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1. Introduction 
 
As a response to the ever increasing number of automated Internet attacks, as well as to 
the increasing levels of attack sophistication, the project MILTIADES explores novel at-
tack detection and defense approaches against modern cyber-attacks. Specifically, our 
contributions revolve around the following two research directions: i) IP address space 
randomization, and ii) emulation-based polymorphic attack detection. 
 
1.1 IP address space randomization 
 
To evade detection during their outbreak, and generate as little traffic as possible, sophis-
ticated worms gather information about their targets several weeks before they launch 
their attack. During those weeks they probe a very large number of IP addresses, if possi-
ble all 4 billions of them available in the Internet today (IP version 4), in order to find 
those hosts which are vulnerable to the planned attack. All vulnerable hosts found, are 
included in a special list of targets, which is frequently referred to as the “hit-list”. In-
stead of attacking computers at random during the outbreak, as naive worms do, sophisti-
cated hit-list-based worms only attack computers included in the hitlist and therefore (1) 
they generate the minimum traffic possible, and (2) they do not generate any unsuccessful 
(TCP) Internet connections. Therefore, hit-list-based worms propagate at the maximum 
possible speed, evading their timely detection by worm detection systems. 
 
To slow down the rate of their spread, and if possible neutralize those hit-list worms, we 
propose to conduct research towards mechanisms which will make the contents of the hit 
list stale. Armed with a stale hit list, a worm will not be able to successfully infect hosts, 
but it will also make several unsuccessful attempts to compromise non-vulnerable com-
puters, resulting in several unsuccessful TCP connections. These unsuccessful connec-
tions will probably be more visible to firewalls and intrusion detection systems, which 
will quickly take notice of the spreading worm. To put it simply: a stale hit-list will slow 
down the spreading worm, and make it visible to firewalls and Intrusion Detection Sys-
tems. 
 
1.2 Emulation-based polymorphic attack detection 
 
To protect themselves against malicious intruders, organizations usually employ Net-
work-level Intrusion Detection Systems (NIDSes) in their gateways to the Internet. NID-
Ses, inspect all incoming traffic against a preloaded set of known attack signatures (i.e., 
attack rules) in order to see whether any network packet(s) match any of the attack signa-
tures. As soon as the NIDSes find network packets which match any one of the attack 
signatures, they log the offending packets and alert the system administrators of the intru-
sion attempt. 
 
Although IDSes have been successfully used to identify and prevent traditional attacks, 
they are getting increasingly less effective when faced with the next generation of poly-
morphic and metamorphic worms for several reasons. First, traditional Intrusion Detec-
tion Systems operate using predefined attack signatures, which means that they cannot 



detect previously unknown (“zero day”) attacks for which no signature exists. Second, as 
organizations start deploying state-of-the-art detection technology, attackers are likely to 
react by employing advanced evasion techniques, such as polymorphism and metamor-
phism, to defeat these defenses.  
 
In contrast to previous work, in this project we explore the approach of emulation-based 
polymorphic attack detection, a novel approach for the detection of previously unknown 
polymorphic attacks, which is based on the actual execution of attack data on a CPU 
emulator. Our approach does not rely on any exploit or vulnerability specific signatures, 
which allows the detection of previously unknown attacks. The main principle of the ap-
proach is the use of a generic heuristic that matches the runtime behavior of polymorphic 
shellcodes. At the same time, the actual execution of the attack code on a CPU emulator 
makes it robust to evasion techniques such as highly obfuscated or self-modifying code. 
Furthermore, each shellcode is detected separately, which makes it effective against tar-
geted attacks. 
 



2. IP Address Space Randomization 
 
Worms and viruses are widely regarded to be one of the major security threats facing the 
Internet today. Incidents such as Code Red [CODERED01, MOORE02] and Slammer 
[SLAMMER03] have clearly demonstrated that worms can infect tens of thousands of 
computers in less than half an hour, a timescale where human intervention is unlikely to 
be feasible. More recent research studies have estimated that worms can infect as many 
as a million hosts in less than two seconds [STANIFORD04, STANIFORD02, 
WEAVER04]. Unlike most of the currently known worms that find their victims by tar-
geting random IP addresses in search for vulnerable hosts, these extremely fast worms 
rely on hitlists, precomputed lists of vulnerable targets, in order to spread efficiently. 
 
We have considered the question of whether it is possible to defend against hitlist worms. 
We first examine strategies for building hitlists and how effective these strategies can be. 
We observe that hitlists tend to decay naturally for various reasons, as hosts get discon-
nected or change addresses, and applications are started and shut down. A rapidly decay-
ing hitlist is likely to decrease the spread rate of a worm. It may also increase the number 
of unsuccessful connections it initiates, and may thus increase exposure of the worm to 
scan-detection methods. Starting with this observation about hitlist decay, it is natural to 
ask if it is possible to intentionally induce hitlist decay, and we examine the possibility of 
achieving this through network address space randomization (NASR). This technique is 
inspired by instruction address randomization that has been proposed to protect against 
code injection attacks at the compiler level[GAURAV03]. It is also similar in principle to 
the “IP hopping” mechanism presented in [ATIG03], whose goal is to confuse targeted 
attacks. We apply the same basic idea to the specific context of defending against hitlist 
worms. In its simplest form, network address space randomization can be provided by 
adapting dynamic IP address allocation services such as DHCP to force more frequent 
address changes. This simple approach may be able to protect enabled networks against 
hitlist worms, and, if deployed at a large enough scale, may be able to significantly ham-
per their spread. 
 
