Defending against Hitlist Worms using Networ k

Address Space Randomization

S. Antonato$ P. Akritidis® E. P. Markato$ K. G. Anagnostakis™

aSystems and Security Department, Institute for Infocomsedteh

21 Heng Mui Keng Terrace, Singapore 119613

bInstitute of Computer Science, Foundation for ResearchTaatinology, Hellas

P.O.Box 1385 Heraklio, GR-711-10 GREECE

(Parts of this work has been previously published in the Bedlings of the ACM
Workshop on Rapid Malcode (WORM), 2005, and the ProceednigdP Conference on

Communications and Multimedia Security (CMS), 2006)

Abstract

Worms are self-replicating malicious programs that regmea major security threat for
the Internet, as they can infect and damage a large numbetradrable hosts at timescales
where human responses are unlikely to be effective. Sapdiisti worms that use precom-
puted hitlists of vulnerable targets are especially hardotatain, since they are harder to
detect, and spread at rates where even automated defenga®niz able to react in a

timely fashion.

This paper examines a new proactive defense mechanisrd dilavork Address Space
Randomization (NASR) whose objective is to harden netwspexifically against hitlist
worms. The idea behind NASR is that hitlist information abbk rendered stale if nodes

are forced to frequently change their IP addresses. NASIi&lonslows down hitlist worms

Preprint submitted to Elsevier Science 9 April 2008

and forces them to exhibit features that make them easiesritain at the perimeter. We
explore the design space for NASR and present a prototypteigntation as well as

experiments examining the effectiveness and limitatidrteeapproach.

1 Introduction

Worms are widely regarded to be a major security threat ¢pthie Internet today.
Incidents such as Code Red[1,2] and Slammer[3] have clel@ryonstrated that
worms can infect tens of thousands of hosts in less than hdtbar, a timescale
where human intervention is unlikely to be feasible. Moreerd research studies
have estimated that worms can infect one million hosts ia tkan two seconds
[4—6]. Unlike most of the currently known worms that spregddrgeting random
hosts, these extremely fast worms rely on predeterminesdfs/ulnerable targets,

calledhitlists, in order to spread efficiently.

The threat of worms and the speed at which they can spreadhiaixated research
in automated worm defense mechanisms. For instance, sesegat studies have
focused on detecting scanning worms [7—12]. These tecbaidatect scanning ac-
tivity and either block or throttle further connection aijgts. These techniques are
unlikely to be effective against hitlist worms, given thaiist worms do not ex-
hibit the failed-connection feature that scan detecti@hnéues are looking for.
To improve the effectiveness of worm detection, severdtitisged early-warning

systems have been proposed [13-16]. The goal of these s/stéoraggregate and

* Corresponding author.
Email addressesant onat @ cs. f ort h. gr (S. Antonatos),

akritid@cs. forth. gr (P. Akritidis), mar kat os@ cs. forth. gr (E. P.

Markatos) kost as@ 2r . a- st ar. edu. sg (K. G. Anagnostakis).

analyze information on scanning or other indications ofrwaictivity from differ-

ent sites. The accuracy of these systems is improved as #veyahmore “global”
picture of suspicious activity. However, these systemsuatally slower than lo-
cal detectors, as they require data collection and coielaimong different sites.
Thus, both reactive mechanisms and cooperative deteetbmigues are unlikely

to be able to react to an extremely fast hitlist worm in a tyrfekhion.

Observing thigapin the worm defense space, we consider the question of whethe
it is possible to develop defensspecificallyagainst hitlist worms. We start by
looking at likely strategies for building hitlists and exir® how effective these
strategies can be. We observe that hitlists tendetwaynaturally for various rea-
sons, as hosts disconnect and applications are abnorreathyntated. A rapidly
decaying hitlist is likely to decrease the spread rate of emwdt may also increase
the number of unsuccessful connections it initiates and tinay increase the ex-

posure of the worm to scan-detection methods.

Starting with this observation, we ask whether it is possiblintentionallyaccel-
erate hitlist decay, and propose a specific technique ferpinipose calledetwork
address space randomizati@dASR). This technique is primarily inspired by sim-
ilar efforts for security at the host-level [17-23]. It isalsimilar in principle to the
“IP hopping” mechanism in the APOD architecture[24], BBND¥'NAT[25] and
Sandia’s DYNAT[26] systems, all three designed to confasgeted attacks by dy-
namically changing network addresses. In this paper, wengathe same basic
idea in the context of defending against hitlist worms. #nsiimplest form, NASR
can be implemented by adapting dynamic network addressagibm services such

as DHCP[27] toforcemore frequent address changes. This simple approach may

1 Another known address allocation servic@ot p[28], but it allocates addresses semi-

permanently, without any mechanism for renewing the atlonaand is thus not usable for

warhol-type). mer code red emall

hidist-based o imized scanning viruses

\4

1sec 1 minute 1 hour 1 day 1 week

worm propagation speed

Fig. 1. Propagation speed of different types of worm attacks

be able to protect enabled networks against hitlist wormg, iideployed at a large

enough scale, may be able to significantly hamper their dprea

We must emphasize that, like most (if not all) other worm egmhent proposals,
NASR is only a partial solution to the worm containment pesbl Where appli-
cable, our approach succeeds in limiting the extent or sigwliown the rate of a
worm infection. However, the mechanism is specific to IRidtitvorms, and may
be less effective against DNS hitlists (we discuss suchessu Section 5). Fur-
thermore, it cannot always completely squash hitlist-dagarm epidemics, and it
cannot be used universally. Nevertheless, being ablewodsdavn the fastest known
propagation mechanism is likely to be valuable, as it maynathore time for other
reactive defenses to kick in. Furthermore, we note that palyais does not inval-
idate the worst-case estimates provided in previous wirikfgt is our goal to play
down the threat posed by such worms. The purpose of this @fmehelp examine

whether NASR is worth considering as part of a broader worfarde portfolio.

In the rest of this paper, we present NASR in more detail aranéxe issues of

applicability, effectiveness and implementation cost.

2 Background

For the purpose of placing our work in context, we first giveri@fooverview of

what is known about worms, with some emphasis on hitlist vepramd present a

our purposes.

summary of proposals for defending against worms and howrglate to hitlist

worms which are the focus of this paper.

Worms Computer viruses have been studied extensively over thedaple of
decades. Cohen was the first to define and describe computsesin their present
form. In [29], he gave a theoretical basis for the spread affater viruses. The
strong analogy between biological and computer viruse&tgghartet al. [30] to
investigate the propagation of computer viruses based iolepological models.
They extend the standard epidemiological model by pladiong & directed graph,
and use a combination of analysis and simulation to studyeksvior. They con-
clude that if the rate at which defense mechanisms detecteandve viruses is
sufficiently high relative to the rate at which viruses spratis possible to prevent

widespread virus propagation.

The Code Red worm [1] was analyzed extensively in [31]. Thé&@s conclude
that even though epidemic models can be used to study theibeloh Internet
worms, they are not accurate enough because they cannoresmme specific
properties of the environment these operate in: the effebuman countermea-
sures against worm spreadirige(, patching, filtering, disconnectingic) and the
slowing down of the worm infection rate due to the impact ofravan Internet
traffic and infrastructure. They derive a new general Iregemorm model called
two-factor wormmodel, which they then validate in simulations that matah th
observed Code Red data available to them. Their analysmssakso to be inde-

pendently supported by the data on Code Red propagatioi.in [2

A similar analysis on the SQL “Slammer” (or Sapphire) worr2][8an be found
in [33]. Sapphire, the fastest worm today, was able to infeate than 70,000 vic-

tim computers in less than 15 minutes.

The Blaster/Welchia epidemic is an interesting example &¥igilante” worm
(Welchia) causing more trouble than the original outbre2ikgter). A “vigilante”
worm attempts to clean-up another worm by using the samexaibility. However,
the very notion of “vigilante” worms is rendered uselessadirms immediately dis-

able the vulnerability after compromising a machine.

The Witty worm [34] is of interest for several reasons. Fiitsivas the first widely
propagated Internet worm to carry a destructive payloachis# Witty was started
in an organized manner with an order of magnitude more graend hosts than
any previous worm and also began to spread as early as onldaynafter the
vulnerability was publicized, which is an indication thaetworm authors had al-
ready prepared all the worm infrastructure, including traugd-zero hosts and the
replication mechanisms, and were only waiting for an exgtobecome available
in order to launch the worm. Finally, Witty spread throughogplation almost an
order of magnitude smaller than that of previous worms, shguwhat a hitlist is

not required even for targeting small populations.

All these worms use (random) scanning to determine theiimg; by using a ran-
dom number generator to select addresses from the entirddfess space. Al-
though some worms chose their next target uniformly amohthelavailable 1P
addresses, other worms seemed to prefer local addressafisiaat ones, so as to
spread the worm to as many local computers as possible. @sitkeian organi-
zation, these worms make sure that they will infect sevdras@omputers before

trying to infect any outside hosts.

Hitlists Instead of attempting to infect random targets, a worm céitdtideter-
mine a large vulnerable population before it starts spreadihe worm creator can

assemble a list of potentially vulnerable machines priaeteasing the worm, for

example, through a slow port scan. The list of known vulnierdlosts is called a
hitlist. Using hitlists, worms do not need to waste time stag for potential targets
during the time of the attack and will not generate as manyceessful connec-
tions as when scanning randomly. This allows them to spreachrfaster, and it
also makes them less visible to scan-based worm detectods # hitlist can be
either a collection of IP addresses, a set of DNS names orad Begtributed Hash
Table identities (for infecting DHT systems irrelevantlytbe network infrastruc-

ture).

