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1. Motivation 
 
Over the last few years we have been witnessing an ever-increasing amount of computer 

attacks on the Internet. These attacks, which in the colorful language of computers are 

called computer viruses, computer worms, or simply Internet epidemics, have 

demonstrated that they can compromise a very large number of computers within just a 

few minutes. For example, in January 2003, the Sapphire worm compromised more than 

50,000 computers in less than 30 minutes, and was the first worm to experimentally 

demonstrate that such a rapid spread of an Internet epidemic is possible.  To make 

matters worse, recently, controlled lab experiments have demonstrated that sophisticated 

computer worms can compromise tens of thousands of computers in a matter of seconds 

[SMPW2004]. These Internet epidemics have recently resulted in millions of hours in 

computer downtime, in disabling of banking ATM systems, and in the grounding of 

airplane flights 1 . Worms have already demonstrated that they can penetrate critical 

infrastructures such as nuclear power plants.  

 

Given that worms have demonstrated that they can disable banks, ground flights, and 

penetrate nuclear power plants, we should start thinking what would happen if worms 

start crippling the critical infrastructures on top of which we base our lives, including 

electric power plants, water supplies, fossil fuel tanks, and telecommunication systems. 

 

 

 

                                                 
1 http://www.cnn.com/2003/TECH/internet/01/25/internet.attack/ 



 

2. Problem statement 
 

Worms are able to rapidly propagate on the Internet because they are self-replicating 

programs. That is, computer worms replicate on their own: once released on the Internet 

they do not need our help, or intervention, in order to replicate. As long as there exist 

vulnerable servers on the Internet, a computer worm can propagate by preying on them, 

compromising and devouring one server at-a-time.  

 

In order to compromise, replicate, and propagate on the Internet, all computer worms use 

more-or-less the following procedure:  

 

1. The worm finds a vulnerable server on the Internet 

2. The worm sends to the vulnerable server a specially crafted network packet 

which, when received and acted upon by the server  

a. It  triggers a bug in the vulnerable server’s code,  

b. It alters the server’s execution path, and  

c. It forces the server to start executing code provided (or controlled) by the 

worm.  

3. Once the vulnerable server is compromised, it is then used as a stepping stone in 

order to replicate the worm to other vulnerable servers, starting the cyber from 

step one above all over again.  

 

By indefinitely repeating the above three steps, a worm can potentially compromise all 

the vulnerable servers on the Internet, using each one of them as a stepping stone in the 

process. As long as there exists even a single computer which runs the vulnerable 

software, the worm can still infect the vulnerable computer and propagate. This implies 

that simplistic procedures such as, “rebooting the infected computer” and/or “removing 

the worm” from the infected machine, are not sound approaches to eradicate the worm 

from the cyberspace. The only way to eradicate the worm once and for all, would be to 

completely remove from the Internet all servers running copies of vulnerable software.   



 

Several researchers have already started working on developing methods to identify, 

mitigate, and respond to Internet epidemics as soon as they emerge, and hopefully before 

they manage to compromise (nearly all) vulnerable servers.  

 

2.1 Research Questions 
 

Some of the research approaches are based on the fact that traditionally all instances of a 

computer worm are identical to each other. Indeed, as we have already said, a worm is a 

self-replicating program, that is, a program which replicates (i.e. creates copies of) itself. 

All these copies are usually identical to each other, or at least have very large parts in 

common. Based on the observation that different replicas of the same worm are identical, 

or at least share large common substrings, computer researchers have developed systems 

which identify packets belonging to worms during a worm outbreak, partly, based on the 

overwhelming similarities which exist between different replicas of a computer worm 

[AAM2005, SEVS2004, VSGB2004]. These methods examine all packets in the network 

in order to find frequently occurring substrings, which have not been seen in the past (at 

least in such quantities) belonging to network packets going from several sources to 

several destinations. If they find such substrings, then these may probably be part of a 

new worm.  

 

To evade detection based on similarity patterns, polymorphic worms encrypt their 

payload (i.e. their body) with a different key each time they replicate themselves. 

Therefore, all “replicas” of a polymorphic worm on the Internet will look almost entirely 

different from each other, because their payloads will be encrypted with different keys. 

However, in order to decrypt their malicious payload, polymorphic worms are forced to 

prefix their encrypted body with a non-encrypted decryptor. As soon as the worm gains 

the flow of control of a remote computer, its first step must be to start executing its (non-

encrypted) decryptor which then decrypts the worm’s encrypted body. Obviously, these 

non-encrypted decryptors are usually the Achilles heel of polymorphic worms. 