2.1 Hitlists 
 
Instead of attempting to infect random targets, a worm could first determine a large vul-
nerable population before it starts spreading. The worm creator can assemble a list of po-
tentially vulnerable machines prior to releasing the worm, for example, through a slow 
port scan. The list of known vulnerable hosts is called a hitlist. Using hitlists, worms do 
not need to waste time scanning for potential targets during the time of the attack, and 
will not generate as many unsuccessful 
connections as when scanning randomly. This allows them to spread much faster, and it 
also makes them less visible to scan-based worm detection tools. A hitlist can be either a 
collection of IP addresses, a set of DNS names or a set of Distributed Hash Table identi-
ties (for infecting DHT systems irrelevantly of the network infrastructure). 
 
There are many ways for building hitlists. Random scanning can be used to compile a list 
of IP addresses that respond to active probing. Since the addresses will not be used im-



mediately, the worm author can use so-called stealth, low rate, scanning techniques to 
make the scan pass unnoticed. On the other hand, if the duration of the low-rate scanning 
phase is very long, some IP addresses will eventually expire. Hitlists of Web servers can 
be assembled by sending queries to search engines and by harvesting Web server names 
off the replies. Similar single-word queries can also be sent to DNS servers in order to 
validate web server names and find their IP addresses. Interestingly enough, these types 
of scans can be used to easily create large lists of web servers, and are very likely to go 
unnoticed. 
 
 

Figure 1: Decay of addresses using random scan-
ning 

 
Figure 2: Decay of addresses harvested by query-
ing a popular web search engine 

 
 
To explore the design space of network address space randomization we first need to 
consider some basic hitlist characteristics, such as the speed at which a hitlist can be con-
structed, the rate at which addresses already change (without any form of randomization), 
and how address space is allocated and utilized. We perform measurements on the Inter-
net to obtain a clearer picture of these characteristics. 
 
2.1.1 Random scanning 
 
We determine the effectiveness of random scanning for building hitlists. We first gener-
ate a list of all /16 prefixes that have a valid entry with the whois service, in order to in-
crease scan success rates and avoid reserved address space. We then probe random tar-
gets within those prefixes using ICMP ECHO messages. Using this approach, we gener-
ated a hitlist of 20,000 addresses. Given this hitlist, we probe each target in the hitlist 
once every hour for a period of two weeks. Every probe consists of four ICMP ECHO 
messages spaced out over the one-hour run in order to reduce the probability of acciden-
tally declaring an entry stale because of short-term congestion or connectivity problems. 
 
The results of the ICMP ECHO experiment are shown in Figure 1. We observe that the 
hitlist decays rapidly during the first day, and continues to decay, albeit very slowly, over 
the rest of the two-week run. Overall, the decay of the hitlist slows down over time, 
reaching an almost stable level of 75% of hitlist nodes reachable. 
 



2.1.2 Search-engine harvesting 
 
Querying a popular search engine for the or similar keywords returns hundreds of mil-
lions of results. Retrieving a thousand results gave 612 unique alive hosts and 30 dead 
hosts. Most search engines restrict the number of results that can be retrieved, but the at-
tacker can use multiple keywords, either randomly generated or taken from a dictionary. 
Figure 2 shows the decay of the hitlist created using the search engine results. We ob-
serve that, compared to the other address sources, the search engine results are very sta-
ble. This was expected, since web servers have to be online and use stable addresses. It 
does not mean, however, that addresses retrieved through search engines are better suited 
for attackers. Depending on the vulnerability at hand, unprotected, client PCs, such as 
those returned by crawling peer-to-peer networks may be preferred. 

2.2 Network-address space randomization 
 
The goal of network address space randomization (NASR) is to force hosts to change 
their IP addresses frequently enough so that the information gathered in hitlists is ren-
dered stale by the time the hitlist-based worm is unleashed. To illustrate the basic idea 
more formally, consider an abstract system model with an address space R= {1,2,…,n}, a 
set of hosts H = {h1,…hm} where m<n, and a function A that maps all hosts hk to ad-
dresses A(hk) = r , where r belongs to R. Assume that at time ta, the attacker can (in-
stantly) generate a hitlist X containing the addresses of hosts that are live and vulnerable 
at that time. If the attack is started at time tx and all hosts in X are still live and vulnerable 
and have the same address as at time ta then the worm can very quickly infect |X|  hosts. 
 
In a system implementing NASR, consider that at time tb where  ta < tb <tx , all hosts are 
assigned a new address from R. Thus, at the time of the attack the probability that a hitlist 
entry xk still corresponds to a live host is p = m/n and thus the attacker will be able to in-
fect (m/n)|X| hosts. Besides reducing the number of successfully infected nodes in the 
hitlist, the attack will also result in a fraction 1-(m/n) of all attempts failing (which may 
be detectable using existing techniques). In this simple model, the density m/n of the ad-
dress space seems to be a crucial factor in determining the effectiveness of NASR. So far 
we have assumed a homogeneous set of nodes, all with the same vulnerability and prob-
ability of getting infected. If only a subset of the host population is vulnerable to a certain 
type of attack, then the effectiveness of NASR in reducing the fraction of infected hitlist 
nodes and the number of failed attempts is proportionally higher.  
 