Hitlist worms have not been observed in the wild, perhapsaibse the co-evolution
of worms and defenses has not reached that stage yet: theptacarrentlynec-
essaryfor a successful worm epidemic, since neither scan-blgckor distributed
detection systems are widely deployed yet. However, tsthse certainly feasible

today and worm creators are very likely to use them in theréutu

Hitlist worms have attracted some attention lately, as #reyeasy to model off-
line [5,4]. In this context, several hitlist constructiorethods have been outlined:
random scanning, DNS searches, web crawling, public seraeg indexes, as well

as monitoring of control messages in peer-to-peer networks

Random scanning can be used to compile a list of IP addrekaesespond to
active probing. Since the addresses will not be (ab)usedeutnately, the worm
author can use so-called stealth, low rate, scanning teahsito make the scan
pass unnoticed. On the other hand, if the duration of therbte&-scanning phase is

very long, some IP addresses will eventually expire.

Hitlists of Web servers can be assembled by sending querssarch engines and
by harvesting Web server names off the replies. Similarletagprd queries can

also be sent to DNS servers in order to validate web serveesamd find their IP

addresses. Interestingly enough, these types of scansecasel to easily create

large lists of web servers and are very likely to go unnoticed

However, any form of active scanning, probing, or searchiag the potential risk
of being detected. This gives special appeal to passivanilgabs, such as those
based on peer-to-peer networks. Such networks typicalrgréide many of their
nodes and this information can be collected by just obsgrthe traffic that is
routed through a peer. The creation of the hitlist does roptire any active opera-

tion from the peer-to-peer node and therefore cannot rasgcon easily.

Worm defenses We discuss some recent proposals for defending againstsvorm

and whether they could be effective against hitlist worms.

Approaches such as the one by \&tal. [7] attempt to detect worms by monitor-
ing unsolicited probes to unassigned IP addresses (“dateSpor inactive ports.
Worms can be detected by observing statistical properfissan traffic, such as
the number of source/destination addresses and the voltithe oaptured traffic.
By measuring the increase on the number of source addressesrsa unit of
time, it is possible to infer the existence of a new worm wheffesv as 4% of the

vulnerable machines have been infected.

An approach for isolating infected nodes inside an entsggnetwork is discussed
in [11,8]. The authors show that as little as 4 probes may fiie®nt in detecting a
new port-scanning worm. Weavet al.[12] describe a practical approximation al-
gorithm for quickly detecting scanning activity that candficiently implemented

in hardware. Schechtet al. [10] use a combination of reverse sequential hypoth-
esis testing and credit-based connection throttling toldyidetect and quarantine

local infected hosts. These systems are effective onlynagacanning worms (not

topological, or “hit-list” worms), and rely on the assunggtithat most scans will

result in non-connections.

Several cooperative, distributed defense systems havedreposed. DOMINO is
an overlay system for cooperative intrusion detection.[I8p system is organized
in two layers, with a small core of trusted nodes and a largéection of nodes
connected to the core. The experimental analysis demoestitzat a coordinated
approach has the potential of providing early warning fogéascale attacks while
reducing potential false alarms. Zetial.[15] describes an architecture and models
for an early warning system, where the participating nades#rs propagate alarm
reports towards a centralized site for analysis. The questf how to respond to
alerts is not addressed, and, similar to DOMINO, the use eh&ralized collection
and analysis facility is weak against worms attacking théyemarning infrastruc-
ture. Fully distributed defense mechanisms, such as [14nHy be more robust
against infrastructure attacks, yet all distributed deéemechanisms that we are

aware of are likely to be too slow for the estimated timescafeitlist worms.

3 Network Address Space Randomization

The goal of network address space randomization (NASR) i®re hosts to
change their IP addresses frequently enough so that themafmn gathered in

hitlists is rendered stale by the time the worm is unleashed.

Abstract model of NASR To illustrate the basic idea more formally, consider an
abstract system model, with an address sgaee{1,2,...,n}, a set of host¢] =
{h1, ..., } Wherem < n, and a functionA that maps all hosts, to addresses

A(hy) = r € R. Assume that at time,, the attacker can (instantly) generate a

hitlist X C R containing the addresses of hosts that are live and vulleeaaithat
time. If the attack is started at timgand all hosts inX are still live and vulnerable
and have the same address as at timehen the worm can very quickly infegk |

hosts.

In a system implementing NASR, consider that at timewheret, < t, < t,,
all hosts are assigned a new address fl@nirhus, at the time of the attaak
the probability that a hitlist entry;, still corresponds to a live host js = m/n
and thus the attacker will be able to inféet/n)| X| hosts. Besides reducing the
number of successfully infected nodes in the hitlist, thackt will also result in a
fraction1 — m/n of all attempts failing (which may be detectable using emgst
techniques). In this simple model, the densityn of the address space seems to be
a crucial factor in determining the effectiveness of NASBR f& we have assumed
a homogeneous set of nodes, all with the same vulnerabilidy paobability of
getting infected. If only a subset of the host populationutherable to a certain
type of attack, then the effectiveness of NASR in reducirggfthction of infected

hitlist nodes and the number of failed attempts is propodily higher.

Practical constraints The model we presented illustrates the basic intuition of
how NASR can affect a hitlist worm. Mapping the idea to thditgaf existing

networks requires us to look into several practical issues.

Scope: Random assignment of an address from a global IP address ppatis
not practical for several reasons: (i) it would explode tize sf routing tables, the
number of routing updates and the frequency of recompubugges, (ii) it would
result in tremendous administrative overhead for reconfigumechanisms that
make address-based decisions, such as those based onliatsassl (iii) it would

require global coordination for being implemented. Theidifty of implement-

10

ing NASR decreases as we restrict its scope to more locainegEach AS could
implement AS- or prefix-level NASR, but this would still cteadministrative dif-
ficulties with interior routing and access lists. It seenst @ reasonable strategy
would be to provide NASR at the subnet-level, although tlesdnot completely
remove the problems outlined above. For instance, accgsswould need to be
reconfigured to operate on DNS names and DNS would need to radgally
updated when hosts change addresses. It is also obvious ighabintless to im-
plement NASR behind NATSs, as the internal addresses havibalgignificance.
It is sufficient to change the address of the NAT endpoint (&§L/home router)

to protect the internal hosts.

Static addressing:Some nodes cannot change addresses and those that can may
not be able to do so as frequently as we would want. The reasathit is that
addresses have first-class transport- and applicatiah-¢evnantics. For instance,
DNS server addresses are usually hardcoded in system catitgs. Even for
DHCP-configured hosts, changing the address of a DNS sem@dwequire syn-
chronizing the lease durations so that the DNS server cangehds address at
exactly the same time wheall hosts refresh their DHCP leases. While techni-
cally feasible, this seems too complex to implement and saatplexity should be

avoided. Similar constraints hold for routers.

DNS updatesFor services referenced through the DNS name, such as é&mail,
and Web servers, implementing NASR requires the DNS namectorately reflect
the current IP address of the host. This means that the DN&ttrlive timers
need to be set low enough so that remote clients and nameaselwveot cache
stale data when an address is changed. The NASR mechansnealds to interact
with the DNS server to keep the address records up to daterdasonable to ask

whether this could increase the load on the DNS system, ginagmower TTLs will

11

negatively affect DNS caching performance. Fortunatelsga@ent study of DNS
performance suggests that reducing the TTLs of addressd®to values as low

as a few hundred seconds does not significantly affect DNBechit rates [35].

Tolerance to address changdsenerally, all active TCP connections on a host that
changes its address would be killed, unless connectioratmgrtechniques such as
[36—38] are used. Such techniques are not widely deployeangkit is unrealistic

to expect that they will be deployed in time to be usable ferghrposes of NASR.
Many applications are not designed to tolerate connecadarés. For instance,
NFS clients often hang when the server is lost, and do nospanently re-resolve

the NFS server address from DNS before reconnecting.

Fortunately, many applications are designed to deal witasional connectivity

loss by automatically reconnecting and recovering frortufaj and more recent
research prototypes even explicitly deal with such fad{88]. For such applica-

tions, we can assume that infrequent address changes catetadd. Examples
of these applications are many P2P clients, like Kazaa aretf@onnect as well

as SMB sharing (when names are used), messengers, FTR ctibat tools, etc.

However, tolerance does not always come for free: frequethtesss changes may
result in churn in DHT-based applications and would getmehalve the side-effect

of increasing stale state in other distributed applicajoncluding P2P indexing

and Gnutella-like host caches. Furthermore, naive imptettiens of NASR may

cause problem to network operation protocols, like ARP. ARRies expire every

4 hours and if we do not use a specialized NAT box, like the oaewll introduce

in Section 6, ARP entries will render stale.

There exist ways to make systems more robust to addressehdng LAN envi-

ronment, a solution using a specialized NAT box may be apblein some cases,

12

with the client host being oblivious to address changes bad\tAT box making
sure that address changes do not affect applications. VEermgreur realization of

such a scheme in Section 6.

