

Operational Programme
“Competitiveness”

R&D Cooperations with Organizations of non-European Countries

EAR: Early warning system for automatic detection of Internet-based Cyberattacks
(G.S.R.T. code: ΗΠΑ-022)

D1: “Requirements Analysis”

Abstract: This document analyzes the current status of cyberattacks on the Internet
and their consequenses. A collection of reviews of state-of-the-art solutions relevant
to EAR project and their shortcomings are described. The requirements of the EAR
system are finally defined which include functionality requirements as well as
performance and deployment constrains.

Contractual Date of Delivery 12/07/2004

Actual Date of Delivery 28/07/2004

Delivery Security Class Public

Editors Manolis Petsagourakis
Mixalis Stivaktakis
Periklis Akritidis

Contributors FORTH, GA Tech, FORTHnet

The EAR consortium consists of:

FORTH Coordinator Greece

GA Tech Principal Contractor USA
FORTHnet Principal Contractor Greece

Contents

1. INTRODUCTION ...4

1.1 The need for early warning systems.. 4

2. STATE OF THE ART OF ATTACK DETECTION MECHANISMS8

2.1 IDS categorization .. 8

2.2 Active Monitoring... 8

2.3 Passive Monitoring ... 9

2.4 Honeypots ... 10

2.5 Shortfalls with current IDS .. 11

2.6 The weakness of existing defense mechanisms... 12

2.7 Firewalls vs Intrusion Detection Systems .. 12

3. SYSTEM OVERVIEW..13

3.2 Future worm characteristics.. 14

4. FUNCTIONAL REQUIREMENTS..15

4.1 Attacks detection .. 15

4.2 Detection delay.. 15

4.3 False positives ... 16

4.4 Configuration – customization .. 16

4.5 Security constrains ... 16

4.6 Privacy issues .. 17

4.7 Integration with other systems .. 17

5. PERFORMANCE CONSTRAINS ...18

5.1 Monitoring capacity ... 18

6 DEPLOYMENT...19

6.1 Software and hardware platform.. 19

6.2 Placement .. 19

6.3 Monitored area ... 19

6.4 Software distribution.. 19

6.5 Initial setup and periodic updates ... 19

6.6 Hardware performance requirements .. 19

7. COMPETITIVE ANALYSIS ...20

9. CONCLUSIONS ..21

10. REFERENCES ..22

1. Introduction

As Internet threats appear with increased speed and in greater numbers each day, it is
more important than ever for enterprises or organizations to use tools for monitoring
the traffic and detect threats. The objectives of the early warning system proposed is
to provide a comprehensive view of the internet security landscape. It should alert as
soon as possible network or system administrators of attacks detected with target their
network elements or systems and offer additional analysis about the behavior of this
attack.
 The rest of the document is organized as follows. In the first section the reasons for
the development of the system are analyzed, where by real examples the magnitude of
cyber attacks and their consequences are presented.
 The second section analyzes the current state of the art tools and detection
mechanisms like active monitoring systems, passive monitoring and honeypots. The
weaknesses of existing defense mechanisms like intrusion detection system and
firewalls are discussed.
 Then, the typical worm and future worm characteristics are outlined. The functional
requirements are discussed with an emphasis on the types of worms that are
detectable, the detection delay, the false positives, the configuration of the system
security constrains, privacy issues and how it can be integrated with other systems.
The document continues with a short discussion on the performance constrains and
the system deployment.
 The next section addresses a similar with EAR system commercial product. The
last section concludes the document.

1.1 The need for early warning systems

As networks get faster and as network-centric applications get more complex, our
understanding of the Internet continues to diminish. Nowadays, we frequently
discover, to our surprise, that there exist new aspects of Internet behavior that are
either unknown or poorly understood. A couple of years ago, for example, the world
was surprised to learn that more than 4,000 Denial-of-Service (DoS) attacks are being
launched on the Internet every week. This surprising result attracted the interest of
public and of media together.

 Although at that time lots of people had heard about Denial-of-service attacks, most
of them did not really know that their magnitude was so high. Most of them they were
not simply aware of the wars raging on the Internet. Furthermore, organizations are
increasingly under attack from viruses, hackers and blended threats, with more than
70 new vulnerabilities and 100 new viruses identified each week.
 Besides DoS attacks, malicious self-replicating programs called worms continue to
plague our networks, often causing service disruption and unprecedented damage. For
example, on the January 15th of 2003 at 05:29, the Sapphire (or Slammer) Worm was
launched, exploiting a vulnerability in the software of SQL database servers. Sapphire
infected more than 70,000 computers in less than 30 minutes. Figure 1 shows the
geographic coverage of the Sapphire worm 30 minutes after the worm was released.
We see that the worm infected close to 75,000 computers worldwide including areas
as remote as the Fiji islands and Greenland. Indeed, Sapphire was the first worm to
demonstrate that worms can spread globally at time scales in which human
intervention and response is either limited or in fact not possible.