 

To evade detection through the identification of the non-encrypted identical decryptors, 

worm writers have developed methods which metamorphize the code of the decryptor, a 

line of technical work, which gave birth to what is now known as metamorphic worms.  

Each instance of a metamorphic worm obfuscates its original instructions by using two 

interesting approaches: First, a metamorphic worm substitutes some of its original 

instructions with equivalent (sequences of) instructions, and second, a metamorphic 

worm blends its original instructions by adding to its payload other, often irrelevant, 

instructions. For example, if the code of the worm contains an instruction to multiply a 

register by the number two, a metamorphic worm may achieve the same result (i.e. 

multiply a register by two) by using the equivalent instruction of adding the register to 

itself. To obfuscate its real instructions, a metamorphic worm may also intersperse within 

its code several instructions that operate on registers and/or memory addresses which are 

not actually needed by the worm.  

 

Armed with payload encryption and instruction obfuscation, polymorphic and 

metamorphic worms are much more difficult to detect than their original worm 

counterparts, and have given worm writers a significant head-start compared to security 

scientists. To make matters worse, today there exists little, if any, research which can be 

used to develop systems that are able to detect this new generation of polymorphic and 

metamorphic worms.  

 

 

2.2 State of The Art  

 
Cyber-attacks, as are currently being exemplified by worms and viruses, are a relatively 

recent phenomenon. It wasn’t however, until the CodeRed worm outbreak of 2001 that 

the research community started to realize the real threat of Internet worms and to start 

working in order to advance the research about Internet epidemics [MSB2002]. Based 

partially on experimental evidence provided by the Code Red worm, Staniford et al. 



predicted that even faster worms would follow, and were actually proven true by the 

subsequent release of the Sapphire-Slammer worm in early 2002 [MPS+2003], which 

infected more than 70,000 computers in less than 30 minutes leaving systems 

administrations little, or better yet, not at all, time to react.  

 

In the last few years, researchers have started to work on worm detection and worm 

fingerprinting methods. Early worm detection methods were based on network telescopes 

which by monitoring a large range of unused IP addresses, they were able to observe 

(obviously unsuccessful) connection attempts to those IP addresses, which were usually 

related to some form  of a computer attack [MVS2001]. Network telescopes are 

sometimes complemented by honeypots, i.e. idle computers which neither have any 

ordinary users, nor do they provide any advertised services to the community [LL+2003]. 

Since they provide no obvious service,   honeypots should neither receive not generate 

any traffic.  If honeypots receive traffic, then this is usually the result of an attacker trying 

to compromise the honeypot. If they also start to generate traffic, then this is probably an 

indication that the honeypot has been compromised and is used as a stepping stone to 

compromise more computers. After detecting a worm through port scanning or 

honeypots, it is usually necessary to fingerprint it, that is, to create a signature of the 

worm: a machine readable description which can be used by firewalls and/or Intrusion 

Prevention Systems to detect and block the worm. 

 

Although these methods are effective with detecting traditional worms, their 

effectiveness is questionable in the case of polymorphic and metamorphic worms. There 

have been some attempts to extend them in the case of polymorphic worms the replicas 

of which still have some overlaps [NKS2005], but the effectiveness of such approaches is 

obviously limited when faced with poly- and meta-morphic worms whose replicates do 

not have any common substrings. 

 

In another attempt to improve the performance and accuracy of Network-based Intrusion 

Detection Systems (NIDSes), Dreger et al. have proposed to use a hybrid system where 

NIDSes communicate with Host-based Intrusion Detection Systems (HIDSes) which 



provide information that is not easily available at the network-level [DKPS05]. This 

information includes decryption of network-level encrypted data, and protocol processing 

results.  

 

Finally, to prevent sophisticated attacks hidden in the payload of seemingly innocent 

packets, Microsoft has developed the Shield system which, based on a set of signatures 

(called shields) is able to detect and discard attack packets [WGSZ2004]. 

 

 

 

 

 

 

 

 



 

3. Objectives 
 

The objectives of this project are:  

 

• To contribute towards the development of a second-generation early warning 

system, which will be able to detect and fingerprint polymorphic and 

metamorphic worms.  

 

• To contribute towards the containment of zero-day polymorphic worms by 

designing and developing appropriate mechanisms which will impede the 

spreading rate of such worms by poisoning their intelligence gathering services 

with stale information  

 

• To design and develop a novel defence mechanism, the Application Level 

Intrusion detection System (ALIS) which will explore pioneering ways to detect 

polymorphic and metamorphic worms which can not be otherwise identified at 

the network level.   

 



 

4 Methodology and Research Directions 
 

The following planned work will be a step towards covering the ground lost to worm 

writers, by designing, implementing, and deploying, methods to detect and mitigate 

polymorphic and metamorphic worms.  

