
Defending against Hitlist Worms using Network

Address Space Randomization

S. Antonatosb P. Akritidisb E. P. Markatosb K. G. Anagnostakisa,∗

aSystems and Security Department, Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore 119613

bInstitute of Computer Science, Foundation for Research andTechnology, Hellas

P.O.Box 1385 Heraklio, GR-711-10 GREECE

(Parts of this work has been previously published in the Proceedings of the ACM

Workshop on Rapid Malcode (WORM), 2005, and the Proceedingsof IFIP Conference on

Communications and Multimedia Security (CMS), 2006)

Abstract

Worms are self-replicating malicious programs that represent a major security threat for

the Internet, as they can infect and damage a large number of vulnerable hosts at timescales

where human responses are unlikely to be effective. Sophisticated worms that use precom-

puted hitlists of vulnerable targets are especially hard tocontain, since they are harder to

detect, and spread at rates where even automated defenses may not be able to react in a

timely fashion.

This paper examines a new proactive defense mechanism called Network Address Space

Randomization (NASR) whose objective is to harden networksspecifically against hitlist

worms. The idea behind NASR is that hitlist information could be rendered stale if nodes

are forced to frequently change their IP addresses. NASR limits or slows down hitlist worms

Preprint submitted to Elsevier Science 9 April 2008

and forces them to exhibit features that make them easier to contain at the perimeter. We

explore the design space for NASR and present a prototype implementation as well as

experiments examining the effectiveness and limitations of the approach.

1 Introduction

Worms are widely regarded to be a major security threat facing the Internet today.

Incidents such as Code Red[1,2] and Slammer[3] have clearlydemonstrated that

worms can infect tens of thousands of hosts in less than half an hour, a timescale

where human intervention is unlikely to be feasible. More recent research studies

have estimated that worms can infect one million hosts in less than two seconds

[4–6]. Unlike most of the currently known worms that spread by targeting random

hosts, these extremely fast worms rely on predetermined lists of vulnerable targets,

calledhitlists, in order to spread efficiently.

The threat of worms and the speed at which they can spread havemotivated research

in automated worm defense mechanisms. For instance, several recent studies have

focused on detecting scanning worms [7–12]. These techniques detect scanning ac-

tivity and either block or throttle further connection attempts. These techniques are

unlikely to be effective against hitlist worms, given that hitlist worms do not ex-

hibit the failed-connection feature that scan detection techniques are looking for.

To improve the effectiveness of worm detection, several distributed early-warning

systems have been proposed [13–16]. The goal of these systems is to aggregate and

∗ Corresponding author.

Email addresses:antonat@ics.forth.gr (S. Antonatos),

akritid@ics.forth.gr (P. Akritidis),markatos@ics.forth.gr (E. P.

Markatos),kostas@i2r.a-star.edu.sg (K. G. Anagnostakis).

2

analyze information on scanning or other indications of worm activity from differ-

ent sites. The accuracy of these systems is improved as they have a more “global”

picture of suspicious activity. However, these systems areusually slower than lo-

cal detectors, as they require data collection and correlation among different sites.

Thus, both reactive mechanisms and cooperative detection techniques are unlikely

to be able to react to an extremely fast hitlist worm in a timely fashion.

Observing thisgapin the worm defense space, we consider the question of whether

it is possible to develop defensesspecificallyagainst hitlist worms. We start by

looking at likely strategies for building hitlists and examine how effective these

strategies can be. We observe that hitlists tend todecaynaturally for various rea-

sons, as hosts disconnect and applications are abnormally terminated. A rapidly

decaying hitlist is likely to decrease the spread rate of a worm. It may also increase

the number of unsuccessful connections it initiates and maythus increase the ex-

posure of the worm to scan-detection methods.