Another option, which appears more attractive, is to makeNASR mechanism
aware of the active connections on each host, so that adthvasges can be timed
to coincide with the host being inactive. We will discuss gossible approach to

address this problem in the next section.

3.1 Implementation

The practical constraints presented in the previous sectiuggest that NASR
should be implemented very carefully. A plausible scenanald involve NASR at
the subnet level and particularly for client hosts in DHCBAaged address pools.
How such concessions affect NASR, as well as the rate at vdddhess changes
should be made for NASR to be effective will be explored in extetail in Sections

4 and 5.

A basic form of NASR can be implemented by configuring the DHs@Pver to
expire DHCP leases at intervals suitable for effective oamidation. The DHCP
server would normally allow a host to renew the lease if thet lssues a request
before the lease expires. Thus, forcing addresses chamgaswden a host re-
guests to renew the lease before it expires requires sona mindifications to the
DHCP server. Fortunately, it does not require any modificegito the protocol or
the client. We have implemented an advanced NASR-enablegdMs¢rver, called
Wuke-DHCP, based on the ISC open-source DHCP implemenfd@b To mini-
mize the “collateral damage” caused by address changedmduce two modules

in our DHCP implementation: aactivity monitoringmodule, and &ervice finger-

13

printing module.

The activity monitoring module keeps track of open conmeifor each host with
the goal of avoiding address changes for hosts whose ssretizdd be disrupted.
In our prototype, we only consider long-lived TCP conneasi¢that could be, for
example, FTP downloads). More complicated policies canripamented but are
outside the scope of our proof-of-concept implementatdoke-DHCP commu-
nicates with a flow monitor that records all active sessidragl osts in the subnet.
The flow monitor responds with the number of active connestibat are sensitive

to address changes.

Service fingerprinting examines traffic on the network amehapts to identify what
services are running on each host. The purpose of servicerfingting is two-
fold. First, we want to supplement activity monitoring wgbme context to make
address change decisions by indicating whether a conndetlare is tolerable by
the end-system. Second, we want to avoid assigning an adreshost that has
significant overlap in services (and potential vulneraiesi) with hosts that recently
used the same address. For instance, randomization betwsenwith different
operating systems, e.g., between a Windows and a Linwoptathppears as a rea-
sonable strategy. Our implementation of service fingetimgnis rudimentary: we
only use port number information obtained through passigaitaring to identify
OS and application characteristics. For instance, a TCRexiion to port 80 sug-
gests that the host is running a Web server, and port 445 rsdcation that a host
might be a Windows platform. In an operational setting, medadorate techniques
would be necessary, such as the passive techniques delsicrilgd.,42], adminis-
trative databases that keep track of host types like Windbetise Directory and

active probing techniques implemented as part of openesdopls[43—-46].

14

ICMP ping scan hitlist decay Gnutella hitlist decay Search-engine hitlist decay
1.00 1.00 1.00
0.95 0.95 0.95
0.90 [y § 0.90 0.90
0.85 g 085 -
0.80 A £ 080
0.75 RAAVAVN M g ors
0.70 0.70 0.70
0.65 0.65 0.65
0.60 0.60 0.60
0.55 0.55 0.55
0.50

0.85
0.80
0.75

fraction of nodes

fraction of nodes responding

fraction of nod

0.50 0.50
01 2 3 45 6 7 8 9 1011 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12
time (days) time (days) time (days)

(@) (b) (©)

Fig. 2. Decay of addresses harvested using different msitf@ylusing random scanning,
(b) by monitoring peer-to-peer traffic router through a @fatpeer, and (c) by querying a

popular web search engine

In our implementation, we use three timers on the DHCP sdorecontrolling
host addresses. Thefreshtimer determines the duration of the lease communi-
cated to the client. The client is forced to query the serdeemthe timer expires.
The server may or may not decide to renew the lease using the address. The
soft-changéimer is used internally by the server to specify the intelpedween ad-
dress changes, assuming that the flow monitor does not rappctivity for the
host. A third,hard-changdimer is used to specify the maximum time that a host is
allowed to keep the same address. If this timer expires,dbeif forced to change
address, despite the damage that may be caused. We exm@arentiguration of
these timers in Section 4.3. We should note that for IPvéetieea proposed exten-
sion for stateless address reconfiguration that perforndoraization as described

in [47]. This work, however, focuses on current IPv4 tecbgyl

4 Measurements

To explore the design space of network address space rapalioni we first need
to consider some basic hitlist characteristics, such aspled at which a hitlist

can be constructed, the rate at which addresses alreadgearthout any form

15

of randomization), and how address space is allocated almedt We perform

measurements on the Internet to obtain a more clear picttinege characteristics.

4.1 Hitlist generation strategies

There are two key issues that need to be examined to detehoinditlist gener-

ation strategies relate to the effectiveness of NASR. Rivstneed to have a rough
estimate of the speed at which an attacker can generatésa Iddcond, we need to
determine whether these strategies produce reasonahisateditlists, given that

hitlists may decay naturally.

Unfortunately, we cannot accurately measure hitlist gatiam speeds. The speed
that can be achieved will depend heavily on the defense mesha deployed,
for which we do not have any robust operational data, as veetha generation

strategies used, which we could not exhaustively analypedduce a safe estimate.

We must note that although it seems reasonable to assuniBleae| stealth scans
can take days or weeks to do properly, a skilled attacker raapke to use a botnet
to speed up data collection. Systems such as DShield[48)@MINO[13] should

be able to detect this activity, but the exact thresholdseumhich the attacker

would have to operate to evade detection are unclear atdims. p

We must also note that application-level probing appeaasagger threat, as some
distributed applications provide protocol functionality crawling that can be ex-
ploited by an attacker to rapidly build hitlists. For exampby crawling through
selected Gnutella superpeers, we were able to collect 62QfAique IPs within
5 minutes. Normal crawling through regular peers was sicaifily slower, as we

will discuss briefly afterwards. Of course, additional prgowould be needed to

16

determine client software and version information, assignthat the worm can

only infect specific software versions.

Given the complexity and intricacies of this question, wiedéhe answer to future
work. For the purposes of this paper, it seems reasonabigtxethat if such dis-
covery functionality is determined to be dangerous, it meydisabled or at least
carefully monitored. Recent experience with 8entyworm[49], that used&oogle
to search for victims?, seems to support this assumption Gxsoglequickly re-

sponded by blocking requests originating from the worm.

Next, we briefly present three different hitlist generatgirategies and focus on

their effectiveness in terms of natural decay rates.

Random scanning We determine the effectiveness of random scanning for build
ing hitlists. We first generate a list of all /16 prefixes thavd a valid entry with the
whoi s service, in order to increase scan success rates and aseyed address
space. We then probe random targets within those prefixeg (GMP ECHO mes-
sages. Using this approach, we generated a hitlist of 2(a@@€esses. Given this
hitlist, we probe each target in the hitlist once every houifperiod of two weeks.
Every probe consists of four ICMP ECHO messages spaced eutlo one-hour
run in order to reduce the probability of accidentally deaig an entry stale (e.g.,
because of short-term congestion or connectivity probjeigte that these mea-
surements do not give us exactly the probability of the wanotessfully infecting
the target host, but only a rough estimate. Although we wemngpted to perform

more insightful reconnaissance probes on the nodes in thet,lthis would result

2 The worm sent Google a specific search request, essens#llyggfor a list of vulnerable
sites. Armed with the list, the worm then attempted to spieatthose sites using a PHP

request designed to exploit the phpBB bulletin board softwa

17

in a much higher cost in terms of traffic and a high risk of caggfalse) alarms at
the target networks. More accurate results could be oldaisang full port scans,
application-level fingerprinting and more frequent probesded foi pi d-based

detection of host changes[50,51].

The results of the ICMP ECHO experiment are shown in Figuad. 2{/e observe
that the hitlist decays rapidly during the first day and amundis to decay, albeit very
slowly, over the rest of the two-week run. The number of rebtd nodes tends to
vary during the time of day, apparently peaking on businesssin the US with
minor peaks that may coincide with working hours elsewhetbe world. Overall,
the decay of the hitlist slows down over time, reaching aroalstable level of 75%

of hitlist nodes reachable.

Passive P2P snooping In the Gnutella P2P network, node addresses are carried
in QueryHit and Pong messages. By snooping on these messa@estella client

can harvest thousands of addresses without performingtgpical operations. In

our experiments, a 24-hour period sufficed for gatheringd@ique IP addresses,

as shown in Figure 3. Intensive searches and the use of otloee, popular P2P

networks will probably result in a higher yield.

Most P2P nodes are short-lived, and therefore addressessted through P2P net-
works become unavailable very quickly. Figure 2(b) shovesdacay of the hitlist
as a function of elapsed time. Note that in this experimenomnlg check whether
the nodes respond to ICMP ECHO probes, not whether the Gawtaint is still
up and running. Thus, it is possible that the IP address isusetl by the same
host recorded in the hitlist. This may or may not be imporfanthe attacker, de-
pending on how much the attack depends on software versimhslaether version

information has been used in constructing the hitlist.

18

200000

1 node

$ 180000 | S
§ 160000 | 3 nodes --x-- - e
5 4 nodes e S
S 140000 e
< 120000 S
o} o
% 100000 = e s
S 80000 o o
ol I /
T 60000
2 40000 |5 s
5 20000 { -

0

3 6 9 12 15 18 21
Time (Hours)

Fig. 3. Number of distinct addresses harvested by mondd@nutella traffic as a function

of time and number of monitoring nodes.