2.2.1 Practical considerations  
 
The model we presented illustrates the basic intuition of how NASR can affect a hitlist 
worm. Mapping the idea to the reality of existing networks requires us to look into sev-
eral practical issues. First, random assignment of an address from a global IP address 
space pool is not practical for several reasons: (i) it would explode the size of routing ta-
bles, the number of routing updates, and the frequency of recomputing routes. (ii) it 
would result in tremendous administrative overhead for reconfiguring mechanisms that 
make address-based decisions, such as those based on access lists, and (iii) it requires 
global coordination for being implemented and is thus less practical. The difficulty of 



implementing NASR decreases as we restrict its scope to more local regions. Each AS 
could implement AS- or prefix-level NASR, but this would still create administrative dif-
ficulties with interior routing and access lists. It seems that a reasonable strategy would 
be to provide NASR at the subnet-level, although this does not completely remove the 
problems outlined above. For instance, access lists would need to be reconfigured to op-
erate on DNS names and DNS would need to be dynamically updated when hosts change 
addresses. Second, some nodes cannot change addresses and those that may not be able to 
do so as frequently as we would want. The reason for this is that addresses have first-
class transport- and application-level semantics. For instance, DNS server addresses are 
usually hardcoded in system configurations. Even for DHCP-configured hosts, changing 
the address of a DNS server would require synchronizing the lease durations so that the 
DNS server can change its address at exactly the same time when all hosts refresh their 
DHCP leases. While technically feasible, this seems too complex to implement and such 
complexity should rather be avoided. Similar constraints hold for routers. Generally, all 
active TCP connections on a host that changes its address would be killed, unless connec-
tion migration techniques such as [WILLIAMSON02, BARATTO04] are used. Such 
techniques are not widely deployed yet and it is unrealistic to expect that they will be de-
ployed soon enough to be usable for the purposes of NASR.  
 

 
Figure 3 Subnet address space utilization 

 
Fortunately, many applications are designed to deal with occasional connectivity loss by 
automatically reconnecting and recovering from failure. For such applications, we can 
assume that infrequent address changes can be tolerated. Examples of these applications 
are many P2P clients, like Kazaa and DirectConnect, Windows/SAMBA sharing (when 
names are used), messengers, chat clients, etc. However, tolerance does not always come 
for free: frequent address changes may result in churn in DHT-based applications, and 
would generally have the side-effect of increasing stale state in other distributed applica-
tions, including P2P indexing and Gnutella-like host caches. Finally, some applications 
are even less tolerant to failures. For instance, NFS clients often hang when the server is 
lost, and do not transparently re-resolve the NFS server address from DNS before recon-
necting. There exist ways to make systems more robust to address changes. Rocks 
[BARATTO04] is one solution providing reliable sockets for protecting applications sen-
sitive to IP address changes. However, it must be present at both ends of the connection, 



so it is not practical for connections with external third parties. In a LAN environment, a 
similar solution using a “reverse NAT” box may be applicable in some cases, with the 
client host being oblivious to address changes, and the NAT middle box making sure that 
address changes do not affect applications. However, this too seems to require an infra-
structure overhaul that we would prefer to avoid. All these practical constraints suggest 
that NASR should be implemented very carefully. A plausible scenario would involve 
NSR at the subnet level, and particularly for client hosts in DHCP-managed address 
pools. 
 
2.2.2 Subnet address space utilization 
 
The feasibility and effectiveness of NASR depend on the fraction of unused addresses in 
NASR-enabled subnets. Performing randomization on a sparse subnet will result in more 
connection failures for the hitlist worm compared to a dense subnet. Such failures could 
expose the worm as they could be picked up by scan-detection mechanisms. In a dense 
subnet with homogeneous systems (e.g., running the same services) the worm is more 
likely to succeed in infecting a host, even if the original host recorded in the hitlist has 
actually changed its address. Finally, in the extreme (and probably rare) case of a subnet 
that is always fully utilized, there will never be a free address slot to facilitate address 
changes. We attempt to get an estimate of typical subnet utilization levels. Because of the 
high scanning activity, we cannot perform this experiment globally without tripping a 
large number of alerts. We therefore opted for scanning five /16 prefixes that belong to 
FORTH, the University of Crete and a large ISP, after first obtaining permission by the 
administrators of the networks. We performed hourly scans on all prefixes using ICMP 
ECHO messages over a period of one month. A summary of the results is shown in Fig-
ure 3. For simplicity, we assume that all prefixes are subnetted in /24’s. We see that many 
subnets were completely dark with no hosts at all (not even a router). Nearly 30% of the 
subnets in two ISP prefixes were totally empty, while for the FORTH and UoC the per-
centage reaches 70%. This means that swapping subnets would likely be an effective 
NASR policy, but unfortunately it is not practical, as discussed in previous section. We 
also see that 95% of these subnets have less than 50% utilization and the number of 
maximum live hosts observed does not exceed 100. If subnet utilization at the global 
level is similar to what we see in our limited experiment, then NASR at the level of /24 
subnets is likely to be quite effective, as there is sufficient room to move hosts around, 
reducing the effectiveness of the worm and causing it to make failed connections. 
 
 
 
 
 
 
 
 
 



3. Emulation-based Polymorphic Attack Detection 
 
The primary aim of an attacker or an Internet worm is to gain complete control over a 
target system. This is usually achieved by exploiting a vulnerability in a service running 
on the target system that allows the attacker to divert its flow of control and execute arbi-
trary code. The execution path of the vulnerable service can be diverted using several ex-
ploitation methods, such as buffer overflows, integer overflows, format string abuse, and 
arbitrary data corruption. The code that is executed after hijacking the instruction pointer 
is usually provided as part of the attack vector. Although the typical action of the injected 
code is to spawn a shell (hereby dubbed shellcode), the attacker can structure it to per-
form arbitrary actions under the privileges of the service that is being exploited [SK04]. 
For example, the “shellcode” of recent worms usually just connects back to the previous 
victim, downloads the main body of the worm, and executes it. In this work we use the 
term shellcode to refer to malicious injected code with any purpose. 
 
