start deploying state-of-the-art detection technology, attackers are likely to
react by employing advanced evasion techniques, such as polymorphism and metamor-
phism, to defeat these defenses.

In contrast to previous work, in this project we explore the approach of emulation-based
polymorphic attack detection, a novel approach for the detection of previously unknown
polymorphic attacks, which is based on the actual execution of attack data on a CPU
emulator. Our prototype detector implementation, called nemu, does not rely on any ex-
ploit or vulnerability specific signatures, which allows the detection of previously un-
known attacks. The main principle network-level emulation is the use of a generic heuris-
tic that matches the runtime behavior of polymorphic shellcodes. At the same time, the
actual execution of the attack code on a CPU emulator makes nemu robust to evasion
techniques such as highly obfuscated or self-modifying code. Furthermore, each shell-
code is detected separately, which gives nemu the ability to effectively detect targeted
attacks.

3 Experimental evaluation of the Prototype Detector

In this section, we present the experimental evaluation of nemu, our prototype imple-
mentation of a network-level polymorphic attack detector based on binary code emula-
tion [1, 2]. Specifically, we focus on the raw processing throughput of the detector.

We accumulated full payload packet traces of frequently attacked ports captured at
FORTH-ICS and the University of Crete across several different periods. We also cap-
tured a two hour long trace of all the TCP traffic of the access link that connects FORTH-
ICS to the Internet. Since we are interested in client-initiated traffic, which contains re-
quests to network services, we keep only the packets that correspond to the client-side
stream of each TCP flow. For large flows, which for example may correspond to file up-
loads, we keep the packets of the first 64KB of the stream. Trace details are summarized
in Table 1. Note that the initial size of the FORTH-ICS trace, before extracting the client-
initiated only traffic, was 106GB.

Table 1: Details of the client-initiated network traffic traces used in the experimen-
tal evaluation.

Name Port Number Number of Streams Total Size

HTTP 80 6511815 5.6GB

NetBIOS 137-139 1392679 1.5GB

Microsoft-DS 445 2585308 3.8GB

FORTH-ICS all 668754 821MB

Nemu is based on a custom IA-32 CPU emulator that uses interpretive emulation. We
measured the user time required for processing the network traces presented in Table 1,
and computed the processing throughput for different values of the CPU execution
threshold. The detector was running on a PC equipped with a 2.53GHz Pentium 4 proces-
sor and 1GB RAM, running Debian Linux (kernel v2.6.18). Figure 1 presents the results
for the four different network traces.

Figure 1: Raw processing throughput for different execution thresholds.

As expected, the processing throughput decreases as the CPU execution threshold in-
creases, since more cycles are spent on streams with very long execution chains or seem-
ingly endless loops. We measured that in the worst case, for port 445 traffic, 3.2% of the
streams reach the CPU execution threshold due to some loop when using a threshold
higher than 8192. This percentage remains almost the same even when using a threshold
as high as 131072 instructions, which means that these loops would require a prohibi-
tively large number of iterations until completion.

Port 80 traffic exhibits the worst performance among all traces, with an almost constant
throughput that drops from 12 to 10 Mbit/s. The throughput is not affected by the CPU
execution threshold because i) the zero-delimited chunk optimization is not effective be-
cause HTTP traffic rarely contains any null bytes, and ii) the execution chains of port 80
traffic have a negligible amount of endless loops, so a higher CPU execution threshold
does not result to the execution of more instructions due to extra loop iterations. How-
ever, ASCII data usually result to very long and dense execution chains with many one or
two byte instructions, which consume a lot of CPU cycles.

We should stress that our home-grown CPU emulator is highly unoptimized, and the use
of interpretive emulation results to orders of magnitude slowdown compared to native
execution. It is expected that an optimized CPU emulator like QEMU [3] would boost
performance, and we plan in our future work to proceed with such a change. Neverthe-
less, the low processing throughput of the current implementation does not prevent it
from being practically usable. In the contrary, since the vast majority of the traffic is
server-initiated, the detector inspects only a small subset of the total traffic of the moni-
tored link. For example, web requests are usually considerably smaller than the served
content. Note that all client-initiated streams are inspected, in both directions.

Figure 2: Raw processing throughput for the complete two-hour trace.

Furthermore, even in case of large client-initiated flows, e.g., due to file uploads, the de-
tector inspects only the first 64KB of the client stream, so again the vast amount of the
traffic will not be inspected. Indeed, as shown in Fig. 2, when processing the complete
106GB long trace captured at FORTH-ICS, the processing throughput is orders of magni-
tude higher. Thus, the detector can easily sustain the traffic rate of the monitored link,
which for this 2-hour long trace was on average around 120 Mbit/s.