Search-engine harvesting Querying a popular search engine tbe or similar
keywords returns hundreds of millions of results. Retrig\va thousand results gave
612 unique live hosts and 30 dead hosts. Most search engisgit the number
of results that can be retrieved, but the attacker can usepteukeywords either

randomly generated or taken from a dictionary.

The hosts that immediately appear as dead are a result afetipeeincy of the in-
dexing by the search engine. It plays a role in the speed oEktng the addresses

and must be considered for the decay if the addresses arbexited.

Figure 2(c) shows the decay of the hitlist created using #aech engine results.
We observe that, compared to the other address sourcegditwh £ngine results
are very stable. This was expected, since web servers haeednline and use sta-
ble addresses. It does not mean, however, that addressesa@through search
engines are better suited for attackers. Depending on thenability at hand, un-

protected, client PCs, such as those returned by crawliegtpepeer networks

may be preferred.

19

4.2 Subnet address space utilization

The feasibility and effectiveness of NASR depend on thetifvacof unused ad-
dresses in NASR-enabled subnets. Performing randomizatioa sparse subnet
will result in more connection failures for the hitlist worcompared to a dense
subnet. Such failures could expose the worm as they couldckegup by scan-
detection mechanisms. In a dense subnet with homogenestesrsy/(e.g., running
the same services) the worm is more likely to succeed in timg@ host, even if
the original host recorded in the hitlist has actually crehigs address. Finally, in
the extreme (and probably rare) case of a subnet that is alfudly utilized, there

will never be a free address slot to facilitate address obsing

We attempt to get an estimate of typical subnet utilizaterels. Because of the
high scanning activity, we cannot perform this experimdobglly without trip-
ping a large number of alerts. We therefore opted for scayfive /16 prefixes that
belong to FORTH, the University of Crete (UoC) and a large ESter first obtain-
ing permission by the administrators of the networks. Weqgoered hourly scans

on all prefixes usingg CMP ECHOmessages over a period of one month.

A summary of the results is shown in Figure 4. For simplicig, assume that all
prefixes are subnetted in /24’s. We see that many subnetscwmetpletely dark
with no hosts at all (not even a router). Nearly 30% of the st two ISP pre-
fixes were totally empty, while for the FORTH and UoC the patage reaches
70%. This means that swapping subnets would likely be actafieNASR policy,
but unfortunately it is not practical, as discussed in $&c#.2.1. We also see that
95% of these subnets have less than 50% utilization and timd@&uof maximum
live hosts observed does not exceed 100. If subnet utihizati the global level is

similar to what we see in our limited experiment, then NASEatlevel of /24 sub-

20

100

100 " FORTH ——

0 UoC
T 80 ISP prefix 1 -
c 80 ISP prefix 2
o » ISP prefix 3
2 @
» 90 FORTH 2
g 40 * UoC CAMPUS °

— =]
= ISP prefix 1 % w0l
° ISP prefix 2 = o
X 20) o fo L —

ISP prefix 2 20 Li
0 1 1 1 1 1 g
0 32 64 96 128 160 0
24 48 72 96 120 144 168
Hosts per SUbnet Max. host uptime (hours)

Fig. 4. Cumulative distribution of subnet aig. 5. Cumulative distribution function of

dress space utilization host uptimes in 5 different networks

+ UCNET » BELL - WEBICS e LEIP

+ UCNET + BELL = WEBICS x LEIP

10 1.2

0.8

0.6 —leh
. omx XOUORRX X % Jorom KM
.
0.4 — e
01 el W N o, R

0.2

% of connections aborted
[
% of connections aborted

.001 0 T T T T T T T |

0 05 1 15 2 25 3 35 4
hard limit (hours) soft limit (hours)

Fig. 6. Percentage of aborted connections Fig. 7. Percentage of aborted connections
as a function of the hard change limit. as a function of the soft change limit.
Soft-change limit is 2 hours and refresh Hard-change limit is 4 hours and refresh
time is 1 minute. time is 1 minute.

nets is likely to be quite effective, as there is sufficiermoto move hosts around,

reducing the effectiveness of the worm and causing it to nfelesd connections.

4.3 The cost of NASR: address change frequency vs. apphdaiiures

We attempt to estimate the “collateral damage” caused by RIABe damage
depends on how frequently the address changes occur, winetsis have active

connections that are terminated and whether the applicatan recover from the

21

transient connectivity problems caused by an address ehang

We first consider a scenario where host addresses are onigethavhen a node
is rebooted. In this case, we know that the failure rate is,zamd try to determine
what address change frequency this would permit. We medsioeenaximum up-

time for hosts on the three networks presented previously.

The measured distribution is shown in Figure 5. The liveoésise hosts was mon-
itored for a full week by sendingi ng messages every hour. AlImost 60% of the
hosts inside FORTH were always up, which seems reasonatés fenvironment
consisting mostly of workstations. In more dynamic envinemts, like the ISP and
the University of Crete networks only 20-30% of the hostsevawntinuously up
and running (hosts with uptime 168 hours), while nearly 40he hosts had a
maximum uptime of 10 hours. These results lead to two obsens First, al-
though it may be possible to perform NASR once every 1-4 dayfibsts only
when they reboot, thus not causing any disruption, a sigmfifraction of hosts
has a longer uptime. Considering that we may want to changessies more ag-
gressively, this trivial form of randomization is unlikelg be sufficient. Second,
although such dynamic environments perform some form afrabtandomization
on their address space, mostly due to DHCP, most of the DH@@rseare config-
ured to maintain leases for machines connecting to the mketwbe usual scenario
is that a DHCP server is giving the same IP to a specific host#lohing its Eth-
ernet address). Typically, a lease expires in 15 days, sts ot do not refresh
the lease before it expires (e.g., because they are not cimuevould obtain a
new address. Although we do not have measurements on howtbftehappens,
it appears that this minor, slow form of randomization iskelly to be effective by

itself.

22

Given the above, we try to estimate the aborted connectiansed by more ag-
gressive randomization, by simulating NASR with differgrarameters on four
different traces: a one-week contiguous IP header tradected at Bell Labs re-
search[52], a 5-day trace from the University of Leipzid[281-day trace from the
University of Crete, and a 20-day trace from a link servingngle Web server at
FORTH-ICS. For the first experiment, we use a refresh timer ofinute, a soft-
change timer of 2 hours and vary the hard-change timer. Thétseare shown in
Figure 6. As expected, there is a clear downward trend asitiee increases, con-
sistent among different traces. An observation that ilytgurprised us was that the
means of our samples did not converge towards a smooth, omnally decreas-
ing function, despite hundreds of simulations for each eafithe hard-timer and
the initial “last-lease” times for each host randomizede Bamples we obtained
indicated a behavior that was almost deterministic. Indaedoser look revealed
that the address change process for the same value of theleamnde timer is syn-
chronized for each host across different simulations. Teedynchronization point
is the first successful soft-change event, which dependsamthe timings of the
flows in the trace and the soft-change timer, which both rancanstant across

different experiments. Thus, we consider this to be aneattibf our experiment.

We also examine how the failure rate is affected when we kkephard-change
timer constant, at 4 hours and vary the soft-change timeg. rébults are shown
in Figure 7. We see very little change as we vary the soft-gbdimer. There is a
small improvement as soft-change decreases, because iac¢casmall number
of additional hosts that have no connections and perforroesstul randomization

on them.

A closer examination of the raw data reveals that more th&a 60the failures

come from a few highly active hosts. These hosts almost awaye some active

23

connections which will always be aborted, regardless of haveh we relax the
timer. Thus, it might make sense for the DHCP server to alskengxceptions
and not strictly enforce the hard-change limit for such sidisat are highly active,
assuming they represent only a small fraction of hosts oneh&ork. We also note
that our analysis overestimates the failure rates becaasgowot filter out those

applications that are resilient to aborted connections.

Overall, we observe that the failure rates are reasonab&nwbmpared to typi-
cal connection failure measurements on network links. iBusvstudies[54] have
shown that 15%-25% of TCP connections are reset due to netagages, at-
tacks or reconfigurations. Additionally, failure rates dASR are reasonable when

compared to typical false positive rates of attack detadtieuristics [55-58].

5 Impact of NASR on worm infection

It is infeasible to run experiments on the scale of the gltftaknet. To evaluate the
effectiveness of our design, we simulated a small-scalepeoed to the Internet)

network of 1,000,000 hosts, each of which could be a potetatiget of worms.

Because of the variety of operating systems used and ssipiogided, we assume
that a fraction of hosts is vulnerable to the worm. For simplicity, we ignore the
details of the network topology, including the effect of eineend delays and traffic
generated by the worm outbreak. We simply consider a flatlogyoof routers,

each serving a subnet of end-hosts.