Significant progress has been made in recent years towards detecting previously un-
known code injection attacks at the network level [KIM04, SINGH04, NEWSOME05, 
TANG05, WANG04, KRUEGEL05, CHINCHANI05, WANG06, LI06]. However, as 
organizations start deploying state-of-the-art detection technology, attackers are likely to 
react by employing advanced evasion techniques, such as polymorphism and metamor-
phism, known from the virus scene since the early 1990s [SZOR05], to defeat these de-
fenses. 
 
Polymorphic shellcode engines create different forms of the same initial shellcode by en-
crypting its body with a different random key each time, and by prepending to it a de-
cryption routine that makes it self-decrypting. Since the decryptor itself cannot be en-
crypted, some intrusion detection systems rely on the identification of the decryption rou-
tine of polymorphic shellcodes. While naive encryption engines produce constant decryp-
tor code, advanced polymorphic engines mutate the decryptor using metamorphism 
[SZOR01], which collectively refers to techniques such as dead-code insertion, code 
transposition, register reassignment, and instruction substitution [CHRISTO-
DORESCU03], making the decryption routine difficult to fingerprint. 
 
A major outstanding question in security research and engineering is thus whether we can 
proactively develop mechanisms for the automatic containment of advanced polymorphic 
attacks. While results have been promising, and some approaches can cope with limited 
polymorphism, when polymorphism and metamorphism is combined with advanced eva-
sion techniques like self-modifying code, as we demonstrate in the following, most of the 
existing proposals can be easily defeated. 
 
3.1 Static Analysis Resistant Polymorphic Shellcode 
 
Several research efforts have turned to static binary code analysis for detecting previously 
unknown polymorphic code injection attacks at the network level [KRUEGEL05, 
CHINCHANI05, WANG06, TOTH02, AKRITIDIS05, PAYER05]. These approaches 
treat the input network stream as potential machine code and analyze it for signs of mali-



cious behavior. The first step of the analysis involves the decoding of the binary machine 
instructions into their corresponding assembly language representation, a process called 
disassembly. Some methods rely solely to disassembly for identifying long instruction 
chains that may denote the existence of a NOP sled [TOTH02, AKRITIDIS05] or shell-
code [PAYER05]. After the code has been disassembled, some techniques derive further 
control or data flow information that is then used for the discrimination between shell-
code and benign data [KRUEGEL05, CHINCHANI05, WANG06]. 
 
However, after the flow of control reaches the shellcode, the attacker has complete free-
dom to structure it in a complex way that can thwart attempts to statically analyze it. In 
this section, we discuss ways in which polymorphic code can be obfuscated for evading 
network-level detection methods based on static binary code analysis. 
 
Note that the techniques presented here are rather trivial, compared to elaborate binary 
code obfuscation methods [LINN03, AYCOCK05, VENABLE05], but powerful enough 
to illustrate the limitations of detection methods based on static analysis. Advanced tech-
niques for complicating static analysis have also been extensively used for tamper-
resistant software and for preventing the reverse engineering of executables, as a defense 
against software piracy [COLLBERG02, WANG00, MADOU05]. 
 
3.1.1 Thwarting Disassembly 
 
There are two main disassembly techniques: linear sweep and recursive traversal 
[SCHWARZ02]. Linear sweep begins with the first byte of the stream and decodes each 
instruction sequentially, until it encounters an invalid opcode or reaches the end of the 
stream. The main advantage of linear sweep is its simplicity, which makes it very light-
weight, and thus an attractive solution for high-speed network-level detectors. 
 
Since the IA-32 instruction set is very dense, with 248 out of the 256 possible byte values 
representing a legitimate starting byte for an instruction, disassembling random data is 
likely to give long instruction sequences of seemingly legitimate code [PRASAD03]. The 
main drawback of linear sweep is that it cannot distinguish between code and data em-
bedded in the instruction stream, and incorrectly interprets them as valid instructions 
[KRUEGEL04]. An attacker can exploit this weakness and evade detection methods 
based on linear sweep disassembly using well-known anti-disassembly techniques. The 
injected code can be obfuscated by interspersing junk data among the exploit code, not 
reachable at runtime, with the purpose to confuse the disassembler. Other common anti-
disassembly techniques include overlapping instructions and jumping into the middle of 
instructions [COHEN93]. 
 
The recursive traversal algorithm overcomes some of the limitations of linear sweep by 
taking into account the control flow behavior of the program. Recursive traversal oper-
ates in a similar fashion to linear sweep, but whenever a control transfer instruction is en-
countered, it determines all the potential target addresses and proceeds with disassembly 
at those addresses recursively. For instance, in case of a conditional branch, it considers 
both the branch target and the instruction that immediately follows the jump. In this way, 



it can “jump around” data embedded in the instruction stream which are never reached 
during execution. 
 

 
Figure 4: Disassembly of the decoder produced by the Countdown shellcode encryption engine using 
(a) linear sweep and (b) recursive traversal. 
 
Figure 4 shows the disassembly of the decoder part of a shellcode encrypted using the 
Countdown encryption engine of the Metasploit Framework [METASPLOIT06] using 
linear sweep and recursive traversal. The code has been mapped to address 0x0000 for 
presentation purposes. The target of the call instruction at address 0x0003 lies at 
address 0x0007, one byte before the end of call, i.e., the call instruction jumps to 
itself. This tricks linear disassembly to interpret the instructions immediately following 
the call instruction incorrectly. In contrast, recursive traversal follows the branch tar-
get and disassembles the overlapping instructions correctly. 
 