4 Real-world Deployment

In this section, we present attack activity results from real-world deployments of our pro-
totype detector implementation. In each installation, nemu runs on a passive monitoring
sensor that inspects all the traffic of the access link that connects the protected network to
the Internet. Here, we collectively report statistics from two deployments in a National
Research Network and an Educational Network in Europe.

4.1 Educational network

Nemu has been installed on a passive monitoring sensor that inspects the traffic of the
access link that connects part of an educational network with hundreds of hosts to the
Internet. The detector has been continuously operational since 7 November 2006, except
a two-day downtime on January.

Figure 3: Overall attack activity from a real-world deployment of nemu in an Edu-
cational Network.

As of 14 June 2007, the detector has captured 21795 attacks targeting nine different ports.
An overall view of the attack activity during these seven months is presented in Fig. 3.
The upper part of the figure shows the attack activity according to the targeted port. From
the 21795 attacks, 14956 (68.62%) were launched from 5747 external IP addresses (red
dots), while the rest 6839 (31.38%) originated from 269 infected hosts in the monitored
network (gray dots). Almost one third of the internal attacks came from a single IP ad-
dress, using the same exploit against port 445. The bottom part of the figure shows the
number of attacks per hour of day. There are occasions with hundreds of attacks in one
hour, mostly due to bursts from a single source that horizontally attacks all active hosts in
local neighboring subnets. The vast majority of the attacks (88%) target port 445. Inter-
estingly, however, there also exist attacks to less commonly attacked ports like 1025,

1051, and 5000.We should note that for all captured attacks the emulator was able to suc-
cessfully decrypt the payload, while so far has zero false positives.

For each identified attack, our prototype detector generates:

i) an alert file with generic attack information and the execution trace of the
shellcode

ii) a raw dump of the reassembled TCP stream
iii) a full payload trace of all attack traffic (both directions) in libpcap format
iv) the raw contents of the modified addresses in the virtual memory of the emu-

lator, i.e., the decrypted shellcode.

Although we have not thoroughly analyzed all captured attacks, we can get a rough esti-
mate on the diversity of the different exploitation tools, worms, or bots that launched
these attacks, based on a simple analysis of the decrypted payloads of the captured poly-
morphic shellcodes. Computing the MD5 hash of the decrypted payload for all above at-
tacks resulted to 1021 unique payloads. However, grouping further these 1021 payloads
according to their size, resulted to 64 different payload size groups. By manually inspect-
ing some of the shellcodes with same or similar lengths, but different MD5 hashes, we
observed that in most cases the actual payload code was the same, but the seeding URL
or IP address from where the “download and execute” shellcode would retrieve the actual
malware was different. Our results are in accordance with previous studies [4] and clearly
show that polymorphic shellcodes are extensively used in the wild, although in most
cases they employ naive encryption methods, mostly for concealing restricted payload
bytes.

4.2 National Research Network

In this section we report statistics from a deployment of nemu in a National Research
Network in Europe. The sensor has been continuously operational since 9 March 2007,
except some occasional daily downtimes.

As of 13 February 2008, nemu has captured 1,052,332 attacks targeting 20 different
ports. From these attacks, 31.35% were launched from 8981 different external IP ad-
dresses against internal hosts, while the rest 68.65% originated from 204 infected hosts in
the monitored networks that were massively attempting to propagate malware. In the re-
maining, we focus only on the external attacks that were targeting hosts within the pro-
tected networks.

An overall view of the external attack activity is presented in Fig. 4. The upper part of the
figure shows the attack activity according to the targeted port. The bottom part of the fig-
ure shows the number of external attacks per hour. Again, as in the case of the Educa-
tional Network, the ports of popular OS services associated with well-known vulnerabili-
ties, e.g., 135, 139, and 445, receive the highest number of attacks. However, it is inter-
esting to note that there also exist sporadic attacks to less commonly attacked ports like
1051, 3050, 30708, 41523, and so on. Table 2 presents the total number of internal and

external attacks according to the targeted destination port number. With firewalls and
OS-level protections now being widely deployed, attackers have turned their attention to
third-party services and applications, such as corporate virus scanners, mail servers,
backup servers, and DBMSes. Although such services are not very popular among typical
home users, they are commonly found in corporate environments, and most importantly,
they usually do not get the proper attention regarding patching, maintenance, and security
hardening.