A fraction of addresses is allocated in each subnet, whifdctsf the probability
of successful scan attempts within the subnet. This prdibalsi an important pa-

rameter in the case where a host in the hitlist has changedidhess, because it

24

35 30 09
fime to build hitlist — iprand nodes fime to build hitlist JPRN S
& 1 hour —— & D 00% —— 0.8 1 hour —— At
g 30 ‘ 10 hours 1 g 25 80% 1 = 10 hours |~
2 100 hours = 2 a 40% e € 07 r|_100hours =}
E 25 £ . 20% 8
< Z 20 0% € o6 /
S S “ o
5 20 = 2 05
g N 8 15 g
£ 15 £ S o4
= = S
& 10 S 10 - - § 03
2 2 o 02
@ ~ @ 5 og £ 02px
£ s Ty £ e 01
0 0 0
15m 30m 1h 3h 6h 1 day 1 week 15m 30m 1h 3h 6h 1 day 1 week 15m30m 1h 3h 6h 1day 1 week
mean time between address changes (log-scale) mean time between address change (log-scale) mean time between address change (log-scale)

Fig. 8. Worm spread time Fig. 9. Effect of NASR Fig. 10. Max. fraction of
vs. time between addresson worm spread time when infected hosts vs. time be-
changes partially deployed tween address changes as-

suming scan-blocking

35 30

fime to build hitlist A subnet util vuin. hosts
w O hour —— |+ 1 2 90% —=— 2 = 00% —=—
g s 10 hours | g 30 80% 1 2 25 80% 1
g O 100 hours =} 2 o 30% e 2 40% e
3] E 25 10% £ 20%
S 07 = < 20
74
£ 06 § ol §
= / B 3
= 05 3 8 15
[1 =4 a
g 0.4 / 2 » g
) & g 10
s 03 8 : 8
§ s 0 o
g o2 ° < ° [St
£ ~ E 5 = E S i S &
0L o] = = Boge S
0 0 0
15m30m 1h 3h 6h 1day 1 week 30min 1h 3h 6h 1 day 1 week 15m 30m 1h 3h 6h 1 day 1 week
mean time between address changes (log-scale) mean time between address change (log-scale) mean time between address change (log-scale)

Fig. 11. Effect of NASR on Fig. 12. Effect of NASR vs. Fig. 13. Effect of NASR vs.

hitlist decay subnet usage density vulnerable population

determines ifanotherlive host would be available at the same address. A separate
parameter is used for random scanning, reflecting the tnactithe overall address

space that is completely unused.

The hitlist is generated at configurable rates, and we assoa¢he worm starts
spreading immediately after finishing with generating thish Because the early
hitlist entries are more likely to have become stale betwbkem discovery and the
start of the attack, the worm starts attacking the frestdeesses in the hitlist first.
For simplicity, we ignore the details of how the hitlist isstfibuted and encoded
in the payload of the worm: we assume that every worm instaaoeobtain the

next available entry at zero cost. After finishing with thiii, we assume that the
worm may continue trying to infect hosts using random saaguiiVe assume that

entries of the hitlist are only attacked once. After allibtthodes are infected, the

25

attacker will stop attacking them so as not to raise any sisps. For new worm
outbreaks, it is up to the attacker if she will use previoulsts or will generate

new ones. We believe that the generation of a new hitlist iserpoobable.

5.1 Impact of NASR

In the first experiment, we simulate worm outbreaks withedéht parameters, and
measure the worm spread time, expressed in terms of the émered for the
worm to infect 90% of the vulnerable hosts. We compare theachpf network
address space randomization, varying how fast the higligenerated and how fast
the host addresses are changed. The fraction of vulnerasigis 20%, the internal
scan success probability (83 (based on the subnet utilization measurements of
Section 4.2) and the random scanning success probabilityis(based on the

measurements presented in Section 2).

The results are shown in Figure 8. We observe that NASR aebitdw goal of
slowing down the worm outbreak, in terms of the time to reda¥%h dnfection,from
5 minutes when no NASR is used to between 24 and 32 minutes wdss change
their addresses very frequently. As expected, defendiampathitlists that are gen-
erated very fast requires more frequent address changgspérs that the mean
time between address changes needs to be 3-5 times leshéhtaimé needed to
generate the hitlist for the approach to reach around 80%sahaximum effec-
tiveness, while more frequent address changes give dimngseturns. We define
as maximum effectiveness the slowdown factor we can acleneNASR when
we perform randomization in very short intervals. From ogperiments, the max-
imum effectiveness of NASR is a slowdown factor of 6 for theegi simulation

settings. Considering the observations of Section 3, ieappthat daily address

26

changes could significantly slow down a worm whose hitligieserated by pas-

sive snooping on a P2P network.

Note that when using NASR, the hitlist worm is not completelguced to a random-
scanning worm: knowledge of subnets that have even one hasalsle already
gives the worm some advantage over a purely random-scawang. In this par-
ticular experiment, it would take roughly 30 minutes for thi#ist worm to infect
the whole network (under NASR), and 2 hours for a purely scanworm. This
is the result of performing subnet-level instead of gloleskl NASR; global-level
NASR would indeed reduce the hitlist worm to random-scagnife must also
note that although the spread times reported depend oniagafmaquency, the

relative improvement when using NASR appears to be constant

The above experiment assumed that the hitlist worm willdaltk to random scan-
ning after exhausting the hitlist. For a pure hitlist worime fraction of nodes that
are successfully infected is equal to the fraction of valitidh entries. The fraction
of valid hitlist entries for different address change antlidtigeneration times is
shown in Figure 11. Again we observe that NASR is quite effeceven for short

hitlist generation times.

We also simulated NASR with average subnet utilization affdrént fractions of
vulnerable hosts. The results are summarized in Figuresnd213@ respectively.
The impact of NASR is greater in terms of slowing down the atifen for smaller
vulnerable populations. This is expected, as in such casekilure rate for stale
entries is higher compared to a network where every availabtt is vulnerable.
The results for the impact of NASR as a function of subnetaatiion are similar:
higher subnet utilization results in a higher success réensitting stale entries.

However, NASR remains effective even for 90% subnet utilima

27

5.2 Partial deployment scenario

We have so far assumed that NASR is deployed globally throwigthe network. In
reality, it is more likely that only a fraction of subnets lmploy the mechanism,
such as dynamic address pools. As we are not aware of angstestimating the
fraction of DHCP pools in the Internet, we measure the affeness of NASR for
different values for the fraction of NASR-enabled subn@&tse results are shown
in Figure 9. We observe that NASR continues to be effectivdomwing down the
worm, even when deployed in 20% or 40% of the network. The watithinfects
the non-NASR subnets quite rapidly, with a slowdown in théeorof 50% caused
by the worm failing to infect NASR subnets. In other words, 3R has a milder
but still notable impact on non-NASR hosts. However, therwaiill have to resort
to random scanning after exhausting the hitlist, and it teide significantly more
time to infect NASR compared to non-NASR subnets. This olzgEm suggests
that there is a clear incentive for network administratordeéploy NASR, as it may
provide them the critical amount of time needed to react t@anwoutbreak. Ten
to twenty-five minutes more time may prove to be valuable foadministrator to

take some fast measures.

5.3 Interaction with scan-blocking

Hitlist worms are generally immune to scan-blocking medsiais such as [12].
Even for the natural decay rates measured in Section 4, soamswvould still
be underthe detection threshold most of the time. Randomizatiomedver, will
cause many infection attempts to fail, as hosts change sslek@nd their previous
addresses are either unused or used by a different host #yabmmay not run the

same service, and thus may or may not be vulnerable. To dettime interac-

28

tion between NASR and scan-blocking mechanism we simulatevoutbreaks in
a network where both NASR and scan-blocking are deployed.sEan-blocking
mechanism prevents hosts that cause failed connectiomsaosertain threshold
from further establishing new connections with the pradatetwork. The thresh-
old of failed connections cannot be very strict, e.g. onkefaconnection, as some
failed connection are expected due to “memory” of some systéke peer-to-peer
file sharing applications (Gnutella maintains a local casheeighbors and tries
to contact them upon program restart). As scan-blockmgainsthe outbreak, in
this experiment we measure the maximum fraction of hostsattgainfected in the
presence of NASR together with scan-blocking. The resutisshown in Figure
10. We observe that if NASR is performed according to the-athumb obser-
vation made previously (e.g., with address changes at dhratés 3-5x faster than
hitlist generation), the infection can be contained to uridéso of the vulnerable

population.

6 Practical NASR using Transparent Address Obfuscation

The damage caused by network address space randomizaA@R{]Nn terms of
aborted connections may not be acceptable in some casasn@éng, for exam-
ple, a large web transfer or an SSH session would be botatingf and frustrating.
Additionally, it would possibly increase network trafficasers or applications may
repeat the aborted transfer or try to reconnect. To addnesg tissues, we suggest
Transpar ent Address Obfuscati on, an external mechanism for deploy-

ing NASR avoiding connection failures.

The idea behind the mechanism is the existence of an “addredemization box”,

called from now on “TAO box”, inside the LAN environment. Bhibox performs

29

the randomization on behalf of the end hosts, without thel méany modifications
to the DHCP behavior. TAO box controls all traffic passing bg subnet(s) it is
responsible for, analogous to the firewall or NAT concepte Badress used for
communication between the host and the box remains the s&mshould note
that there is no need for private addresses, unlike the ¢d¢&To as end hosts can
obtain any address from the organization they belong. Thégaddress of the end
host — that is the IP that outside world sees — changes peaibdaccording to soft
and hard timers, similar to the procedure described in & @&i Old connections
continue to operate over the old address, the one that hddtdfare the change,

until they are terminated.