Figure 1 The geographic coverage of the sapphire worm on January 25th 2003. The photograph is

courtesy ofwww.caida.org.

 Furthermore, during the summer of 2003, the Blaster worm managed to infect
more than 400,000 computers. Although not as rapidly spreading as Sapphire, Blaster
was unique in the following sense: after its original release on the Internet, Blaster
was quickly followed by Welchia, a good worm whose goal was to combat Blaster.
Welchia exploits the same vulnerability as Blaster and after invading a computer
system through this vulnerability, it attempts to patch the system in order to make it
immune to Blaster. After patching a system, Welchia would try to spread and patch
other systems on the local network. Unfortunately, Welchia was overly aggressive in
searching for other vulnerable machines to patch, leading to a situation equivalent to
an internal Denial-of-Service attack, with Welchia-infected computers continuously
probing computers on the local network in an attempt to find whether they are
vulnerable to Blaster. Ironically, it was not Blaster, but Welchia, that caused the most
damage.
 Worms like the Sapphire are usually called flash worms because they have the
potential to conquer the entire Internet within minutes before any human intervention
is possible. Interestingly enough, besides rapidly spreading worms, there also exist
slowly spreading worms: the stealth worms. Stealth worms capitalize on the fact that
automatic worm detection systems usually detect the spread of new worms - not the
worms themselves. This is because new worms contain code unknown to worm
detection systems, and thus can not be detected. Their spread however, is usually
exemplified by a sudden increase in traffic and/or the existence of peculiar traffic
patterns that can be detected. Stealth worms spread very slowly trying to elude
automatic worm detection systems. Masquerading as ordinary traffic, stealth worms
attach themselves to popular programs, such as peer-to-peer file sharing systems, and
propagate along with the ordinary traffic of such programs.
 In addition to worms, viruses are increasingly starting to represent a significant
threat as well. Recent viruses were able to gain access to passwords, bank accounts,
email messages and important personal information. While worms are self-replicating
programs that multiply without any human intervention, viruses usually depend on
human help in order to multiply. Viruses pose as interesting content attached to
innocent-looking email messages, prompting the user to "click" on them. When the
user "clicks" on the attachment, the virus starts executing and taking control of the

local computer. Figure 2 shows the number of viruses as reported by the F-Secure
antivirus software running in numerous systems around the globe.

Figure 2 Number of viruses reported by the F-Secure network. [5]

 One of the most interesting recent viruses, BugBear-B, installed a keyboard logger,
a snooping program that was able to steal passwords and gain access to private
information. Keyboard loggers are able to steal confidential information, such as
credit card numbers, despite the fact that users may take all standard security
precautions when communicating such information over the Internet, such as using
secure socket layer (SSL) enabled services or a similar encryption mechanisms. This
is because secure socket layer and similar mechanisms protect the information from
snoopers that reside outside the user's personal computer, but not from snoopers that
have penetrated the user's personal computer. Indeed, keyboard loggers are able to
steal confidential information before it reaches the secure socket layer, and thus
before it is encrypted
 A closely related and emerging threat to Internet security is "spyware": malicious
programs that, like viruses, install themselves on a user's computer, and report
sensitive information (like online shopping habits, or passwords and credit card
numbers) back to a third party. Spyware is usually distributed as part of an application
(for example, a new P2P client) installed by the unsuspecting user, and while it may
not actively spread like worms and viruses, it introduces a new and significant risk for
online services, as illustrated in a recent analysis.
 Although it is difficult to measure the damage caused by viruses and worms, some
estimates put the cost in the order of billions of dollars. However, this damage may
actually be small compared to what these attacks can potentially do, as illustrated in a
recent study on so-called "Warhol" worms. Such worms can cause massive damage of
unprecedented effect causing severe disruption to the Internet infrastructure and
services. After spreading in less than 15 minutes to most of its potential victims, a
Warhol worm could install itself in startup scripts so that it is always started when the
machine reboots. It could also easily hide any traces of the infection, making it hard to
detect post-facto, while resisting cleanup or patching. After establishing itself to
several millions of computers, the Warhol worm would start a massive Distributed
Denial-of-Service (DDoS) attack to major sites including antivirus sites that may

contain the patch for the Warhol worm, thus hindering users from recovering from the
infection and protecting themselves. Effectively, the described Warhol worm could
shut down the normal operation for most computers connected to the Internet.