However, the targets of control transfer instructions are not always identifiable. Indirect 
branch instructions transfer control to the address contained in a register operand and 
their destination cannot be statically determined. In such cases, recursive traversal also 
does not provide an accurate disassembly, and thus, an attacker could use indirect 
branches extensively to hinder it. Although some advanced static analysis methods can 
heuristically recover the targets of indirect branches, e.g., when used in jump tables, they 
are effective only with compiled code and well-structured binaries [SCHWARZ02, 
KRUEGEL04, CIFUENTES95, BALAKRISHNAN04]. A motivated attacker can con-
struct highly obfuscated code that abuses any assumptions about the structure of the code, 
including the extensive use of indirect branch instructions, which impedes both disas-
sembly methods. 
 
3.1.2 Thwarting Control and Dataflow Analysis 
 
Once the code has been disassembled, some approaches analyze the code further using 
control flow analysis, by extracting its control flow graph (CFG). The CFG consists of 
basic blocks as nodes, and potential control transfers between blocks as edges. Kruegel et 
al. [KRUEGEL05] use the CFG of several instances of a polymorphic worm to detect 
structural similarities between different mutations. Chinchani et al. [CHINCHANI05] 
differentiate between data and exploit code in network streams based on the control flow 
of the extracted code. 
 



SigFree, proposed by Wang et al. [WANG06], uses both control and data flow analysis to 
discriminate between code and data. Data flow analysis examines the data operands of 
instructions and tracks the operations that are performed on them within a certain code 
block. After the extraction of the control flow graph, SigFree uses data flow analysis 
techniques to prune seemingly useless instructions, aiming to identify an increased num-
ber of remaining useful instructions that denote the presence of code. 
 
However, even if a precise approximation of the CFG can be derived in the presence of 
indirect jumps or other anti-disassembly tricks, a motivated attacker can still hide the real 
CFG of the shellcode using self-modifying code, a much more powerful technique. Self-
modifying code modifies its own instructions dynamically at runtime. Although payload 
encryption is also a form of self-modification, in this section we consider modifications 
to the decoder code itself, which is the only shellcode part exposed to static binary code 
analysis. 
 
Since self-modifying code can transform almost any instruction of itself to a different in-
struction, an attacker can construct a decryptor that will eventually execute instructions 
that do not appear in the initial code image, on which static analysis methods operate on. 
Thus, crucial control transfer or data manipulation instructions can be concealed behind 
fake instructions, specifically selected to hinder control and data flow analysis. The real 
instructions will be written into the shellcode’s memory image while it is executing, and 
thus are inaccessible to static binary code analysis methods. 
 

 
Figure 5: A modified, static analysis resistant version of the Countdown decoder. 

 
A very simple example of this technique, also known as “patching,” is presented in Fig. 
5, which shows the recursive traversal disassembly of a modified version of the Count-
down decoder presented in Fig. 4. There are two main differences: an add instruction 
has been added at address 0x000A, and the loop 0xA instruction has been replaced 
by add bh,dl. At first sight, this code does not look like a polymorphic decryptor, 
since the flow of control is linear, without any backward jumps that would form a decryp-
tion loop. However, in spite of the intuition we get by statically analyzing the code, the 
code is indeed a polymorphic decryptor which decrypts the encrypted payload correctly, 
as shown by the execution trace of Fig. 6. 
 



 
Figure 6: Execution trace of the modified Countdown decoder. 

 
 
The decoder starts by initializing ecx with the value 0x7F, which corresponds to the 
encoded payload size minus one. The call instruction sets the instruction pointer to the 
relative offset -1, i.e., the inc ecx instruction at address 0x0007. Pop then loads 
the return address that was pushed in the stack by call in ecx. These instructions are 
used to find the absolute address from which the decoder is executing. 
 
The crucial point is the execution of the add [esi+0xA],0xE0 instruction. The ef-
fective address of the left operand corresponds to address 0x0012, so add will modify 
its contents. Initially, at this address is stored the instruction add bh,dl. By adding the 
value 0xE0 to this memory location, the code at this location is modified and add 
bh,dl is transformed to loop 0xe. Thus, while the decryptor is executing, as soon as 
the instruction pointer reaches the address 0x0012, the instruction that will actually be 
executed is loop 0xe. 
 
Even in this simple form, the above technique is very effective in obfuscating the real 
CFG of the shellcode. Indeed, as shown in Fig. 7, a slight self-modification of just one 
instruction results to significant differences between the CFG derived using static analy-
sis, and the actual CFG of the code that is eventually executed. If such self-modifications 
are applied extensively, then the real CFG can effectively be completely concealed. Go-
ing one step further, an attacker could implement a polymorphic engine that produces de-
cryptors with arbitrarily fake CFGs, different in each shellcode instance, for evading de-
tection methods based on CFG analysis. This can be easily achieved by placing fake con-
trol transfer instructions which during execution are overwritten with other useful instruc-
tions. Instructions that manipulate crucial data can also be concealed in the same manner 
in order to hinder data flow analysis. Static binary code analysis would need to be able to 
compute the output of each instruction in order to extract the real control and data flow of 
the code that will be eventually executed. 
 



 
Figure 7: Control flow graph of the modified Countdown decoder (a) based on the code derived using 
recursive tra-versal disassembly, and (b) based on its actual execution. 
 
 
3.2 Emulation-based Polymorphic Shellcode Detection 
 
Carefully crafted polymorphic shellcode can evade detection methods based on static bi-
nary code analysis. Using anti-disassembly techniques, indirect control transfer instruc-
tions, and most importantly, self-modifications, static analysis resistant polymorphic 
shellcode will not reveal its actual form until it is eventually executed on a real CPU. 
This observation motivated us to explore whether it is possible to detect such highly ob-
fuscated shellcode by actually executing it on a CPU emulator. 
 