The TAO box may look like similar to symmetric NAT but has onmdamental
difference. With symmetric NAT all requests from the santerinal IP address and
port to a specific destination IP address and port are mamgpadihique external
source IP address and port. If the same internal host seraskatpvith the same
source address and port to a different destination, a diftenapping is used. In our
approach, the mapping does not change per destination st fredefined time
intervals. To the best of our knowledge, symmetric NAT is adays abandoned as

port preservation schemes are mostly supported.

The TAO box is responsible for two things. First, to preveswrtonnections on the
old addresses (before randomization) reaching the hostn8leto perform address
translation to the packets based on which connection thieymbeo, similar to the
NAT case. Until all old connections are terminated, a hostldeequire multiple

addresses to be allocated.

An example of how the TAO box works is illustrated in Figure T#e box is re-

sponsible for address randomization on the 11.22.70.@R4ed, that is it can pick

30

Host B 80 Host A 22

11.22.70.60 | 3000 11.22.70.50 | 2000 §

Host B
Host A

Intranet

Behind-the-box address Public address |
11.22.70.40 11.22.70.60
11.22.70.40 11.22.70.50

11.22.70.40
Host A

State \‘

11.22.70.40
Host B

SrcIP Src Port Dst IP Dst Port Public IP
11.22.70.40 2000 Host A 22 11.22.70.50
11.22.70.40 3000 Host B 80 11.22.70.60

X

11.22.70.40 11.22.70.41 11.22.70.60

Fig. 14. An advanced example of NASR using the TAO box. Hos two public
IP addresses, one (11.22.70.50) devoted for the SSH sessidiost A and the other
(11.22.70.60) for new connections, such as a HTTP conmettitlost B

up addresses only from this subnet. Initially the host hasRraddress 11.22.70.40
and TAO box sets the public IP address of this host to 11.2207/0rhe host
starts a new SSH connection to Host A and sends packets withvit IP address
(11.22.70.40). The box translates the source IP addresseptates it with the
public one, setting it to 11.22.70.50. Simultaneously,libg keeps state that the
connection from port 2000 to Host A on port 22 belongs to thet lmoth behind-
the-box address 11.22.70.40 and public address 11.20.70tis, on the Host
A side we see packets coming from 11.22.70.50. When Host porets back to
11.22.70.50, box has to perform the reverse translations@tng its state, it sees
that this connection was initiated by host 11.22.70.40 sewrites the destination

IP address.

After an interval, the public address of host 11.22.70.4énges. TAO box now

sets its public address to 11.22.70.60. Any connectionisiaed by external hosts

31

+ CAMPUS BELL - WEBICS * CAMPUS(2)

10 + CAMPUS BELL - WEBICS * CAMPUS(2)

400 3=

=
o
]

et

H
o
f

e —
,.f{m‘» T
sy e 7 =+‘+ &
.001 1 1 1 1 1 I 1 1 1 1 1 I
0 4 8 12 16 8 12 16 20 24
hard limit (hours) hard limit (hours)

.01

% of IP address space

=

{
&
ko
1
i

% of wasted IP address space

#

n
o
N
iy
i
o
IN

Fig. 15. Extra IP space needed for TAQFig. 16. The percentage of extra IP space
needed relative to the load of subnets

can reach the host through this new public IP address. Asiibeaseen in Figure
14 the new connection to Host B website has the new public #Hdace. Note that
in the behind-the-box and public address mapping tablermsthas two entries,
with the top being chosen for new connections. The only cotore permitted to

communicate with the hostat 11.22.70.50 address is the $8iection from Host
A. For each incoming packet, the box checks its state to finerdry. If no entry

is found, then packet is not forwarded to the internal hadtse the “src IP” field

of the state is used to forward the packet. As long as the S8Hembion lasts, the
11.22.70.50 IP will be bound to the particular host and cabeaassigned to any
other internal host. When SSH session finishes, the addriéidseweleased. For
stateless transport protocols, like UDP or ICMP, only thedamapping between

public and behind-the-box IP address is used.

6.1 Evaluation

The drawback of the TAO box is the extra address space retjardeeping alive
old connections. An excessive requirement of address spackl empty the ad-
dress pool, making the box abort connections. We tried totifyehe amount of

extra space needed by simulating the TAO box on top of fotfidtaaces. The first

32

two traces,CAMPUS and CAMPUS(2) , come from the UoC campus and include
traffic from 760 and 1675 hosts respectively. All hosts o$ tihace belong to the
same /16 subnet. The second trdgfel, L, is a one-week contiguous IP header trace
collected at Bell Labs research with 395 hosts located irbastbnet. Finally, the
VEBI CStrace is a 20-day trace from a link serving a single Web satvEORTH.

In this trace, we have only one host and we assume it is thehmdiyin a /24 sub-
net. In our simulation, the soft timer had a constant valug@®$econds, while the

hard timer varied from 15 minutes to 24 hours.

The results of the simulation are presented in Figure 15Inrost all cases, we
need at most 1% more address space in order to keep alivedremhections.
We measured the number of hosts that are alive in severak®ibie used full
TCP scans to identify the number of hosts that were alive uldhsts: FORTH, the
University of Crete campus and three subnets of a local I8Pré€xults, as shown
at Figure 4, indicate that 95% of the subnets are less thdwdaaled and thus we
can safely assume that this 1% of extra space is not an obstatile operation
of the TAO box. However, the little extra address space reeldeives from the
fact that subnets are lightly loaded. For example, the 7&shof theCAMPUS
trace correspond to the 1.15% of the /16 address space. ineFid, the relative
results of the previous simulation are shown, that is howyraaldresses we need
more in relation with used addresses and not the total nupofteddresses in the
subnet as plotted in Figure 15. On average, 10% more addrass #r hard timer
over one hour is needed, which seems a reasonable overheth@d tase of the
VAEBI CS trace the percentage is in most cases 100%, while maximucemiage
observed is 400%. This is expected as we have only one hds¢ isubbnet and in

some exceptional cases up to four additional addressesaded.

33

7 Discussion

Our experiments suggest that network address space raratooniis likely to be
useful. However, these results should only be treated dsnpmary, as there are
several issues that need to be examined more closely befaching any definite

conclusions.

First, the interaction between NASR and other defense nmésims needs to be
studied in more depth. Our simulation results show that N&8&bles scan-blocking
mechanisms to contain the worm to under 15% infection. Hewecan-blocking
is not entirely foolproof, at least in its current form. Fo@enple, a list okknown
repliers can be used to defeat the failed-connection test used by tmesha-
nisms, by padding infection attempts with successful psabethe known repli-
ers. Whether it is possible to design better mechanisms dtgcting and con-
taining scanning worms is thus still an open question. Tioeee we should also
consider other possibilities, including reactive defenaad distributed detection
mechanisms. As NASR is likely to at least slow down wormsnaty provide the
critical amount of time needed for distributed detectorshsas DOMINOJ[13] to
kick in, and for reactive approaches to deploy patches[6Short-term filters[60].
Determining whether this is indeed a possibility requinegher experimentation

and analysis.

Second, we have so far focused entirely on IP-level addessfomization, as IP
hitlist worms seem to have the most efficient propagatiop@ries. On the one
hand, we have only considered IPv4 as deployed today. In @b iRernet, the
address space is so much bigger that randomization coulddmeneore effective.
On the other hand, we need to also consider worms that userHiglel addressing

schemes, such as DNS or DHT identifiers. DNS hitlist worm$ defeat NASR,

34

assuming that hosts also update their DNS records. Thisdnmeiltrue for Web
servers, but when the DNS name is only a descriptor (such &g sontaining
the IP address), which is typical for DHCP and broadbandes$dpools, a DNS-
based hitlist worm would not be successful. DNS hitlist wenwould also suffer
the additional lookup latency, a slightly larger payldaahd the added risk of being
detected. While we are not aware of any such detection mesthan place today,

it could be deployed, for example, on DNS servers.

Third, we have not considered how worm creators would reatte widespread
deployment of NASR. One option would be for the attacker tdgyen a second
round of (stealthy) probing, and retain only entries thahs¢o be stable over time.
If NASR is partially deployed, then the worm could infect then-NASR part of
the Internet, without being throttled by stale entries anagating too many failed
connections. Interestingly, in this scenario all netwdhet employ NASR will be
worm-free, unless the worm switches to random scanning ffishing with the
hitlist. Even if this happens, NASR-enabled networks wiill get infected much
later than the nodes in the hitlist. Although we are not avediany other possible
reactions to the deployment of NASR, we cannot safely disthis possibility that
worm creators could come up with other measures to couneddiense. Thus,

this question deserves further debate and analysis.

3 We measured the length of the fully qualified domain name (RQDr several thousand
entries obtained from a search engine. The average lengti@vhytes. Servers that hold
web content tend to have shorter, more memorable names, sgpeet that this is a con-
servative estimate. We measured a 46% compression ratibeee strings, and therefore
on average each entry will take up 7.5 bytes in the hitlisadBresses take up 4 bytes, so

storing DNS names causes almost a doubling of the hitlist siz

35

8 Reated Work

Our work on network address space randomization was irgspyesimilar tech-
niques for randomization performed at the OS level [17-2B¢ general principle
in randomization schemes is that attacks can be disrupteddugcing the knowl-
edge that the attacker has about the system. For instastreiation set randomiza-
tion[22] changes the instruction set opcodes used on eathdwthat an attacker
cannot inject compiled code using the standard instruceiropcodes. Similarly,
address obfuscation[20] changes the locations of fungiioa host’s address space
so that buffer-overflow exploits cannot predict the add¥ess the functions they
would like to utilize for hijacking control of the system. ©Owork at the network
level is similar, as it reduces the ability of the attackebtdld accurate hitlists of

vulnerable hosts.