 Figure 3 shows the total losses caused by different types of security incidents. As
one can easily notice, the most costly incident is the DoS attacks. DoS attacks is an
issue that is quite often caused by worms. The detection of worms is the primary
objective of the EAR system. DoS attacks is also an issue that the EAR project will
attempt to address

Figure 3 Total losses due to security attacks [2]

2. State of the art of attack detection mechanisms

2.1 IDS categorization

An intrusion detection system (IDS) inspects all inbound and outbound network
activity and identifies suspicious patterns that may indicate a network or system attack
from someone attempting to break into or compromise a system [4].
 There are several ways to categorize an IDS:

• misuse detection vs anomaly detection: in misuse detection, the IDS
analyzes the information it gathers and compares it to large databases of attack
signatures. Essentially, the IDS looks for a specific attack that has already
been documented. Like a virus detection system, misuse detection software is
only as good as the database of attack signatures that it uses to compare
packets against. In anomaly detection, the system administrator defines the
baseline, or normal, state of the network’s traffic load, breakdown, protocol,
and typical packet size. The anomaly detector monitors network segments to
compare their state to the normal baseline and look for anomalies.

• network-based vs host-based systems: in a network-based system, or NIDS,
the individual packets flowing through a network are analyzed. The NIDS can
detect malicious packets that are designed to be overlooked by a firewall’s
simplistic filtering rules. In a host-based system, the IDS examines at the
activity on each individual computer or host.

• passive system vs reactive system: in a passive system, the IDS detects a
potential security breach, logs the information and signals an alert. In a
reactive system, the IDS responds to the suspicious activity by logging off a
user or by reprogramming the firewall to block network traffic from the
suspected malicious source.

2.2 Active Monitoring

Active monitoring is a broad term that collectively describes a family of monitoring
methods based on sending probe packets from a sender towards a (usually
cooperating) receiver. Based on the behavior and response to packet probes, the
sender is able to infer several performance characteristics of the network, including
latency, bandwidth, jitter and error rate. Active monitoring is currently being widely
used in several countries. For example, RIPE NCC has installed more than 50 test
boxes which periodically probe each other to find out the status and performance of
their Internet connection. Besides RIPE NCC, GEANT, the pan-European research
network also conducts performance monitoring through TF-NGN, which will
continue within GN2: the new version of the GEANT network.
 At the other side of the Atlantic, several organizations, including NLANR, CAIDA,
Surveyor, NIMI, and SLAC have been working in active monitoring. Recently,
Internet2 has started installing an active monitoring infrastructure known as E2E
PIPES (End-to-End Performance Improvement Performance Environment System).
Based on tools such as iperf, traceroute, and OWAMP, PIPES measures latency,
bandwidth, and connectivity among various hosts connected in the Internet.
 Active-monitoring infrastructures focus more on the performance and status of the
network and less on identifying and warning about novel security attacks. In addition,
active monitoring infrastructures do not have the necessary information needed to
pinpoint the exact form and source of attacks. For example, although they might be
able to infer major attacks through bandwidth disturbances, they are usually unable to

provide the source IP address(es) of the attack, the destination IP address(es) and
port(s) of the attack, as well as the type of the attack itself.
 Summarizing, although active monitoring is being widely used to identify
performance characteristics of the Internet, it provides limited support for identifying
and tracing novel attacks.

2.3 Passive Monitoring

In addition to active monitoring infrastructures, passive monitoring infrastructures
have recently started to appear. For example, NLANR, the National Laboratory for
Advanced Network Research in the United States has installed a large number of
passive Internet monitors operating at speeds between 155 Mbps and 2.5 Gbit/s. In
passive monitoring systems, network sensors capture all packets, including both
headers and payload that pass through their monitored network. Based on the headers
and payloads of captured packets, passive monitors are able to produce a wealth of
information including high-level performance metrics, as well as detection of attacks.
 Besides the US-based NLANR infrastructure, there also exist European passive
network monitoring projects. SCAMPI [7], for example, is an IST-funded project that
builds a hardware monitor along with the necessary system and application software
to facilitate passive network monitoring at speeds as fast as 10 Gbit/s. There exist
plans underway to deploy SCAMPI to several places in Europe through a new
European project supported in part by the European Commission. SCAMPI and other
projects may significantly enhance our understanding of Internet traffic including
Internet-based attacks. Based on passive monitors, and having access to all network
traffic including all packet's headers and pay loads, they have significant amounts of
information that can be used to identify attacks. This information may even be used to
automatically generate signatures for new - not previously seen attacks. Therefore,
passive monitoring systems in general, may significantly help us towards improving
our Internet security. However, passive monitoring systems have three major
disadvantages: (i) they have high computational cost, (ii) they may have low accuracy
due to lots of false positives, and (iii) they may be inadequate against sophisticated
new types of attacks.