3.2.1 Approach 
 
Our goal is to detect network streams that contain polymorphic exploit code by passively 
monitoring the incoming network traffic. Each request to some network service hosted in 
the protected network is treated as a potential attack vector. The detector attempts to exe-
cute each incoming request in a virtual environment as if it was executable code. Depend-
ing on the execution behavior, we can differentiate between benign data and polymorphic 
shellcode. Besides the NOP sled, which might not exist at all [23], the only executable 
part of polymorphic shellcodes is the decryption routine. Therefore, the detection algo-
rithm focuses on the identification of the decryption process that takes place during the 
initial execution steps of a polymorphic shellcode. 
 
In this work, we focus on the detection of polymorphic shellcodes. The execution of a 
polymorphic shellcode can be conceptually split in two sequential parts: the execution of 
the decryptor, and the execution of the actual payload. The accurate execution of the pay-
load, which usually includes several advanced operations such as the creation of sockets 
or files, would require a complete virtual machine environment, including an appropriate 



OS. In contrast, the decryptor is in essence a series of machine instructions that perform a 
certain computation over the memory locations where the encrypted shellcode has been 
injected. This allows us to simulate the execution of the decryptor using merely a CPU 
emulator. The only requirement is that the emulator should be compatible with the hard-
ware architecture of the vulnerable host. For our prototype, we have focused on the IA-32 
architecture. 
 
The construction of polymorphic shellcodes conforms to several restrictions that allow us 
to simulate the execution of the decryptor part, even without having any further informa-
tion about the context in which it is destined to run. In the remainder of this section we 
discuss these restrictions. 
 
3.2.1.1 Position-independent code 
 
In a dynamically changing stack or heap, the exact memory location where the shellcode 
will be placed is not known in advance. For this reason, any absolute addressing is a-
voided and reliable shellcode is made completely relocatable, in order to run from any 
memory position. Otherwise, the exploit becomes fragile [1]. For instance, in case of 
Linux stack-based buffer overflows, the absolute address of the vulnerable buffer varies 
between systems, even for the same compiled executable, due to the different environ-
ment variables that are stored in the beginning of the stack. This position-independent 
nature of shellcode allows us to map it in an arbitrary memory location and start its exe-
cution from there. 
 
3.2.1.2 GetPC code 
 
Both the decryptor and the encrypted payload are part of the injected vector, with the de-
cryptor stub usually prepended to the encrypted payload. Since the absolute memory ad-
dress of the injected shellcode cannot be accurately predicted in advance, the decoder n-
eeds to somehow find a reference to this exact memory location in order to decrypt the 
encrypted payload.  
 
To this end, shellcodes take advantage of the CPU program counter (PC, or EIP in the 
IA-32 architecture). During the execution of the decryptor, the PC points to the decryptor 
code, i.e., to an address within the memory region where the decryptor, along with the 
encrypted payload, has been placed. However, the IA-32 architecture does not provide 
any EIP-relative memory addressing mode,1 as opposed to instruction dispatch. Thus, the 
decryptor cannot use the PC directly to reference to the memory locations of the en-
crypted payload in order to modify it. Instead, the decryptor first loads the current value 
of the PC to a register, and then uses this value to compute the absolute address of the 
payload. The code that is used for retrieving the current PC value is usually referred to as 
the “getPC” code. 
 
The simplest way to read the value of the PC is through the use of the call instruction. 
The intended use of call is for calling a procedure. When the call instruction is exe-
                                                 
1 The IA-64 architecture supports a RIP-relative data addressing mode. RIP stands for the 64bit instruction 



cuted, the CPU pushes the return address in the stack, and jumps to the first instruction of 
the called procedure. The return address is the address of the instruction immediately fol-
lowing the call instruction. Thus, the decryptor can compute the address of the en-
crypted payload by reading the return address from the stack and adding to it the appro-
priate offset in order to reference the payload memory locations. This technique is used 
by the decryptor shown in Fig. 4. The encrypted payload begins at address 0x0010. 
Call pushes in the stack the address of the instruction immediately following it 
(0x0008), which is then popped to esi. The size of the encrypted payload is computed 
in ecx, and the effective address computation [esi+ecx+0x7] in xor corresponds 
to the last byte of the encrypted payload at address 0x08F. As the name of the engine 
implies, the decryption is performed backwards, one byte at a time, starting from the last 
encrypted byte. 
 

 
Figure 8: The decryptor of the PexFnstenvMov engine, which is based on a getPC code that uses the 
fnstenv instruction. 
 
Finding the absolute memory address of the decryptor is also possible using the fstenv 
instruction, which saves the current FPU operating environment at the memory location 
specified by its operand [NOIR03]. The stored record includes the instruction pointer of 
the FPU, which is different than EIP. However, if a floating point instruction has been 
executed as part of the decryptor, then the FPU instruction pointer will also point to the 
memory area of the decryptor, and thus fstenv can be used to retrieve its absolute 
memory address. The same can also be achieved using one of the fstenv, fsave, or 
fnsave instructions. 
 
Figure 8 shows the decoder generated by the PexFnstenvMov engine of the Metasploit 
Framework [METASPLOIT06], which uses an fnstenv-based getPC code. By specify-
ing the memory offset to the fstenv relative to the stack pointer, the absolute memory 
address of the latest floating point instruction fldz can be popped to ebx. By combin-
ing the fstenv-based getPC code with self-modifications, it is possible to construct a 
decoder with no control transfer instruction, i.e., with a CFG consisting of a single node. 
 
A third getPC technique is possible by exploiting the structured exception handling 
(SEH) mechanism of Windows [IONESCU03]. However this technique works only with 
older versions of Windows, and the introduction of registered SEH in Windows XP and 
2003 limits its applicability. From the tested polymorphic shellcode engines, only Alpha2 
[WEVER04] supports this type of getPC, although not by default. 
 