The use of IP address changes as a mechanism to defend agtzioks was pro-
posed independently in [24], [25] and [26]. Although thesechranisms are similar
to ours, there are several important differences in theathmedel as well as the
way they are implemented. The main difference is that theyson targeted at-
tacks, performing address changes to confuse attackdrggdeconnaissance and
planning. Neither project discusses or analyzes the usaabf 8 mechanism for

defending against worm attacks.

More specifically, the BBN DYNAT system[25] was developegag of the DARPA
Information Assurance Program exploring the area of dynamiwork defense,
with the hypothesis that dynamic network reconfiguratiomuldaonhibit an adver-
sary’s ability to gather intelligence, and thus degradeah#ity to successfully
launch an attack. BBN’s DYNAT operates by obfuscating hdsnhtity information

in TCP/IP headers when packets enter public parts of theanktWwhe obfuscation

36

algorithm depends on a pre-established keying parametevahies with time. The
evaluation shows that the adversary was a) severely timelihy the dynamic na-
ture of the network, and b) forced into more vulnerable aridatable behavior. We
raise the same arguments for defending typical LANs agaitigt worm attacks,
the main difference being that in our case the clients arsdlyocoupled to the
servers and therefore pre-established keying parametses umdesirable. In par-
ticular, the BBN approach requires a “shim” module to bealest on the client
to coordinate address changes with the (modified) servale whour approach
we consider a DHCP-based implementation that is easiergloylas it does not
require any changes to the client. However, client-sideifitations make it easier
for DYNAT to manage address changes without affecting appbns, unlike the
DHCP-based approach that requires additional care to naaiapplication disrup-
tion. The reason behind this difference in the two desighisas DYNAT assumes
an adversary that can passively listen to client-servemaeonication. In contrast,
our work focuses on attackers performing scans and otheedwrvesting activi-

ties to build a worm hitlist.

The APOD (Applications That Participate in Their Own Defenproject [24] set
out to develop technologies that increase an applicatiesiience against attacks.
One of the mechanisms they describe, called Port and Adétegping, is rele-
vant to our work as it is designed to evade attacks againstvacedy constantly
changing its IP address and TCP port using random numbegsniénmtion is both
to hide the service’s real identity and confuse the attadkeing reconnaissance.
Packets intercepted by attackers will reveal random addsesnd ports, which are
valid only for a small period of time, e.g., 1 minute. For ataek to be successful,
the attacker must discover the current addresses and porexacute the attack all

within one refresh cycle. A stated additional benefit is tiezeased likelihood of an

37

attacker being detected. This mechanism too relies on sgnidation of random
number generators and time synchronization between thecongonents. Port
hopping, as opposed to address hopping, was not an optionr idesign due to
the loose coupling between clients and servers. APOD atsog®s hopping func-
tionality on protocol layers above TCP, such as distribl@&@RBA calls, which

requires additional modification of TCP/IP data in the 1lGBtpcol. This feature

would be a reasonable addition to our proposal.

Sandia’s Dynamic Network Address Translation for netwaxt@ction is a similar
proposal [26]. The authors discuss several types of dynaduoess translation and
point out that the use of this approach is dependent on mdfeyetit factors which
can influence overall effectiveness. With this in mind, theyvide a detailed deci-
sion tree which allows the designer to determine which tyfeddress translation

is suitable for a particular environment.

9 Summary

We have explored the design and effectivenessedivork address space random-
ization(NASR), a technique that hardens networks against IP thitisms. NASR
forces hosts to frequently change their network addreds, the goal of making
hitlists stale. The approach is appealing in several wayst,Fft is effective in
limiting the infection for pure IP hitlist worms, or slowindpwn the infection for
hybrid hitlist-scanning worms. Second, it forces both g/j@& worms to exhibit
scan-like behavior that exposes them to scan detectionaneshs. Third, it is
relatively easy to implement. Unlike network-level detestmechanisms, NASR
does not add any additional packet-level processing onarktelements. Unlike

host-based detection or other proactive mechanisms, straterequire any changes

38

to the end-points.

We have discussed various constraints that limit the agiplity of NASR, such
as the administrative overhead for managing address chasgevices that re-
quire static addresses, and applications that do not telaxddress changes. Our
experiments indicate that the connection failure ratedINMASR are comparable
to typical connection failure rates on modern networks amictal false positive
rates of attack detection heuristics. We have also presantelternative approach,
called Transparent Address Obfuscation, that implemesidseas changes with-
out causing connection failures. This approach comes adxpense of requiring
edge-router (or NAT) modification, and also requires sonagespddress space to
facilitate address changes. We have found that the additamiuress space required

is reasonable, at under 1%, even for very aggressive adthasge policies.

Our investigation into the trade-offs of NASR suggests tietvork segments that
alreadyperform dynamic address allocation, such as DHCP poolsrtmdband,

wireless networks, etc., are a suitable environment fotoyepg NASR without

significantly impairing functionality or adding adminiative overhead. Assuming
that broadband users are less likely to be vigilant and kieep $ystems secure,
NASR appears promising. However, given that most worms sbdse targeted
servers, and until better defenses are put in place, wevedimat the administra-
tive overhead for implementing NASR may be worth it even fewvers, as NASR

effectively allows administrators to “opt-out” from IP hgts.

39

Acknowledgments

This work was supported in part by the IST project LOBSTERdeohby the Euro-
pean Union under Contract No. 004336, the GSRT project EARN022) funded
by the Greek Secretariat for Research and Technology, tHTGgoject MILTI-
ADES funded by the Greek Secretariat for Research and Témwander con-
tract number 05NON-EU-109 and by the project CyberScopdddrby the Greek
General Secretariat for Research and Technology underaovmumber PENED
03ED440. S. Antonatos, P. Akritidis and E. P. Markatos ase walith the University
of Crete. We are indebted to Elias Athanasopoulos for hisedtaLcrawler as well
as the network administrators at FORTH-ICS, UoC and themnons ISP for tol-
erating our intensive network scans. We also thank Sotasidis, the members
of the PR Security Department, the members of the DCS group at FORS{-
and the anonymous reviewers for providing valuable feeklloaicearlier versions

of this paper.

References

[1] CERT Advisory CA-2001-19: ‘Code Red’ Worm Exploiting Bar Overflow in IIS
Indexing Service DLL, http://www.cert.org/advisorie®001-19.html (Jul. 2001).

[2] D.Moore, C. Shannon, J. Brown, Code-Red: a case studigeapread and victims of
an Internet worm, in: Proceedings of the 2nd Internet Meament Workshop (IMW),
2002, pp. 273-284.

[3] D. Moore, V. Paxson, S. Savage, C. Shannon, S. StanifdrdVeaver, Inside the
slammer worm, IEEE Security & Privacy (2003) 33-39.

[4] S. Staniford, D. Moore, V. Paxson, N. Weaver, The top dpefdlash worms, in: Proc.
ACM CCS WORM, 2004.

[5] S. Staniford, V. Paxson, N. Weaver, How to Own the Intéinerour Spare Time, in:
Proceedings of the 11th USENIX Security Symposium, 200214p—-167.

[6] N. Weaver, V. Paxson, A worst-case worm, in: Proc. Thirdn&al Workshop on
Economics and Information Security (WEIS'04), 2004.

40

[7] J. Wu, S. Vangala, L. Gao, K. Kwiat, An Effective Architece and Algorithm for
Detecting Worms with Various Scan Techniques, in: Procegddf the Network and
Distributed System Security Symposium (NDSS), 2004, pf-156.

[8] J. Jung, V. Paxson, A. W. Berger, H. Balakrishnan, Fastdean Detection Using
Sequential Hypothesis Testing, in: Proceedings of the IBgBEposium on Security
and Privacy, 2004.

[9] M. Williamson, Throttling Viruses: Restricting Propaiipn to Defeat Malicious
Mobile Code, Tech. Rep. HPL-2002-172, HP Laboratoriest8Ir{2002).

[10] S. E. Schechter, J. Jung, A. W. Berger, Fast DetectioBoainning Worm Infections,
in: Proceedings of thg" International Symposium on Recent Advances in Intrusion
Detection (RAID), 2004, pp. 59-81.

[11] S. Staniford, Containment of Scanning Worms in EniepiNetworks, Journal of
Computer Security .

[12] N. Weaver, S. Staniford, V. Paxson, Very Fast Contaimnoé Scanning Worms, in:
Proceedings of th&3** USENIX Security Symposium, 2004, pp. 29-44.

[13] V. Yegneswaran, P. Barford, S. Jha, Global Intrusiortebiéon in the DOMINO
Overlay System, in: Proceedings of the Network and DistetduSystem Security
Symposium (NDSS), 2004.

[14] D. Nojiri, J. Rowe, K. Levitt, Cooperative responseasigies for large scale attack
mitigation, in: Proceedings of the 3rd DARPA Informationr@uability Conference
and Exposition (DISCEX), 2003.

[15] C. C. Zou, L. Gao, W. Gong, D. Towsley, Monitoring and Eaiarning for Internet
Worms, in: Proceedings of thi@®” ACM International Conference on Computer and
Communications Security (CCS), 2003, pp. 190-199.