• High computational cost: Passive monitoring projects impose a significant, if
not unbearable, overhead to their underlying computational infrastructure.
Indeed, processing packets at current line speeds of 10 Gbit/s overwhelms
most modern processors. Indeed, a back-of-the-envelope calculation suggests
that modern processors have inadequate computing power to perform
sophisticated monitoring functions at speeds as high as 10 Gbit/s.

• False positives: in order to detect attacks, passive monitoring systems are
sometimes based on heuristics that look for changes in the traffic patterns,
such as a sudden increase in the number of TCP SYN packets per second.
Although such changes may indicate attacks, they may also be due to
legitimate reasons, including interesting breaking news, popular software
updates, and flash crowds. Using only information available to passive
network traffic monitors it may be difficult to distinguish an attack from a
legitimate traffic increase, and therefore, security monitoring systems may
incur a larger number of false positives, i.e. events that look like attacks but
are completely legitimate changes in traffic patterns.

• Sophisticated new types of attacks: modern attacks get increasingly
sophisticated by, for example, encrypting or otherwise obfuscating their code
so that they will be undetectable bypassive network monitoring systems. This

method is frequently used by the so-called polymorphic worms and viruses,
which encrypt their body using a different key each time they try to infect a
new computer. Therefore, all instances of a polymorphic worm/virus in the
network will "look" different from each other, hindering the recognition by an
antivirus or an intrusion detection system. Therefore, even if passive
monitoring systems capture all the headers and payloads of all the network
packets that carry the worm/virus, they will have a difficult time recognizing
it, since all copies of the worm/virus will look different from each other.

2.4 Honeypots

In order to track attackers and recognize new types of attacks at their infancy, security
scientists have developed honeypots. A honeypot is a computer system that does not
provide a regular production service. A schematic of a typical honeypot is shown in
figure 4. Under normal conditions, a honeypot would be idle, neither receiving nor
generating any traffic. If honeypots receive any traffic, it means that they are likely to
be under attack, since no ordinary user would initiate any connection to a honeypot.
Similarly, if honeypots generate any outgoing traffic, this means that they may have
been compromised by an attacker, who uses the compromised honeypot to launch
further attacks. Therefore, honeypots can be thought of as decoy computers that lure
attackers, into an environment heavily controlled by security administrators.

Figure 4 Honeypot schematic [3]

 Although the concept of the honeypot was already known in the early nineties, it
was not until 1997 that the first honeypot software came out: Fred Cohen's Deception
ToolkitToday there exist several honeypot systems, including commercial products,
such as Specter and ManTrap, as well as open source systems such as honeyd.
Honeypot systems are usually divided in two broad categories: low-interaction
honeypots, and high-interaction honeypots. Low-interaction honeypots usually
emulate a service, such as a remote login service, at a rather high level. For example,
when the attacker invokes the remote login service in a low-interaction honeypot, the
system responds with a login: prompt and a password: prompt, where the attacker
may enter a login and a password. Then, the honeypot records the attacker's IP
address as well as the login and password (s)he used to enter the system. After the
honeypot records the attempted attack, it rejects the remote login attempt and possibly

terminates the connection shutting the attacker out of the system. A high-interaction
honeypot, on the other hand, does not emulate but it rather implements the services it
provides. Thus, a high-interaction honeypot that provides a remote login service
would actually let the attacker log into the system, in case (s)he provided the correct
login/password combination. The purpose of the high-interaction honeypot is to let
attackers into the system in order to study their methods and possibly the preparation
of their future attacks. Although high-interaction honeypots provide a wealth of
information about an attacker's methods and future plans, they pose a significant risk
to an organization's infrastructure, since they may be used by attackers to launch more
attacks and/or compromise more systems. Although low-interaction honeypots do not
suffer from this risk, they provide limited information about an attacker's methods and
tools.
 One of the latest high-interaction honeypots that have been developed so far is the
honeynet. A honey net, developed by the "Honeynet Project" is a set of honeypots
where each one of them runs a different operating system or a different service. All
honeynets are located behind a firewall that lets attackers into the honeypots but
restricts their outgoing connections so that compromised honeypots can not be used to
launch more attacks.

2.5 Shortfalls with current IDS

While the ability to develop and use signatures to detect attacks is a useful and viable
approach there are shortfalls to only using this approach which should be addressed.
1. Variants. As stated previously signatures are developed in response to new

vulnerabilities or exploits which have been posted or released. Integral to the
success of a signature, it must be unique enough to only alert on malicious traffic
and rarely on valid network traffic. The difficulty here is that exploit code can
often be easily changed. It is not uncommon for an exploit tool to be released and
then have its defaults changed shortly thereafter by the hacker community.