Starting with this observation, we ask whether it is possible to intentionallyaccel-

erate hitlist decay, and propose a specific technique for this purpose callednetwork

address space randomization(NASR). This technique is primarily inspired by sim-

ilar efforts for security at the host-level [17–23]. It is also similar in principle to the

“IP hopping” mechanism in the APOD architecture[24], BBN’sDYNAT[25] and

Sandia’s DYNAT[26] systems, all three designed to confuse targeted attacks by dy-

namically changing network addresses. In this paper, we examine the same basic

idea in the context of defending against hitlist worms. In its simplest form, NASR

can be implemented by adapting dynamic network address allocation services such

as DHCP[27]1 to forcemore frequent address changes. This simple approach may

1 Another known address allocation service isbootp[28], but it allocates addresses semi-

permanently, without any mechanism for renewing the allocation and is thus not usable for

3

Fig. 1. Propagation speed of different types of worm attacks

be able to protect enabled networks against hitlist worms, and, if deployed at a large

enough scale, may be able to significantly hamper their spread.

We must emphasize that, like most (if not all) other worm containment proposals,

NASR is only a partial solution to the worm containment problem. Where appli-

cable, our approach succeeds in limiting the extent or slowing down the rate of a

worm infection. However, the mechanism is specific to IP-hitlist worms, and may

be less effective against DNS hitlists (we discuss such issues in Section 5). Fur-

thermore, it cannot always completely squash hitlist-based worm epidemics, and it

cannot be used universally. Nevertheless, being able to slow down the fastest known

propagation mechanism is likely to be valuable, as it may allow more time for other

reactive defenses to kick in. Furthermore, we note that our analysis does not inval-

idate the worst-case estimates provided in previous work[4], nor is our goal to play

down the threat posed by such worms. The purpose of this paperis to help examine

whether NASR is worth considering as part of a broader worm defense portfolio.

In the rest of this paper, we present NASR in more detail and examine issues of

applicability, effectiveness and implementation cost.

2 Background

For the purpose of placing our work in context, we first give a brief overview of

what is known about worms, with some emphasis on hitlist worms, and present a

our purposes.

4

summary of proposals for defending against worms and how they relate to hitlist

worms which are the focus of this paper.

Worms Computer viruses have been studied extensively over the last couple of

decades. Cohen was the first to define and describe computer viruses in their present

form. In [29], he gave a theoretical basis for the spread of computer viruses. The

strong analogy between biological and computer viruses ledKephartet al. [30] to

investigate the propagation of computer viruses based on epidemiological models.

They extend the standard epidemiological model by placing it on a directed graph,

and use a combination of analysis and simulation to study itsbehavior. They con-

clude that if the rate at which defense mechanisms detect andremove viruses is

sufficiently high relative to the rate at which viruses spread, it is possible to prevent

widespread virus propagation.

The Code Red worm [1] was analyzed extensively in [31]. The authors conclude

that even though epidemic models can be used to study the behavior of Internet

worms, they are not accurate enough because they cannot capture some specific

properties of the environment these operate in: the effect of human countermea-

sures against worm spreading (i.e.,patching, filtering, disconnecting,etc.) and the

slowing down of the worm infection rate due to the impact of worm on Internet

traffic and infrastructure. They derive a new general Internet worm model called

two-factor wormmodel, which they then validate in simulations that match the

observed Code Red data available to them. Their analysis seems also to be inde-

pendently supported by the data on Code Red propagation in [2].

A similar analysis on the SQL “Slammer” (or Sapphire) worm [32] can be found

in [33]. Sapphire, the fastest worm today, was able to infectmore than 70,000 vic-

tim computers in less than 15 minutes.

5

The Blaster/Welchia epidemic is an interesting example of a“vigilante” worm

(Welchia) causing more trouble than the original outbreak (Blaster). A “vigilante”

worm attempts to clean-up another worm by using the same vulnerability. However,

the very notion of “vigilante” worms is rendered useless if worms immediately dis-

able the vulnerability after compromising a machine.

The Witty worm [34] is of interest for several reasons. First, it was the first widely

propagated Internet worm to carry a destructive payload. Second, Witty was started

in an organized manner with an order of magnitude more ground-zero hosts than

any previous worm and also began to spread as early as only oneday after the

vulnerability was publicized, which is an indication that the worm authors had al-

ready prepared all the worm infrastructure, including the ground-zero hosts and the

replication mechanisms, and were only waiting for an exploit to become available

in order to launch the worm. Finally, Witty spread through a population almost an

order of magnitude smaller than that of previous worms, showing that a hitlist is

not required even for targeting small populations.