Figure 4: Overall attack activity from a deployment of nemu in a National Research
Network. The graph shows only the attacks that were launched from external hosts
against hosts in the protected network.

Table 2: Number of attacks per destination port number.

Internal Attacks External Attacks

Destination Port Number of Attacks Destination Port Number of Attacks
135 313342 135 272134
2967 291458 445 61233
139 89651 139 19434
445 22235 2967 3142
2968 5 1025 107
 143 42
 42 36
 2100 25

 25 25
 2968 22
 41523 18
 2103 3
 1433 3
 1029 3
 1082 2
 110 2
 30708 2

The above results clearly show that polymorphic shellcode is extensively used in the
wild, although in most cases it employs naive encryption methods, mostly for concealing
restricted payload bytes. However, as shown in Fig. 2, in the past few months we have
observed a slight increase in the overall number of detected incidents, while there has
been an increased use of more sophisticated engines and obfuscation techniques.

5 Attack Network Trace Repository

In an effort to provide useful real-world attack data to the security research community,
we have created an attack network trace repository with publicly available traces of at-
tacks captured by various installations of nemu in production networks. The attack trace
repository (shown in Fig. 5) is publicly accessible from:

http://lobster.ics.forth.gr/traces/

We have focused on providing a few diverse traces of attacks against different services
and using different exploits or shellcodes, rather than providing a bulk of almost identical
attack instances.

Εικόνα 5: The attack network trace repository.

5.1 Trace details

All available files are full payload traces in libpcap format. Each trace corresponds to a
single attack attempt and contains all packets of the network flow (5-tuple) of the particu-

lar attack instance, including the initial TCP 3-way handshake. Traces are named in the
form [date]_[time]_[dstport].pcap, where [dstport] is the port number
of the attacked service.

5.2 Anonymization

Every effort has been made to anonymize the traces and remove any sensitive personal or
professional information. All traces have been anonymized using anontool [5] and net-
dude [6] as follows: MAC addresses have been zeroed and IP addresses have been
mapped to fake addresses (usually 1.0.0.1 for the attacking host and 1.0.0.2 for the victim
host). Any other payload data that could reveal the attacking or victim hosts have also
been anonymized - e.g., the HTTP 'Host' filed is changed to a fake address:

 Host: 10.123.12.123\r\n

while various SMB or DCERPC fields that contain IP addresses, host names, or other
identifiers, are sanitized - e.g.:

 principal: xxxxxx$@XXXXXX.XXX
 Server NetBIOS Name: XXXXXX
 Domain DNS Name: xxxxxx.xxx
 Path: \\10.123.12.12\IPC$

The checksums of all modified packets have been fixed accordingly. Note that in most
cases, the encrypted shellcode (which is exposed only at runtime) may contain the IP ad-
dress or URL of a "seeding" host from which the actual malware executable is
downloaded. We have avoided including attack traces in which the encrypted shellcode
contains information about a real host. Such information cannot be easily anonymized,
since it is not exposed on the wire. Thus, here you will find only attacks that use either a
bindshell or similar "listening" shellcodes, or that do contain some “download and exe-
cute” shellcode, but only of instances where it (mistakenly) tried to connect to a non-
existent or private address (e.g., http://0.0.0.0/foo.exe). Since most of the attacks in the
wild do contain a download and execute shellcode, this severely limits the number of
traces we can make available. For thir reason, we have also included a few traces in
which we have manually sanitized the encrypted seeding URL (e.g.,
http://xxxxxx.xxx/1.exe) by reverse engineering the encryption algorithm.

6 References

1. Michalis Polychronakis, Evangelos P. Markatos, and Kostas G. Anagnostakis.
Network-level polymorphic shellcode detection using emulation. Journal in Com-
puter Virology, 2(4):257-274, February 2007.

2. Michalis Polychronakis, Evangelos P. Markatos, and Kostas G. Anagnostakis.

Emulation-based detection of non-self-contained polymorphic shellcode. In Pro-
ceedings of the 10th International Symposium on Recent Advances in Intrusion
Detection (RAID), September 2007.

3. F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of the

USENIX Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

4. J. Ma, J. Dunagan, H. J. Wang, S. Savage, and G. M. Voelker. Finding diversity

in remote code injection exploits. In Proceedings of the 6th ACM SIGCOMM on
Internet measurement (IMC), pages 53–64, 2006.

5. Anontool. http://www.ics.forth.gr/dcs/Activities/Projects/anontool.html

6. NetDude. http://netdude.sourceforge.net/