2. False positives. A common complaint is the amount of false positives an IDS1 will
generate. Developing unique signatures is a difficult task and often times the
vendors will err on the side of alerting too often rather than not enough. This is
analogous to the story of the boy who cried wolf. It is much more difficult to pick
out a valid intrusion attempt if a signature also alerts regularly on valid network
activity. A difficult problem that arises from this is how much can be filtered out
without potentially missing an attack.

3. False negatives. Detecting attacks for which there are no known signatures. This
leads to the other concept of false negatives where an IDS does not generate an
alert when an intrusion is actually taking place. Simply put if a signature has not
been written for a particular exploit there is an extremely good chance that the IDS
will not detect it.

1Intrusion Detection System

2.6 The weakness of existing defense mechanisms

Although there exist tools and systems that can help us protect our infrastructure from
attacks, these tools are usually limited to combating only known forms of attacks.
Antivirus systems can protect users against known viruses, but are usually helpless
when confronted with a new computer virus. A recent report by the Department of
Trade and Industry in the UK revealed that 93-99 % of UK companies have antivirus
software in place, yet 72% received worms, viruses or trojans, and half of them
suffered from an infection or DoS attack. Similarly, Intrusion Detection Systems can
generate alerts for known forms of worms but are of little help when confronted with
previously unknown attacks. Thus, we need a security infrastructure that is able to
detect new forms of attacks, and allows scientists and engineers to study, analyse and
rapidly develop defenses, and has the critical mass to detect new types of attacks as
early as possible.

2.7 Firewalls vs Intrusion Detection Systems

A common misunderstanding is that firewalls recognize attacks and block them. This
is not true. Firewalls are simply a device that shuts off everything, then turns back on
only a few well-chosen ports. A firewall is not the dynamic defensive system that
users imagine it to be. In contrast, an IDS is much more of that dynamic system. An
IDS does recognize attacks against the network that firewalls are unable to see.
 For example, in April of 1999, many sites were hacked via a bug in ColdFusion.
These sites all had firewalls that restricted access only to the web server at port 80.
However, it was the web server that was hacked. Thus, the firewall provided no
defense. On the other hand, an intrusion detection system would have discovered the
attack, because it matched the signature2 configured in the system.
 Another problem with firewalls is that they are only at the boundary to your
network. Roughly 80% of all financial losses due to hacking come from inside the
network. A firewall at the perimeter of the network sees nothing going on inside; it
only sees that traffic which passes between the internal network and the Internet.
 The example above demonstrates the need for an IDS system. Some other reasons
for adding IDS functionality to a firewall are:

• Double-checks misconfigured firewalls.
• Catches attacks that firewalls legitimate allow through (such as attacks against

web servers).
• Catches attempts that fail.
• Catches insider hacking.

2 A unique string of bits, or the binary pattern, of a virus/worm. The signature is like a fingerprint in
that it can be used to detect and identify specific viruses/worms. Anti-virus software uses the virus
signature to scan for the presence of malicious code. [6]

3. System Overview

The EAR system will try to address the problem of Internet worms and tackle the
shortfalls of the existing systems.
 The following sections provide a short overview of the system to serve as a context
for understanding some of the requirements presented later in this document.
 The system operates as a network tap monitoring traffic directed from and to a set
of local area networks. It inspects the contents of the monitored traffic and detects
worms by identifying common substrings. The result of worm detection is a signature
that can be used to block the worm. Unlike traditional NIDS3 systems, the signature is
generated automatically without the need to involve a human person. The exact
details of the detection mechanism will be described in an appropriate forthcoming
design document, but the main ideas revolve around reducing false positives and
increasing performance.
 The length of a typical worm varies from 400 bytes to several kilobytes. Very
often, however, only part of the payload is sent directly from the infecting host to the
targeted victim. We will refer to the first part of the traffic as the “attack”. The
compromised target downloads the rest of the worm contents by connecting back to
the source host. The attack length can be smaller than the total length of the worm,
or equal if the entire worm is contained in the attack. The system will focus on
detecting the attack of the worm.
 A worm performs multiple attacks from multiple infected hosts to multiple targets
concurrently. Attacks to different targets that belong to the same worm are similar,
and they typically contain common strings. The early warning system will rely on this
similarity to identify strings that belong to a worm attack.
 Worm traffic travels through the network in the form of network packets. Because
worm traffic is similar in the bytes level, very often it also consists of similar packets,
or packets of the same length. In this case, it would be possible to check packets as a
whole for finding a worm. However, although a worm may happen to have large
substrings in common between different instances, it may not have entire packets.
Recently, the Witty worm has used random padding of packets, thus deliberately
preventing identical packets, or packets of the same length. Therefore entire packets
are too course-grained for worm detection and the system should process packet
substrings instead of entire packets.
 A worm can spread by any protocol that is used by a vulnerable service, the
protocol is the same as the one used by the service whose vulnerability is being
exploited by the worm. For example, a worm that exploits an application over HTTP,
will use the TCP Internet protocol for its attack, while a worm that exploits Microsoft
SQL Server, will use the UDP protocol. Worms have been created that spread over
TCP as well as others that spread over UDP. The system will miss worms that use an
Internet protocol not monitored by the system. However, the possibility of a worm
using an Internet protocol other than UDP or TCP is unlikely.