All these worms use (random) scanning to determine their victims, by using a ran-

dom number generator to select addresses from the entire IP address space. Al-

though some worms chose their next target uniformly among all the available IP

addresses, other worms seemed to prefer local addresses over distant ones, so as to

spread the worm to as many local computers as possible. Once inside an organi-

zation, these worms make sure that they will infect several of its computers before

trying to infect any outside hosts.

Hitlists Instead of attempting to infect random targets, a worm couldfirst deter-

mine a large vulnerable population before it starts spreading. The worm creator can

assemble a list of potentially vulnerable machines prior toreleasing the worm, for

6

example, through a slow port scan. The list of known vulnerable hosts is called a

hitlist. Using hitlists, worms do not need to waste time scanning for potential targets

during the time of the attack and will not generate as many unsuccessful connec-

tions as when scanning randomly. This allows them to spread much faster, and it

also makes them less visible to scan-based worm detection tools. A hitlist can be

either a collection of IP addresses, a set of DNS names or a setof Distributed Hash

Table identities (for infecting DHT systems irrelevantly of the network infrastruc-

ture).

Hitlist worms have not been observed in the wild, perhaps because the co-evolution

of worms and defenses has not reached that stage yet: they arenot currentlynec-

essaryfor a successful worm epidemic, since neither scan-blocking nor distributed

detection systems are widely deployed yet. However, hitlists are certainly feasible

today and worm creators are very likely to use them in the future.

Hitlist worms have attracted some attention lately, as theyare easy to model off-

line [5,4]. In this context, several hitlist construction methods have been outlined:

random scanning, DNS searches, web crawling, public surveys and indexes, as well

as monitoring of control messages in peer-to-peer networks.

Random scanning can be used to compile a list of IP addresses that respond to

active probing. Since the addresses will not be (ab)used immediately, the worm

author can use so-called stealth, low rate, scanning techniques to make the scan

pass unnoticed. On the other hand, if the duration of the low-rate scanning phase is

very long, some IP addresses will eventually expire.

Hitlists of Web servers can be assembled by sending queries to search engines and

by harvesting Web server names off the replies. Similar single-word queries can

also be sent to DNS servers in order to validate web server names and find their IP

7

addresses. Interestingly enough, these types of scans can be used to easily create

large lists of web servers and are very likely to go unnoticed.

However, any form of active scanning, probing, or searching, has the potential risk

of being detected. This gives special appeal to passive techniques, such as those

based on peer-to-peer networks. Such networks typically advertise many of their

nodes and this information can be collected by just observing the traffic that is

routed through a peer. The creation of the hitlist does not require any active opera-

tion from the peer-to-peer node and therefore cannot raise suspicion easily.

Worm defenses We discuss some recent proposals for defending against worms

and whether they could be effective against hitlist worms.

Approaches such as the one by Wuet al. [7] attempt to detect worms by monitor-

ing unsolicited probes to unassigned IP addresses (“dark space”) or inactive ports.

Worms can be detected by observing statistical properties of scan traffic, such as

the number of source/destination addresses and the volume of the captured traffic.

By measuring the increase on the number of source addresses seen in a unit of

time, it is possible to infer the existence of a new worm when as few as 4% of the

vulnerable machines have been infected.

An approach for isolating infected nodes inside an enterprise network is discussed

in [11,8]. The authors show that as little as 4 probes may be sufficient in detecting a

new port-scanning worm. Weaveret al. [12] describe a practical approximation al-

gorithm for quickly detecting scanning activity that can beefficiently implemented

in hardware. Schechteret al. [10] use a combination of reverse sequential hypoth-

esis testing and credit-based connection throttling to quickly detect and quarantine

local infected hosts. These systems are effective only against scanning worms (not

8

topological, or “hit-list” worms), and rely on the assumption that most scans will

result in non-connections.

Several cooperative, distributed defense systems have been proposed. DOMINO is

an overlay system for cooperative intrusion detection [13]. The system is organized

in two layers, with a small core of trusted nodes and a larger collection of nodes

connected to the core. The experimental analysis demonstrates that a coordinated

approach has the potential of providing early warning for large-scale attacks while

reducing potential false alarms. Zouet al.[15] describes an architecture and models

for an early warning system, where the participating nodes/routers propagate alarm

reports towards a centralized site for analysis. The question of how to respond to

alerts is not addressed, and, similar to DOMINO, the use of a centralized collection

and analysis facility is weak against worms attacking the early warning infrastruc-

ture. Fully distributed defense mechanisms, such as [14,16] may be more robust

against infrastructure attacks, yet all distributed defense mechanisms that we are

aware of are likely to be too slow for the estimated timescales of hitlist worms.