 

Recent research efforts indicate that there is no “silver bullet”/single solution to the worm 

problem. It is the purpose of this project to explore techniques that are fundamentally 

different in their principles, and determine how they interact and complement each other 

towards addressing the problem of computer worms. Our contributions revolve around 

the following two research directions:  

 

• IP Address Randomization  

 

• Application-Level Intrusion Detection Systems (ALISes) and Abstract payload 

execution 

 

 

4.1 IP address Randomization 
 

To evade detection during their outbreak, and generate as little traffic as possible, 

sophisticated worms gather information about their targets several weeks before they 

launch their attack. During those weeks they probe a very large number of IP addresses, 

if possible all 4 billions of them available in the Internet today (IP version 4), in order to 

find those hosts which are vulnerable to the planned attack. All vulnerable hosts found, 

are included in a special list of targets, which is frequently referred to as the “hit-list”. 

Instead of attacking computers at random during the outbreak, as naive worms do, 

sophisticated hit-list-based worms only attack computers included in the hitlist and 

therefore (1) they generate the minimum traffic possible, and (2) they do not generate any 



unsuccessful (TCP) Internet connections. Therefore, hit-list-based worms propagate at 

the maximum possible speed, evading their timely detection by worm detection systems. 

 

To slow down the rate of their spread, and if possible neutralize those hit-list worms, we 

propose to conduct research towards mechanisms which will make the contents of the hit 

list stale. Armed with a stale hit list, a worm will not only not be able to successfully 

infect hosts, but it will also make several unsuccessful attempts to compromise non-

vulnerable computers, resulting in several unsuccessful TCP connections. These 

unsuccessful connections will probably be more visible to firewalls and intrusion 

detection systems, which will quickly take notice of the spreading worm. To put it 

simply: a stale hit-list will slow down the spreading worm, and make it visible to 

firewalls and Intrusion Detection Systems.  

 

 

4.2 Application-Level Intrusion Detection Systems 
 

To protect themselves against malicious intruders, organizations usually employ 

Network-level Intrusion Detection Systems (NIDSes) in their gateways to the Internet. 

NIDSes, inspect all incoming traffic against a preloaded set of known attack signatures 

(i.e. attack rules) in order to see whether any network packet(s) match any of the attack 

signatures. As soon as the NIDSes find network packets which match any one of the 

attack signatures, they log the offending packets and alert the system administrators of 

the intrusion attempt. 

 

Although IDSes have been successfully used to identify and prevent traditional attacks, 

they are getting increasingly less effective when faced with the next generation of 

polymorphic and metamorphic worms for several reasons:  

• Traditional Intrusion Detection Systems executing on the network gateway 

usually lack the context in which the incoming network packets will be received 

and acted upon. Therefore, even though they may identify suspicious packets 

which may contain polymorphic and metamorphic worms, NIDSes are not able to 



decide whether these packets will trigger an attack when they will be received by 

the final destination 

• Polymorphic worms, as we have already explained, encrypt their payload, and 

therefore, are difficult to detect. To obfuscate their presence even further, 

polymorphic worms may even make their decryptor dependent on the context 

(e.g. the memory contents) of the receiving application. That is, before starting 

decoding, the decryptor may read the contents of a memory location and use them 

in the decoding process. Since the context of the application within which the 

decryptor will run (i.e. the value of the mentioned memory location) is not known 

at the network level, decrypting the polymorphic worm at network level is very 

difficult, if not impossible.   

 

To overcome the above limitations of the traditional NIDSes, we explore the usefulness 

of Application-Level Intrusion Detection Systems (ALISes), which have several 

advantages compared to NIDSes:  

 

• Access to address space information. ALISes run inside the address space of the 

end-user application and therefore they have access to the appropriate context 

needed to discover what will happen when the network packets are received by 

the end-user application and are acted upon 

• Access to larger computing capacity. By running at several different host 

computers, the aggregate computing capacity available to all ALISes of an 

organization, in total, will probably exceed the computing capacity available to a 

single NIDS. Therefore, ALISes may be able to perform more sophisticated (i.e. 

time consuming) algorithms in the incoming network packets.  

• Access to system-call sequences. Since ALISes run inside the address space of an 

application, the information available to them is not restricted to network packets 

(as the information available to network-level IDSes is restricted to),  but it may 

also include system call sequences, and memory contents. This implies that 

ALISes may be more accurate than NIDSes in their search for Internet epidemics.  