Worm Total Length Attack Length Protocol

Witty 600 Bytes (+
padding)

600 Bytes UDP

Sapphire/Slammer 376 Bytes 376 Bytes UDP

3 Network Intrusion Detection System

Worm Total Length Attack Length Protocol

CodeRedII 3.8KBytes 3.8KBytes TCP

Welchia 10KBytes 1.7KBytes TCP

3.2 Future worm characteristics

One concern about future worms is that a worm may easily fragment its packets to
hide similarity of the stream contents by using packet boundaries to obscure its
patterns. For this reason, the system should process reassembled TCP streams and
look for similarities at the stream level and not the IP packet level.
 A virus can obfuscate or encrypt its body with a different key each time and include
a small decryptor in the beginning, so the only constant portion is the decryptor. Such
a virus is called polymorphic. Furthermore, the decryptor can use each time one of
multiple equivalent instruction blocks for each one of its instructions, so the decryptor
itself is not constant. This is called metamorphism. It has been proposed that future
worms will be polymorphic, or even metamorphic, and they will not contain constant
portions of content. Such techniques have been used with traditional viruses but no
such worm has appeared to this day. It is unclear how such worms can be contained in
the network level.
 Furthermore, a worm could spread so slowly as to be undetectable. Such a worm is
called a stealthy worm. This is opposite to today's worms, which try to spread as fast
as possible in an attempt to render any human-mediated response impossible. Our
system does not aim to fight stealthy worms. Instead it tries to defend against fast
worms, that humans alone cannot fight.

4. Functional Requirements

The aim of this Early Detection system is to provide a comprehensive view of the
internet security landscape. It should alert organizations of attacks with target their
infrustructure and offer detailed analysis in order to mitigate the risk. As Internet
threats appear with increased speed and in greater numbers each day, it is more
important than ever for corporations to be vigilant in monitoring the current threat
environment. EAR will provide customized and detailed notification of vulnerabilities
and malicious code as they are discovered. Corporations will be able to protect from
emerging methods of attack. The EAR system will help to protect networked PCs,
critical systems, and users from worms. Furthermore, as (D)DoS are often initiated by
worms it is reasonable to assume that (D)DoS will be reduced. In this section we
present the functional requirements, what the system should be able to do, the
functions it should perform.

4.1 Attacks detection
In this section we present the types of attacks the system should successfully detect.
Attacks which do not fall within the requirements presented here may evade the
system.

 F1.1: The system should detect attacks that use unfragmented packets, as well
as fragmented packets to spread their payload over multiple packets in order to
obfuscate their signatures. Strings of small length are often popular without belonging
to a worm. For example, many unrelated HTTP requests contain the string “GET /”,
or “HTTP/1.1”. Therefore, a minimum detectable string length must be established.

 F1.2: The system should detect worms with an attack that contains at least 300
consecutive bytes.

 F1.3: The system must detect worms that spread over the TCP protocol.
However, it is highly desirable, but not initially required, to include support for UDP
worms as well.

 F1.4: The system is not expected to detect stealth worms.

 F1.5: The system is not expected to detect completely polymorphic or
metamorphic worms, unless requirement F1.2 applies. The only constant portions in
polymorphic worms can be the decryptor and the conversation with the vulnerable
service. In the case of metamorphic worms, possibly only the conversation remains
constant. If neither of these is long enough (F1.2), detection of such a worm is
impossible with our system.

4.2 Detection delay

The detection delay is a crucial parameter of the system. The system must be fast
enough to detect the attack, to alert the administrators or the users and to prevent
possible damages.

F2.1: The detection delay of the system, measured in elapsed attacks before an

alert has been triggered, should be evaluated theoretically and experimentally for
worms with different levels of aggressiveness.

4.3 False positives

F3.1: Timely detection is worthless in the presence of false positives,

therefore the system is required to have a zero false positives rate.

F3.2: As a last means of preventing false positives, the system should support

a white-list that allows handling persisting false positives. Strings listed in the white-
list should not be considered as worm signatures.