3 Network Address Space Randomization

The goal of network address space randomization (NASR) is toforce hosts to

change their IP addresses frequently enough so that the information gathered in

hitlists is rendered stale by the time the worm is unleashed.

Abstract model of NASR To illustrate the basic idea more formally, consider an

abstract system model, with an address spaceR = {1, 2, ..., n}, a set of hostsH =

{h1, ..., hm} wherem < n, and a functionA that maps all hostshk to addresses

A(hk) = r ∈ R. Assume that at timeta, the attacker can (instantly) generate a

9

hitlist X ⊂ R containing the addresses of hosts that are live and vulnerable at that

time. If the attack is started at timetx and all hosts inX are still live and vulnerable

and have the same address as at timeta, then the worm can very quickly infect|X|

hosts.

In a system implementing NASR, consider that at timetb, whereta < tb < tx,

all hosts are assigned a new address fromR. Thus, at the time of the attacktx

the probability that a hitlist entryxk still corresponds to a live host isp = m/n

and thus the attacker will be able to infect(m/n)|X| hosts. Besides reducing the

number of successfully infected nodes in the hitlist, the attack will also result in a

fraction 1 − m/n of all attempts failing (which may be detectable using existing

techniques). In this simple model, the densitym/n of the address space seems to be

a crucial factor in determining the effectiveness of NASR. So far we have assumed

a homogeneous set of nodes, all with the same vulnerability and probability of

getting infected. If only a subset of the host population is vulnerable to a certain

type of attack, then the effectiveness of NASR in reducing the fraction of infected

hitlist nodes and the number of failed attempts is proportionally higher.

Practical constraints The model we presented illustrates the basic intuition of

how NASR can affect a hitlist worm. Mapping the idea to the reality of existing

networks requires us to look into several practical issues.

Scope: Random assignment of an address from a global IP address space pool is

not practical for several reasons: (i) it would explode the size of routing tables, the

number of routing updates and the frequency of recomputing routes, (ii) it would

result in tremendous administrative overhead for reconfiguring mechanisms that

make address-based decisions, such as those based on accesslists and (iii) it would

require global coordination for being implemented. The difficulty of implement-

10

ing NASR decreases as we restrict its scope to more local regions. Each AS could

implement AS- or prefix-level NASR, but this would still create administrative dif-

ficulties with interior routing and access lists. It seems that a reasonable strategy

would be to provide NASR at the subnet-level, although this does not completely

remove the problems outlined above. For instance, access lists would need to be

reconfigured to operate on DNS names and DNS would need to be dynamically

updated when hosts change addresses. It is also obvious thatit is pointless to im-

plement NASR behind NATs, as the internal addresses have no global significance.

It is sufficient to change the address of the NAT endpoint (e.g., DSL/home router)

to protect the internal hosts.

Static addressing:Some nodes cannot change addresses and those that can may

not be able to do so as frequently as we would want. The reason for this is that

addresses have first-class transport- and application-level semantics. For instance,

DNS server addresses are usually hardcoded in system configurations. Even for

DHCP-configured hosts, changing the address of a DNS server would require syn-

chronizing the lease durations so that the DNS server can change its address at

exactly the same time whenall hosts refresh their DHCP leases. While techni-

cally feasible, this seems too complex to implement and suchcomplexity should be

avoided. Similar constraints hold for routers.

DNS updates:For services referenced through the DNS name, such as email,FTP

and Web servers, implementing NASR requires the DNS name to accurately reflect

the current IP address of the host. This means that the DNS time-to-live timers

need to be set low enough so that remote clients and name servers do not cache

stale data when an address is changed. The NASR mechanism also needs to interact

with the DNS server to keep the address records up to date. It is reasonable to ask

whether this could increase the load on the DNS system, giventhat lower TTLs will

11

negatively affect DNS caching performance. Fortunately, arecent study of DNS

performance suggests that reducing the TTLs of address records to values as low

as a few hundred seconds does not significantly affect DNS cache hit rates [35].