• Richer Signatures. Since the information available to ALISes may be far richer 

than that available to NIDSes, the signatures that can be implemented by ALISes 

may be significantly more elaborate than those of NIDSes. Such signatures may 

include statements about the system calls made by the end user application, the 

memory contents of the end application, the data received by the end user 

application, and so on. On the contrary, the signatures that can be implemented by 

NIDSes are usually restricted to the headers and payload of network packets.  

• More accurate zero-day worm detection. By having access to a wider variety of 

more accurate information, ALISes may be able to detect zero-day cyberattacks 

which evade traditional network-level systems. Such cyberattacks may include 

encrypted (polymorphic) worms, and metamorphic worms.  

 

 

 

 

 

 



 

5 Requirement Analysis 
 
This section lists generic intrusion detection system requirements as well as functionality, 

deployment and performance requirements for a platform implementing a second-

generation early warning system. This platform will be built with the aim to detect and 

fingerprint polymorphic and metamorphic worms. As stated above, we specifically 

investigate the applicability of two mechanisms. Firstly, a mechanism that will impede 

the spreading rate of such worms by poisoning their intelligence gathering services with 

stale information. Secondly, a mechanism that will detect at the application level 

polymorphic and metamorphic worms, which can not be otherwise identified at the 

network level.   

 
 

5.1 Generic Requirements 
 

In the bibliography, the following generic requirements are defined for a good intrusion 
detection system: 

1. A system must recognize any suspect activity or triggering event that could 

potentially be an attack.  

2. Escalating behavior on the part of an intruder should be detected at the earliest 

stage possible.  

3. Components on various hosts must communicate with each other regarding level 

of alert and intrusions detected.  

4. The system must respond appropriately to changing levels of alertness. 

5. The detection system must have some manual control mechanisms to allow 

administrators to control various functions and alert levels of the system.  

6. The system must be able to adapt to changing methods of attack.  

7. The system must be able to handle multiple concurrent attacks. 

8. The system must be scalable and easily expandable as the network changes.  

9. The system must be resistant to compromise, able to protect itself from intrusion. 



10. The system must be efficient and reliable. 

11. The operation of the system should be transparent and straightforward. 

12. The system should not be detectable by an attacker. 

13. The system should correlate data from multiple sources to identify suspicious 

activity and patterns of vulnerability and exploitation.  

14. Analysis capability should be able to operate on historical data 

15. The system should be able to operate in real or near-real time to assess the current 

state of the network. 

16. Detect intrusions specific to a designated area of protection. 

17. Monitoring and scanning systems should have no noticeable effect on normal 

network operations. 

18. Policy-enforcing systems should cause minimal degradation of normal network 

service. 

19. Systems should impose no significant load on local area network (LAN) or wide 

area network (WAN) bandwidth 

20. The system should be engineered to allow easy integration of new functionality 

and capability as threats, technologies, and techniques evolve. 

 

5.2 IP Address Randomization 
 
Initially, investigate different hitlist generation strategies and focus on their effectiveness 

in terms of natural decay rates. An example of a hitlist generation strategy is one where a 

distributed application provide protocol functionality for crawling that can be exploited 

by an attacker to rapidly build hitlists. 

 

Then, consider some basic hitlist characteristics, such as the speed at which a hitlist can 

be constructed, the rate at which addresses already change (without any form of 

randomization), and how address space is allocated and utilized. This will be achieved by 

performing measurements on the Internet. 

 



Research in what form the proposed technique, Network Address Space Randomization 

(NASR), is acceptable in practice to intentionally accelerate hitlist decay. Hitlists tend to 

decay naturally for various reasons, as hosts disconnect and applications are abnormally 

terminated. A rapidly decaying hitlist is likely to decrease the spread rate of a worm. It 

may also increase the number of unsuccessful connections it initiates and may thus 

increase the exposure of the worm to scan-detection methods. 

 

Study the interaction between NASR and other defense mechanisms in more depth. As 

NASR is likely to at least slow down worms, it may provide the critical amount of time 

needed for distributed detectors to kick in, and for reactive approaches to deploy patches 

or short-term filters. Determining whether this is indeed a possibility requires further 

experimentation and analysis. 

 

Investigate ways to avoid assigning an address to a host that has significant overlap in 

services (and potential vulnerabilities) with hosts that recently used the same address. For 

instance, randomization between hosts with different operating systems, e.g., between a 

Windows and a Linux platform appears as a reasonable strategy. 

 

Based on simulations, decide the scope of a NASR implementation. Apparently, this 

technique is more affective if the scope is restricted scope to more local regions (e.g., the 

subnet-level). In general, candidate network segments appear to be those that already 

perform dynamic address allocation, such as DHCP pools for broadband connections, 

laptop subnets, wireless networks. It is pointless to implement NASR behind NATs, as 

the internal addresses have no global significance. It is sufficient to change the address of 

the NAT endpoint (e.g., DSL/home router) to protect the internal hosts. 