4.4 Configuration – customization

The system will detect strings that appear frequently as worms. The threshold used for
determining what is frequent affects the sensitivity of the system, and therefore its
detection delay, as well as the probability of false positives. This is a tradeoff and it
should be possible to adjust this at will.

 F4.1: It should be possible to adjust the sensitivity of the system using a
threshold. The system could be adjusted for faster detection with the cost of the false
positives rate going up.

 F4.2: It must be possible to adjust the amount of information that will be
recorded, so as to cater for those that worry about their privacy being revealed.

 F4.3: It should be possible to configure whether log-files, result packets, or
both will be used to report alerts.

 F4.4: It should be possible to configure the log-file location and the
destination to which result packets are sent.

4.5 Security constrains
The purpose of the EAR system is to provide detection of certain type of attacks.
However, there are certain security requirements that must be met by the system itself
in order to allow deployment in the production environment of an ISP, an
organization or an enterprise.

 F5.1: The network where the system is hosted must not be exposed to
vulnerabilities because of the presence of the early warning system.

 F5.2: The system must also be resilient to malicious traffic targeted to attack
the system itself. Finally it must be carefully engineered so that it will be immune to
any kind of attack. This is particular important as a poorly configured/engineered
system can pose a huge security risk for the whole network. Thus is essential that the
system is programmed with security practices in mind.

4.6 Privacy issues
The system’s objective is to protect the corporations and the end user from malicious
attacks by worms. The results produced by the system should not compromise the

privacy of any monitored entities. The end user’s privacy is equally important to the
security provided by the system.

 F6.1: The data gathered should be strictly used for analyzing, identifying a
possible attack, implementing ways to protect and for absolutely no other reason. The
EAR framework will operate in a way that the data do not have to be shared among
various individuals and/or companies thus minimizing the risk of revealing important
information about the end-user or corporate data.

 F6.2: The data analysis must take place within the organization data center
which is considered to be a trusted body.

 F6.3: The issued alerts and reports must not include any information that will
reveal the identity of the user (eg. the IP addresses belonging to the infected hosts).
Furthermore, only content that belongs to traffic that has been identified as traffic
initiated by a worm is going to be included by the system in alerts.

4.7 Integration with other systems

The system’s sole purpose will be to provide an early identification of possible
security problems. In addition, it will operate as a stand alone system meaning that it
will be cut off from the rest of the world and is not aware of a new worm appearing at
another network.

 F7.1: The system should be able to integrate with an external application that
will take over the task of transmitting the alerts to the administrators.

 F7.2: The necessary information should be recorded in log files. The format
of log files should be specified in detail when the system has been developed
completely, it shall contain enough information to create a filtering signature. The
task of the application will vary according to the kind of output required and the
actions that need to be taken. The general objective will be to provide the
administrators with an early warning on impending attacks, as well as a method of
quickly applying some sort of defense.

 F7.3: Thus, the final system may include a centralized configuration,
deployment, installation, reporting, alerting, logging and policy management.

5. Performance Constrains

In this section we outline the required performance characteristics of the early
warning system that will be implemented

5.1 Monitoring capacity

A security system can be placed in-line or not. An Intrusion Detection System for
example is typically not placed in-line. Therefore it can issue alerts but cannot, for
example, discard packets. The performance of the network is not affected by such a
system. On the other hand, a firewall or an Intrusion Prevention System must make a
decision for each packet and therefore the performance of the network is affected by
the performance of such a system.

P1.1: The system must be capable of operating at 100 Mbits/sec. However, it

is highly desirable to achieve operation speeds up to 1 Gbit/sec.

P1.2: The system does not operate in-line and therefore does not impose any

limitations or delay on the traffic capacity of the monitored network.

P1.3: It should be possible to operate the system by processing only part of

the traffic.

6 Deployment

6.1 Software and hardware platform

D1.1: The system will be developed for the GNU/Linux operating system and

the x86 hardware platform.

D1.2: It should be easily portable to other platforms and Unix-class operating

systems.

D1.3: The system will require a dedicated machine for production operation.

6.2 Placement

D2.1 The system will not be placed in-line, but will operate as a network tap,

processing all traffic visible to its network interface. Therefore, it will not be able to
interrupt the operations of other production systems.

6.3 Monitored area

D3.1: The networks to be monitored will be selected by mirroring the
appropriate traffic to the monitoring system's network interface.

D3.2: The number of the hosts that the system shall be capable of monitoring

will be in the order of hundreds.

 D3.3: The system must be able to see symmetric traffic. Sometimes routers
only see one direction of the traffic. This is called assymetric routing. Our system will
not have to tackle with this.

6.4 Software distribution

D4.1: The system relies on the Snort NIDS [8] and is distributed as a Snort

plug-in in the form of a non-intrusive patch against the standard Snort distribution.
This means that there are no compatibility issues with existing systems, thus it will be
easy to deploy.