Tolerance to address changes:Generally, all active TCP connections on a host that

changes its address would be killed, unless connection migration techniques such as

[36–38] are used. Such techniques are not widely deployed yet and it is unrealistic

to expect that they will be deployed in time to be usable for the purposes of NASR.

Many applications are not designed to tolerate connection failures. For instance,

NFS clients often hang when the server is lost, and do not transparently re-resolve

the NFS server address from DNS before reconnecting.

Fortunately, many applications are designed to deal with occasional connectivity

loss by automatically reconnecting and recovering from failure, and more recent

research prototypes even explicitly deal with such failures[39]. For such applica-

tions, we can assume that infrequent address changes can be tolerated. Examples

of these applications are many P2P clients, like Kazaa and DirectConnect as well

as SMB sharing (when names are used), messengers, FTP clients, chat tools, etc.

However, tolerance does not always come for free: frequent address changes may

result in churn in DHT-based applications and would generally have the side-effect

of increasing stale state in other distributed applications, including P2P indexing

and Gnutella-like host caches. Furthermore, naive implemenations of NASR may

cause problem to network operation protocols, like ARP. ARPentries expire every

4 hours and if we do not use a specialized NAT box, like the one we will introduce

in Section 6, ARP entries will render stale.

There exist ways to make systems more robust to address changes. In a LAN envi-

ronment, a solution using a specialized NAT box may be applicable in some cases,

12

with the client host being oblivious to address changes and the NAT box making

sure that address changes do not affect applications. We present our realization of

such a scheme in Section 6.

Another option, which appears more attractive, is to make the NASR mechanism

aware of the active connections on each host, so that addresschanges can be timed

to coincide with the host being inactive. We will discuss onepossible approach to

address this problem in the next section.

3.1 Implementation

The practical constraints presented in the previous sections suggest that NASR

should be implemented very carefully. A plausible scenariowould involve NASR at

the subnet level and particularly for client hosts in DHCP-managed address pools.

How such concessions affect NASR, as well as the rate at whichaddress changes

should be made for NASR to be effective will be explored in more detail in Sections

4 and 5.

A basic form of NASR can be implemented by configuring the DHCPserver to

expire DHCP leases at intervals suitable for effective randomization. The DHCP

server would normally allow a host to renew the lease if the host issues a request

before the lease expires. Thus, forcing addresses changes even when a host re-

quests to renew the lease before it expires requires some minor modifications to the

DHCP server. Fortunately, it does not require any modifications to the protocol or

the client. We have implemented an advanced NASR-enabled DHCP server, called

Wuke-DHCP, based on the ISC open-source DHCP implementation[40]. To mini-

mize the “collateral damage” caused by address changes we introduce two modules

in our DHCP implementation: anactivity monitoringmodule, and aservice finger-

13

printing module.

The activity monitoring module keeps track of open connections for each host with

the goal of avoiding address changes for hosts whose services could be disrupted.

In our prototype, we only consider long-lived TCP connections (that could be, for

example, FTP downloads). More complicated policies can be implemented but are

outside the scope of our proof-of-concept implementation.Wuke-DHCP commu-

nicates with a flow monitor that records all active sessions of all hosts in the subnet.

The flow monitor responds with the number of active connections that are sensitive

to address changes.

Service fingerprinting examines traffic on the network and attempts to identify what

services are running on each host. The purpose of service fingerprinting is two-

fold. First, we want to supplement activity monitoring withsome context to make

address change decisions by indicating whether a connection failure is tolerable by

the end-system. Second, we want to avoid assigning an address to a host that has

significant overlap in services (and potential vulnerabilities) with hosts that recently

used the same address. For instance, randomization betweenhosts with different

operating systems, e.g., between a Windows and a Linux platform appears as a rea-

sonable strategy. Our implementation of service fingerprinting is rudimentary: we

only use port number information obtained through passive monitoring to identify

OS and application characteristics. For instance, a TCP connection to port 80 sug-

gests that the host is running a Web server, and port 445 is an indication that a host

might be a Windows platform. In an operational setting, moreelaborate techniques

would be necessary, such as the passive techniques described in [41,42], adminis-

trative databases that keep track of host types like WindowsActive Directory and

active probing techniques implemented as part of open-source tools[43–46].