[16] K. G. Anagnostakis, M. B. Greenwald, S. loannidis, A. Reromytis, D. Li, A
Cooperative Immunization System for an Untrusting Interime Proceedings of the
11th IEEE International Conference on Networking (ICON)Q2, pp. 403—408.

[17] J. Xu, Z. Kalbarczyk, R. lyer, Transparent runtime ramiization for security, in: A.
Fantechi, editor, Proc. 22nd Symp. on Reliable Distribufgdtems —SRDS 2003,
2003, pp. 260-269.

[18] J. S. Chase, H. M. Levy, M. J. Feeley, E. D. Lazowska, fBlgaand protection in
a single-address-space operating system, ACM TransactionComputer Systems
12 (4) (1994) 271-307.
URLci teseer.ist. psu. edu/ chase94shari ng. htm

[19] C. Yarvin, R. Bukowski, T. Anderson, Anonymous RPC: L-tatency protection in a
64-bit address space, in: In Proc. USENIX Summer 1993 Teah@ionference, 1993,
pp. 175-186.

[20] S. Bhatkar, D. DuVarney, R. Sekar, Address obfuscatim efficient approach to
combat a broad range of memory error exploits, in: In Proogsdof the 12th
USENIX Security Symposium, 2003, pp. 105-120.

41

[21] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, Boneh, On the
effectiveness of address-space randomization, in: CCSP@gceedings of the 11th
ACM Conference on Computer and Communications Securityyl/&Less, New York,
NY, USA, 2004, pp. 298-307.

[22] G. S. Kc, A. D. Keromytis, V. Prevelakis, Countering @ebhjection Attacks
With Instruction-Set Randomization , in: Proceedings & thCM Computer and
Communications Security Conference (CCS), 2003, pp. 8@-2

[23] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanpi. D. Zovi, Randomized
instruction set emulation to disrupt binary code injectaitacks, in: Proceedings of
the 10th ACM Conference on Computer and Communicationsrigc2003.

[24] M. Atighetchi, P. Pal, F. Webber, R. Schantz, C. Jonedaptive use of network-
centric mechanisms in cyber-defense, in: Proceedingseo6th IEEE International
Symposium on Object-oriented Real-time Distributed Cotimgpi 2003.

[25] D. Kewley, J. Lowry, R. Fink, M. Dean, Dynamic approasht® thwart adversary
intelligence gathering, in: Proceedings of the DARPA Infation Survivability
Conference and Exposition (DISCEX), 2001.

[26] J. Michalski, C. Price, E. Stanton, E. L. Chua, K. Seah, YW Heng, T. C.
Pheng, Final Report for the Network Security Mechanismglidittg Network
Address Translation LDRD Project, Tech. Rep. SAND200233&andia National
Laboratories (November 2002).

[27] R. Droms, Dynamic Host Configuration Protocol, RFC 213ttp://www.rfc-
editor.org/ (Mar. 1997).

[28] B. Croft, J. Gilmore, Bootstrap Protocol (BOOTP), RFG19 http://www.rfc-
editor.org/ (Sep. 1985).

[29] F. Cohen, Computer Viruses: Theory and Practice, Cderpus& Security 6 (1987)
22-35.

[30] J. O. Kephart, A Biologically Inspired Immune Systenmt fdomputers, in: Artificial
Life IV: Proceedings of the Fourth International Workshop thhe Synthesis and
Simulation of Living Systems, MIT Press, 1994, pp. 130-139.

[31]C. C. Zou, W. Gong, D. Towsley, Code Red Worm Propagatindeling
and Analysis, in: Proceedings of the 9th ACM Conference omrmfaer and
Communications Security (CCS), 2002, pp. 138-147.

[32] Cert Advisory CA-2003-04: MS-SQL Server Worm,
http://www.cert.org/advisories/CA-2003-04.html (J2A03).

[33] The Spread of the Sapphire/Slammer Worm,
http://www.silicondefense.com/research/worms/slamphe (Feb. 2003).

[34]C. Shannon, D. Moore, The spread of the witty worm,
http://www.caida.org/analysis/security/witty/ (2004)

42

[35] J. Jung, E. Sit, H. Balakrishnan, R. Morris, DNS perfarmoe and the effectiveness of
caching, in: Proceedings of the 1st ACM SIGCOMM Internet Ml@ament Workshop
(IMW), 2001.

[36] J. loannidis and G. Q. Maguire Jr., The design and implaation of a mobile
internetworking architecture, in: USENIX Winter, 1993,. gi89-502.
URLciteseer.ist. psu.edu/ioannidi s93desi gn. htn

[37] A. C. Snoeren, H. Balakrishnan, An end-to-end approsxhhost mobility, in:
MobiCom ’00: Proceedings of the 6th annual internationahfecence on Mobile
computing and networking, ACM Press, New York, NY, USA, 200p. 155-166.

[38] R. A. Baratto, S. Potter, G. Su, J. Nieh, Mobidesk: mebittual desktop computing,
in: Proceedings of the 10th Annual International Confeeean Mobile Computing
and Networking (MOBICOM), ACM Press, 2004, pp. 1-15.

[39] M. Kaminsky, E. Peterson, D. B. Giffin, K. Fu, D. Mazireb]. F. Kaashoek,
REX: Secure, extensible remote execution, in: In Procegdof the 2004 USENIX
Technical Conference, 2004, pp. 199-212.

[40] Internet Systems Consortium Inc., Dynamic host comfigan protocol (DHCP)
reference implementation, http://www.isc.org/sw/dhcp/

[41] T. Karagiannis, A. Broido, M. Faloutsos, K. claffy, Treport layer identification of
P2P traffic, in: IMC '04: Proceedings of the 4th ACM SIGCOMMnterence on
Internet measurement, ACM Press, New York, NY, USA, 2004 1j24—-134.

[42] S. Sen, O. Spatscheck, D. Wang, Accurate, scalablestiwark identification of
P2P traffic using application signatures, in: WWW '04: Pexstiags of the 13th
international conference on World Wide Web, ACM Press, NevkYNY, USA, 2004,
pp. 512-521.

[43] THC-Amap, http://thc.org/releases.php (2004).

[44] Fingerprinting: The complete toolsbox,
http://www.10t3k.org/security/tools/fingerprinting2@04).

[45] Fingerprinting: The complete documentation,
http://www.10t3k.org/security/docs/fingerprinting/Q@4).

[46] DISCO: The Passive IP Discovery Tool, http://www.atide.com/disco/ (2004).

[47] T. Narten, R. Draves, Privacy Extensions for Statekddress Autoconfiguration in
IPv6, RFC 3041, http://www.faqgs.org/rfcs/rfc304 1. htrad§. 2001).

[48] DShield: Distributed Intrusion Detection System phttwww.dshield.org.

[49] Net Worm Uses Google to Spread, http://it.slashdgti®4/12/21/2135235.shtml
(Dec. 2004).

[50] W. Chen, Y. Huang, B. F. Ribeiro, K. Suh, H. Zhang, E. deu&o e Silva,
J. Kurose, D. Towsley, Exploiting the IPID field to infer netikk path and end-system
characteristics, in: Proceedings of the 6th Passive angiedgteasurement Workshop
(PAM 2005), 2005.

43

[51] T. Kohno, A. Broido, kc Claffy, Remote physical devicederprinting, in: IEEE
Symposium on Security and Privacy, 2005.

[52] NLANR-PMA Traffic Archive: Bell Labs-I trace,
http://[pma.nlanr.net/Traces/Traces/long/bell/1 (3002

[53] NLANR-
PMA Traffic Archive: Leipzig-I trace, http://pma.nlanrtfigraces/Traces/long/leip/1
(2002).

[54] M. Arlitt, C. Williamson, An Analysis of TCP Reset Behawur on the Internet, ACM
SIGCOMM Computer Communication Review 35 (1) (2005) 37-44.

[55] T. Toth, C. Kriigel, Accurate buffer overflow detectivia abstract payload execution,
in: Proceedings of the 5th International Symposium on Reédmances in Intrusion
Detection (RAID), 2002.

[56] K. Wang, S. J. Stolfo, Anomalous Payload-based Netwaotiusion Detection, in:
Proceedings of thg" International Symposium on Recent Advanced in Intrusion
Detection (RAID), 2004, pp. 201-222.

[57] S. Singh, C. Estan, G. Varghese, S. Savage, Automateadhviimgerprinting, in:
Proceedings of thé"” Symposium on Operating Systems Design & Implementation
(OSDI), 2004.

[58] A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. H. Li, J. Ruo, K. P. Fan, Buttercup:
On Network-based Detection of Polymorphic Buffer Overflowlnérabilities, in:
Proceedings of the Network Operations and Management SSimpdNOMS), 2004,
pp. 235-248, vol. 1.

[59] S. Sidiroglou, A. D. Keromytis, A network worm vaccinechitecture, in: Proceedings
of the IEEE International Workshops on Enabling Techna@egilnfrastructure for
Collaborative Enterprises (WETICE), Workshop on Entegi$ecurity, 2003.

[60] H. J. Wang, C. Guo, D. R. Simon, A. Zugenmaier, Shieldlngtability-driven
network filters for preventing known vulnerability expkitin: Proceedings of ACM
SIGCOMM’04, 2004, pp. 193-204.

44