6.5 Initial setup and periodic updates

D5.1: Initial installation will require building the software from source. New

versions or configuration file modifications may require stopping and starting the
system on software level.

6.6 Hardware performance requirements
D6.1: The system should be designed to operate on commodity PC-class

hardware.
 Sample specifications:
 3GHz Processor
 1GByte RAM

7. Competitive analysis

There is a lot of research undergoing in the field of internet security. This has resulted
in a few commercial products offering different levels of protection. However each
one is quite unique in the way it tackles the problems and provides a valid solution.
 We are aware of only one commercial product that offers similar features with the
system we are developing: Silicon Defense has developed Counter Malice, an
enterprise-scale containment system based on detection and containment of scanning
worms. They separate the enterprise network into cells that communicate through
worm containment devices and are quarantined in case of infection. The system relies
on the fact that with a low vulnerable/probed host ratio, a scanning work can be
detected and contained at a faster rate than it can spread.
 We should emphasize, however, that all methods based on scan detection provide
reasonable level of defense against scanning worms but are of limited use against hit-
list worms or worms that discover targets without scanning. In contrast, our work is
able to detect hit-list worms, as well as worms that, due to random scanning, do not
appear scanning. Also, the signatures produced by our system can be used effectively
at a different point in the network to fight against worm coming from different source
hosts. Containment based on addresses on the other hand can only be used to contain
attacks from hosts already identified as scanning.

9. Conclusions

The damages suffered every year due to cyber attacks are in the range of millions of
euros. The current protection mechanisms prove inadequate to provide a reliable
solution due to various problems. The EAR project aims to tackle these problems and
provide a viable solution for the early detection of new worms. Upon project
completion, the network operators will have a valuable tool that will supply them with
real time warning mechanism. The final system may include a centralized
configuration, deployment, installation, reporting, alerting, logging and policy
management.

 The EAR system will be used for the detection of worms appearing in the
monitored network. However, in the case of a wide deployment of the EAR system, it
is reasonable to assume that the (D)DoS attacks will be also reduced. It is the hosts
that are infected by a worm that cause the (D)DoS attacks, causing corporations to
lose time, money and prestige.
 The system is going to detect worms that probably use new techniques such as
packet fragmentation and some types of polymorphic or metamorphic worms. This
guarantees that the system should be of use for the years to come. It is also important
to note that the detection mechanism employed will not impose any delay to the data
flow providing for an uninterrupted network operation. The false positives rate must
be zero and there must be a timely detection assuring a reliable system. The system
will operate with respect of users privacy and corporate sensitive data. Furthermore,
the system will rely on the open source Snort NIDS system and will be distributed as
a plug-in. This is quite important as there is already compatibility with existing
systems, thus it will be easy to deploy.

10. References
[1] http://www.sans.org/resources/idfaq/data_mining.php
[2] http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2004.pdf
[3] http://www.sans.org/resources/idfaq/honeypot3.php
[4] http://www.robertgraham.com/pubs/network-intrusion-detection.html
[5] http://www.f-secure.com/virus-info/statistics/
[6] http://www.webopedia.com/TERM/V/virus_signature.html
[7] http://www.ist-scampi.org/
[8] http://www.snort.org/

http://www.sans.org/resources/idfaq/data_mining.php
http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2004.pdf
http://www.sans.org/resources/idfaq/honeypot3.php
http://www.robertgraham.com/pubs/network-intrusion-detection.html
http://www.f-secure.com/virus-info/statistics/
http://www.webopedia.com/TERM/V/virus_signature.html
http://www.ist-scampi.org/
http://www.snort.org/

	1. Introduction
	1.1 The need for early warning systems

	2. State of the art of attack detection mechanisms
	2.1 IDS categorization
	2.2 Active Monitoring
	2.3 Passive Monitoring
	2.4 Honeypots
	2.5 Shortfalls with current IDS
	2.6 The weakness of existing defense mechanisms
	2.7 Firewalls vs Intrusion Detection Systems

	3. System Overview
	3.2 Future worm characteristics

	4. Functional Requirements
	4.1 Attacks detection
	4.2 Detection delay
	4.3 False positives
	4.4 Configuration – customization
	4.5 Security constrains
	4.6 Privacy issues
	4.7 Integration with other systems

	5. Performance Constrains
	5.1 Monitoring capacity

	6 Deployment
	6.1 Software and hardware platform
	6.2 Placement
	6.3 Monitored area
	6.4 Software distribution
	6.5 Initial setup and periodic updates
	6.6 Hardware performance requirements

	7. Competitive analysis
	9. Conclusions
	10. References