 

DNS would need to be dynamically updated when hosts change addresses. Implementing 

NASR requires the DNS name to accurately reflect the current IP address of the host. 

This means that the DNS time-to-live timers need to be set low enough so that remote 

clients and name servers do not cache stale data when an address is changed. The NASR 

mechanism also needs to interact with the DNS server to keep the address records up to 



date. It is reasonable to ask whether this could increase the load on the DNS system, 

given that lower TTLs will negatively affect DNS caching performance. As expected, 

defending against hitlists that are generated very fast requires more frequent address 

changes. 

 

Some nodes cannot change addresses and those that can may not be able to do so as 

frequently as NASR would want. The reason for this is that addresses have first-class 

transport and application level semantics. For instance, DNS server and routers. 

Generally, all active TCP connections on a host that changes its address would be killed, 

unless connection migration techniques are used. Such techniques are not widely 

deployed yet and it is unrealistic to expect that they will be deployed in time to be usable 

for the purposes of NASR. Many applications are not designed to tolerate connection 

failures. Fortunately, many applications are designed to deal with occasional connectivity 

loss by automatically reconnecting and recovering from failure. 

 

Assess the “collateral damage” caused by NASR. The damage depends on how 

frequently the address changes occur, whether hosts have active connections that are 

terminated and whether the applications can recover from the transient connectivity 

problems caused by an address change. 

 

Estimate the typical subnet utilization levels and observe whether NASR continues to be 

effective in slowing down the worm, when deployed in a subset of the network. The 

worm might still infect the non-NASR subnets quite rapidly, but with a slowdown caused 

by the worm failing to infect NASR subnets.  

 

Experiment with IPv4 addresses, as deployed today, and project NASR effectiveness in 

an Ipv6 network. In an IPv6 Internet, the address space is so much bigger that 

randomization could be even more effective. 

 

Assess the constraints that limit the applicability of the proposed approach, such as the 

administrative overhead for managing address changes, services that require static 



addresses and applications that cannot tolerate address changes or suffer performance-

wise when addresses change frequently. 

 

 
 

5.3 Application-Level Intrusion Detection Systems 
 
Design, implement and evaluate detection heuristics that test byte sequences in network 

traffic for properties similar to polymorphism. Speculatively execute potential instruction 

sequences and compare their execution profile against the behavior observed to be 

inherent to polymorphic shellcodes.  

 
Protect effectively against attacks (i.e. generate effective signatures to stop most of  the 

attacks). Protected applications should be able to withstand repetitive attacks at a much 

higher rate than that of unprotected applications. That means better immunity to denial-

of-service attacks. 

 

Generate fast attack signatures, in the order of ten milliseconds time, with just a single 

sample. Speedy signature generation makes it possible to distribute and deploy these 

signatures in the Internet to stop fast-spreading worms. 

 

Low overheads under normal operation. Measure application’s server CPU usage as well 

as throughput and latency, with and without ALIS. Calculate the number of attacks per 

second required to degrade a protected server’s performance to a certain level (e.g. 50% 

availability) and compare with the capacity of an unprotected server under the same type 

of attack. 

 

No false positives. For all the attacks evaluated, minimise or zero any false positives. 

Manually analyse application code to verify the correctness and accuracy of the generated 

signatures. 

 



The method should be applicable to COTS software, without access to source. The 

approach should not require any modifications of the protected server software, or access 

to its source code. 

 

Evaluate ALIS against “real-world” attacks, i.e. use existing exploit code against popular 

applications. 

 

Identify limitations of the proposed method. 

 
 
 
 



 

6 Conclusions 
 
This document presented an overview of the project’s objectives and a list of 

requirements the proposed system will have to meet.  

 

The main objective is the development of a second-generation early warning system, 

which will be able to detect and fingerprint polymorphic and metamorphic worms.  

 

This objective will be met by a) designing and developing appropriate mechanisms which 

will impede the spreading rate of such worms by poisoning their intelligence gathering 

services with stale information and b) designing and developing a defence mechanism 

which will explore ways to detect such worms at the application level because they can 

not be otherwise identified at the network level.   

 

Finally, a list of functionality, deployment and performance requirements was presented. 

The two proposed mechanisms have to meet a number of requirements to effectively 

serve their purpose.  

 

One open question that deserves further research and analysis is how worm creators 

would react to the widespread deployment of NASR and ALIS. There is a real possibility 

that worm creators could come up with other measures to counter those defenses.  
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