14

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fr
ac

tio
n

of
 n

od
es

time (days)

ICMP ping scan hitlist decay

(a)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 1 2 3 4 5 6 7 8 9 10 11 12

fr
ac

tio
n

of
 n

od
es

 r
es

po
nd

in
g

time (days)

Gnutella hitlist decay

(b)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 1 2 3 4 5 6 7 8 9 10 11 12

fr
ac

tio
n

of
 n

od
es

 r
es

po
nd

in
g

time (days)

Search-engine hitlist decay

(c)

Fig. 2. Decay of addresses harvested using different methods: (a) using random scanning,

(b) by monitoring peer-to-peer traffic router through a Gnutella peer, and (c) by querying a

popular web search engine

In our implementation, we use three timers on the DHCP serverfor controlling

host addresses. Therefreshtimer determines the duration of the lease communi-

cated to the client. The client is forced to query the server when the timer expires.

The server may or may not decide to renew the lease using the same address. The

soft-changetimer is used internally by the server to specify the interval between ad-

dress changes, assuming that the flow monitor does not reportany activity for the

host. A third,hard-changetimer is used to specify the maximum time that a host is

allowed to keep the same address. If this timer expires, the host is forced to change

address, despite the damage that may be caused. We explore the configuration of

these timers in Section 4.3. We should note that for IPv6 there is a proposed exten-

sion for stateless address reconfiguration that performs randomization as described

in [47]. This work, however, focuses on current IPv4 technology.

4 Measurements

To explore the design space of network address space randomization we first need

to consider some basic hitlist characteristics, such as thespeed at which a hitlist

can be constructed, the rate at which addresses already change (without any form

15

of randomization), and how address space is allocated and utilized. We perform

measurements on the Internet to obtain a more clear picture of these characteristics.

4.1 Hitlist generation strategies

There are two key issues that need to be examined to determinehow hitlist gener-

ation strategies relate to the effectiveness of NASR. First, we need to have a rough

estimate of the speed at which an attacker can generate a hitlist. Second, we need to

determine whether these strategies produce reasonably accurate hitlists, given that

hitlists may decay naturally.

Unfortunately, we cannot accurately measure hitlist generation speeds. The speed

that can be achieved will depend heavily on the defense mechanisms deployed,

for which we do not have any robust operational data, as well as the generation

strategies used, which we could not exhaustively analyze toproduce a safe estimate.

We must note that although it seems reasonable to assume thatIP-level stealth scans

can take days or weeks to do properly, a skilled attacker may be able to use a botnet

to speed up data collection. Systems such as DShield[48] andDOMINO[13] should

be able to detect this activity, but the exact thresholds under which the attacker

would have to operate to evade detection are unclear at this point.

We must also note that application-level probing appears asa bigger threat, as some

distributed applications provide protocol functionalityfor crawling that can be ex-

ploited by an attacker to rapidly build hitlists. For example, by crawling through

selected Gnutella superpeers, we were able to collect 520,000 unique IPs within

5 minutes. Normal crawling through regular peers was significantly slower, as we

will discuss briefly afterwards. Of course, additional probing would be needed to

16

determine client software and version information, assuming that the worm can

only infect specific software versions.

Given the complexity and intricacies of this question, we defer the answer to future

work. For the purposes of this paper, it seems reasonable to expect that if such dis-

covery functionality is determined to be dangerous, it may be disabled or at least

carefully monitored. Recent experience with theSantyworm[49], that usedGoogle

to search for victims2 , seems to support this assumption, asGooglequickly re-

sponded by blocking requests originating from the worm.

Next, we briefly present three different hitlist generationstrategies and focus on

their effectiveness in terms of natural decay rates.

Random scanning We determine the effectiveness of random scanning for build-

ing hitlists. We first generate a list of all /16 prefixes that have a valid entry with the

whois service, in order to increase scan success rates and avoid reserved address

space. We then probe random targets within those prefixes using ICMP ECHO mes-

sages. Using this approach, we generated a hitlist of 20,000addresses. Given this

hitlist, we probe each target in the hitlist once every hour for a period of two weeks.