3.2.1.3 Known operand values 
 
Polymorphic shellcode engines produce generic decryptor code for a specific hardware 
platform that runs independently of the OS version of the victim host or the vulnerability 
being exploited. The decoder is constructed with no assumptions about the state of the 
process in which it will run, and any registers or memory locations being used by the de-
coder are initialized on the fly. This allows us to correctly follow its execution from the 
very first instruction, since instruction operands with initially unknown values will even-
tually become available. 
 
For instance, the execution trace of the Countdown decoder in Fig. 6 is always the same, 
independently of the process in which it has been injected. Indeed, the code is self-
contained, which allows us to correctly execute even instructions with non-immediate 
operands which otherwise would be unknown, as shown from the comments next to the 
code. The emulator can correctly initialize the registers, follow stack operations, compute 
all effective addresses, and even follow self modifications, since every operand eventu-
ally becomes known. 
 
3.2.2 Detection Algorithm 
 
In this section we describe in detail the emulation-based polymorphic shellcode detection 
algorithm. The algorithm takes as input a byte stream captured passively from the net-
work, such as a reassembled TCP stream or the payload of a UDP packet, and reasons 
whether it contains polymorphic shellcode. Each input is executed on a CPU emulator as 
if it was executable code. Due to the dense instruction set and the variable instruction 
length of the IA-32 architecture, even non-attack streams can be interpreted as valid ex-
ecutable code. However, such random code usually stops running soon, e.g., due to the 
execution of an illegal instruction, while real polymorphic code is being executed until 
the encrypted payload is fully decrypted. 
 
The pseudo-code of the detection algorithm is presented in Fig. 9 with several simplifica-
tions for brevity. Each input buffer is mapped to a random location in the virtual address 
space of the emulator, as shown in Fig. 10. This corresponds to the placement of the at-
tack vector into the input buffer of a vulnerable process. Before each execution attempt, 
the state of the virtual processor is randomized (line 5). Specifically, the EFLAGS regis-
ter, which holds the flags of conditional instructions, and all general purpose registers are 
assigned random values, except esp, which is set to point to the middle of the stack of a 
supposed process. 
 
3.2.2.1 Running the shellcode 
 
The main routine, emulate, takes as parameters the starting address and the length of 
the input stream. Depending on the vulnerability, the injected code may be located at an 
arbitrary position within the stream. For example, the first bytes of a TCP stream or a 
UDP packet payload will probably be occupied by protocol data, depending on the appli-
cation (e.g., the METHOD field in case of an HTTP request). Since the position of the 



shellcode is not known in advance, the main routine consists of a loop which repeatedly 
starts the execution of the supposed code that begins from each and every position of the 
input buffer (line 3). We call a complete execution starting from position i an execution 
chain from i. 
 

 
Figure 9: Simplified pseudo-code for the detection algorithm. 

 

 
Figure 10: Memory reads during the decryption of a polymorphic shellcode. 

 
 
Note that it is necessary to start the execution from each position i, instead of starting 
only from the first byte of the stream and relying on the self-synchronizing property of 
the IA-32 architecture [KRUEGEL05, CHINCHANI05], since we may otherwise miss 
the execution of a crucial instruction that initializes some register or memory location. 
For example, going back to the execution trace of Fig. 6, if the execution misses the first 
instruction push 0xF, e.g., due to a misalignment or an overlapping instruction placed 
in purpose immediately before push, then the emulator will not execute the decryptor 
correctly, since the value of the ecx register will be arbitrary. Furthermore, the execu-
tion may stop even before reaching the shellcode, e.g., due to an illegal instruction. 
 
For each position pos, the algorithm enters the main execution loop (line 6), in which a 
new instruction is fetched, decoded, the program counter is increased by the length of the 



instruction, and finally the instruction is executed. In case of a control transfer instruc-
tion, upon its execution, the PC might have been changed to the address of the target in-
struction. Since instruction decoding is an expensive operation, decoded instructions are 
stored in a translation cache (line 9). If an instruction at a certain position of the buffer is 
going to be executed again, e.g., as part of a loop body in the same execution chain, or as 
part of a different execution chain of the same input buffer then the instruction is in-
stantly fetched from the translation cache. 
 
3.2.2.2 Detection heuristic 
 
While the execution behavior of random code is undefined, there exists a generic execu-
tion pattern inherent to all polymorphic shellcodes, which allows us to accurately distin-
guish polymorphic code injection attacks from benign requests. Upon the hijack of the 
program counter, the control flow of the vulnerable process is diverted—sometimes 
through a NOP sled—to the injected shellcode, and particular to the polymorphic decryp-
tor. During decryption, the decryptor reads the contents of the memory locations where 
the encrypted payload has been stored, decrypts them, and writes back the decrypted data. 
Hence, the decryption process will result in many memory accesses to the memory region 
where the input buffer has been mapped to. Since this region is a very small part of the 
virtual address space, we expect that memory reads from that area would occur rarely 
during the execution of random code. 
 
Only instructions with a memory operand can potentially result in a memory read from 
the input buffer. This may happen if the absolute address that is specified by a direct 
memory operand, or if the computation of the effective address of an indirect memory 
operand, corresponds to an address within the input buffer. Input streams are mapped to a 
random memory location of the 4GB virtual address space. Additionally, before each 
execution, the CPU registers, some of which normally take part in the computation of the 
effective address, are randomized. Thus, the probability to encounter an accidental read 
from the memory area of the input buffer in random code is very low. In contrast, the de-
cryptor will access tens or hundreds of different memory locations within the input 
buffer, as depicted in Fig. 10, depending on the size of the encrypted payload and the de-
cryption function. 
 
This observation led us to initially choose the number of reads from distinct memory lo-
cations of the input buffer as the detection criterion. For the sake of brevity, we refer to 
memory reads from distinct locations of the input buffer as “payload reads.” For a given 
execution chain, a number of payload reads greater than a certain payload reads threshold 
(PRT) gives an indication for the execution of a polymorphic shellcode. We expected 
random code to exhibit a low payload reads frequency, which would allow for a small 
PRT value, much lower than the typical number of payload reads found in polymorphic 
shellcodes. Preliminary experiments with network traces showed that the frequency of 
payload reads in random code is very small, and usually only a few of the incoming 
streams had execution chains with just one to ten payload reads. However, there were 
rare cases with execution chains that performed hundreds of payload reads. This was usu-
ally due to the accidental formation of a loop with an instruction that happened to read 



hundreds of different memory locations from the input buffer. Since we expected random 
code to exhibit a low number of payload reads, such behavior would have been flagged as 
polymorphic shellcode by our initial criterion, which would result in false positives. 
 
Since one of our primary goals is to have practically zero false positives, we addressed 
this issue by defining a more strict criterion. A mandatory operation of every polymor-
phic shellcode is to find its absolute memory address through the execution of some form 
of getPC code. This led us to augment the detection criterion as follows: if an execution 
chain of an input stream executes some form of getPC code, followed by PRT or more 
payload reads, then the stream is flagged to contain polymorphic shellcode.  
 
Another option for enhancing the detection heuristic would be to look for linear payload 
reads from a contiguous region of the input buffer. However, this heuristic can be tricked 
by splitting the encrypted payload into nonadjacent parts which can then be decrypted in 
random order [PERRIOT02]. 
 
3.2.2.3 Ending execution 
 
An execution chain may end for one of the following reasons: (i) an illegal or privileged 
instruction is encountered, (ii) the control is transferred to an invalid or unknown memory 
location, or (iii) the number of executed instructions has exceeded a certain threshold. 
 

• Invalid instruction. The execution may stop if an illegal or privileged instruction 
is encountered (line 10). Since privileged instructions can be invoked only by the 
OS kernel, they cannot take part in the normal shellcode execution. Although an 
attacker could intersperse invalid or privileged instructions in the injected code to 
hinder detection, these should come with corresponding control transfer instruc-
tions that would bypass them during execution—otherwise the shellcode would 
not execute correctly. In that case, the emulator will also follow the real execution 
of the code, so such instructions will not cause any inconsistency. At the same 
time, privileged or illegal instructions appear relatively often in random data, 
helping this way the detector to distinguish between benign requests and attack 
vectors. 

 
• Invalid memory location. Normally, during the execution of the decoder, the 

program counter will point to addresses of the memory region of the input buffer 
where the injected code resides. However, highly obfuscated code could use the 
stack for storing some parts, or all of the decrypted code, or even for “producing” 
useful instructions on the fly, in a way similar to the self-modifications presented 
in previous sections. Thus, the flow of control may jump from the original code of 
the decryptor to some generated instruction in the stack, then jump back to the in-
put buffer, and so on. In fact, since the shellcode is the last piece of code that will 
be executed as part of the vulnerable process, the attacker has the flexibility to 
write in any memory location mapped in the address space of the vulnerable proc-
ess [OBSCOU03]. Although it is generally difficult to know in advance the con-
tents of a certain memory location, since they usually vary between different sys-



tems, it is easier to find virtual memory regions that are always mapped into the 
address space of the vulnerable process. For example, if address space randomiza-
tion is not applied extensively, the attacker might know in advance some memory 
regions of the stack or heap that exist in every instance of the vulnerable process. 

 
• Execution threshold. There are situations in which the execution of random code 

might not stop soon, or even not at all, due to large code blocks with no backward 
branches that are executed linearly, or due to the occurrence of backwards jumps 
that form seemingly “endless” or infinite loops. In such cases, an execution 
threshold (XT) is necessary for avoiding extensive performance degradation or 
execution hang ups (line 16). An attacker could exploit this and evade detection 
by placing a loop before the decryptor which would execute enough instructions 
to exceed the execution threshold before the code of the actual decryptor is 
reached. We cannot simply skip such loops, since the loop body could perform a 
crucial computation for the further correct execution of the decoder, e.g., comput-
ing the decryption key. Fortunately, endless loops occur with low frequency in 
normal traffic. Thus, an increase in input requests with execution chains that reach 
the execution threshold due to a loop might be an indication of a new attack out-
break using the above evasion method. 

 
 



4. Conclusion 
 
In this document, we have presented the design of the two main defense approaches be-
ing developed in the research project MILTIADES. 
 
IP address space randomization hinders the propagation of hitlist worms by making the 
contents of the precomputed hit list stale, thereby leading the worm to make several un-
successful attempts to compromise non-vulnerable computers. These unsuccessful con-
nections will probably be more visible to firewalls and intrusion detection systems, which 
will quickly take notice of the spreading worm. 
 
Emulation-based polymorphic attack detection is a novel detection approach against pre-
viously unknown polymorphic attacks, which is based on the actual execution of attack 
data on a CPU emulator. The actual execution of the attack code on a CPU emulator 
makes the detector robust to evasion techniques such as highly obfuscated or self-
modifying code, while each shellcode is detected separately, which makes it effective 
against targeted attacks. Furthermore, the detector does not rely on any exploit or vulner-
ability specific signatures, which allows the detection of previously unknown attacks. 
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