Every probe consists of four ICMP ECHO messages spaced out over the one-hour

run in order to reduce the probability of accidentally declaring an entry stale (e.g.,

because of short-term congestion or connectivity problems). Note that these mea-

surements do not give us exactly the probability of the worm successfully infecting

the target host, but only a rough estimate. Although we were tempted to perform

more insightful reconnaissance probes on the nodes in the hitlist, this would result

2 The worm sent Google a specific search request, essentially asking for a list of vulnerable

sites. Armed with the list, the worm then attempted to spreadto those sites using a PHP

request designed to exploit the phpBB bulletin board software.

17

in a much higher cost in terms of traffic and a high risk of causing (false) alarms at

the target networks. More accurate results could be obtained using full port scans,

application-level fingerprinting and more frequent probesneeded foripid-based

detection of host changes[50,51].

The results of the ICMP ECHO experiment are shown in Figure 2(a). We observe

that the hitlist decays rapidly during the first day and continues to decay, albeit very

slowly, over the rest of the two-week run. The number of reachable nodes tends to

vary during the time of day, apparently peaking on business hours in the US with

minor peaks that may coincide with working hours elsewhere in the world. Overall,

the decay of the hitlist slows down over time, reaching an almost stable level of 75%

of hitlist nodes reachable.

Passive P2P snooping In the Gnutella P2P network, node addresses are carried

in QueryHit and Pong messages. By snooping on these messages, a Gnutella client

can harvest thousands of addresses without performing any atypical operations. In

our experiments, a 24-hour period sufficed for gathering 200K unique IP addresses,

as shown in Figure 3. Intensive searches and the use of other,more popular P2P

networks will probably result in a higher yield.

Most P2P nodes are short-lived, and therefore addresses harvested through P2P net-

works become unavailable very quickly. Figure 2(b) shows the decay of the hitlist

as a function of elapsed time. Note that in this experiment weonly check whether

the nodes respond to ICMP ECHO probes, not whether the Gnutella client is still

up and running. Thus, it is possible that the IP address is notused by the same

host recorded in the hitlist. This may or may not be importantfor the attacker, de-

pending on how much the attack depends on software versions and whether version

information has been used in constructing the hitlist.

18

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 3 6 9 12 15 18 21

U
ni

qu
e

H
ar

ve
st

ed
 A

dd
re

ss
es

Time (Hours)

1 node
2 nodes
3 nodes
4 nodes

Fig. 3. Number of distinct addresses harvested by monitoring Gnutella traffic as a function

of time and number of monitoring nodes.

Search-engine harvesting Querying a popular search engine forthe or similar

keywords returns hundreds of millions of results. Retrieving a thousand results gave

612 unique live hosts and 30 dead hosts. Most search engines restrict the number

of results that can be retrieved, but the attacker can use multiple keywords either

randomly generated or taken from a dictionary.

The hosts that immediately appear as dead are a result of the frequency of the in-

dexing by the search engine. It plays a role in the speed of harvesting the addresses

and must be considered for the decay if the addresses are not checked.

Figure 2(c) shows the decay of the hitlist created using the search engine results.

We observe that, compared to the other address sources, the search engine results

are very stable. This was expected, since web servers have tobe online and use sta-

ble addresses. It does not mean, however, that addresses retrieved through search

engines are better suited for attackers. Depending on the vulnerability at hand, un-

protected, client PCs, such as those returned by crawling peer-to-peer networks

may be preferred.

19

4.2 Subnet address space utilization

The feasibility and effectiveness of NASR depend on the fraction of unused ad-

dresses in NASR-enabled subnets. Performing randomization on a sparse subnet

will result in more connection failures for the hitlist wormcompared to a dense

subnet. Such failures could expose the worm as they could be picked up by scan-

detection mechanisms. In a dense subnet with homogeneous systems (e.g., running

the same services) the worm is more likely to succeed in infecting a host, even if

the original host recorded in the hitlist has actually changed its address. Finally, in

the extreme (and probably rare) case of a subnet that is always fully utilized, there

will never be a free address slot to facilitate address changes.

We attempt to get an estimate of typical subnet utilization levels. Because of the

high scanning activity, we cannot perform this experiment globally without trip-

ping a large number of alerts. We therefore opted for scanning five /16 prefixes that

belong to FORTH, the University of Crete (UoC) and a large ISP, after first obtain-

ing permission by the administrators of the networks. We performed hourly scans

on all prefixes usingICMP ECHO messages over a period of one month.

A summary of the results is shown in Figure 4. For simplicity,we assume that all

prefixes are subnetted in /24’s. We see that many subnets werecompletely dark

with no hosts at all (not even a router). Nearly 30% of the subnets in two ISP pre-

fixes were totally empty, while for the FORTH and UoC the percentage reaches

70%. This means that swapping subnets would likely be an effective NASR policy,

but unfortunately it is not practical, as discussed in Section 2.2.1. We also see that

95% of these subnets have less than 50% utilization and the number of maximum

live hosts observed does not exceed 100. If subnet utilization at the global level is

similar to what we see in our limited experiment, then NASR atthe level of /24 sub-

20

Hosts per subnet
0 32 64 96 128 160

%
 o

f t
ot

al
 s

ub
ne

ts

0

20

40

60

80

100

FORTH

UoC CAMPUS

ISP prefix 1

ISP prefix 2

ISP prefix 2

Fig. 4. Cumulative distribution of subnet ad-

dress space utilization

 0

 20

 40

 60

 80

 100

 24 48 72 96 120 144 168

P
er

ce
nt

ag
e

of
 h

os
ts

Max. host uptime (hours)

FORTH
UoC

ISP prefix 1
ISP prefix 2
ISP prefix 3

Fig. 5. Cumulative distribution function of

host uptimes in 5 different networks

hard limit (hours)
0 4 8 12 16 20 24

%
 o

f c
on

ne
ct

io
ns

 a
bo

rt
ed

.001

.01

.1

1

10

UCNET BELL WEBICS LEIP

Fig. 6. Percentage of aborted connections

as a function of the hard change limit.

Soft-change limit is 2 hours and refresh

time is 1 minute.

soft limit (hours)
0 0.5 1 1.5 2 2.5 3 3.5 4

%
 o

f c
on

ne
ct

io
ns

 a
bo

rt
ed

0

0.2

0.4

0.6

0.8

1

1.2
UCNET BELL WEBICS LEIP

Fig. 7. Percentage of aborted connections

as a function of the soft change limit.

Hard-change limit is 4 hours and refresh

time is 1 minute.

nets is likely to be quite effective, as there is sufficient room to move hosts around,

reducing the effectiveness of the worm and causing it to makefailed connections.

4.3 The cost of NASR: address change frequency vs. application failures

We attempt to estimate the “collateral damage” caused by NASR. The damage

depends on how frequently the address changes occur, whether hosts have active

connections that are terminated and whether the applications can recover from the

21

transient connectivity problems caused by an address change.

We first consider a scenario where host addresses are only changed when a node

is rebooted. In this case, we know that the failure rate is zero, and try to determine

what address change frequency this would permit. We measured the maximum up-

time for hosts on the three networks presented previously.

The measured distribution is shown in Figure 5. The livenessof the hosts was mon-

itored for a full week by sendingping messages every hour. Almost 60% of the

hosts inside FORTH were always up, which seems reasonable for an environment

consisting mostly of workstations. In more dynamic environments, like the ISP and

the University of Crete networks only 20-30% of the hosts were continuously up

and running (hosts with uptime 168 hours), while nearly 40% of the hosts had a

maximum uptime of 10 hours. These results lead to two observations. First, al-

though it may be possible to perform NASR once every 1-4 days for hosts only

when they reboot, thus not causing any disruption, a significant fraction of hosts

has a longer uptime. Considering that we may want to change addresses more ag-

gressively, this trivial form of randomization is unlikelyto be sufficient. Second,

although such dynamic environments perform some form of natural randomization

on their address space, mostly due to DHCP, most of the DHCP servers are config-

ured to maintain leases for machines connecting to the network. The usual scenario

is that a DHCP server is giving the same IP to a specific host (bycaching its Eth-

ernet address). Typically, a lease expires in 15 days, so hosts that do not refresh

the lease before it expires (e.g., because they are not connected) would obtain a

new address. Although we do not have measurements on how often this happens,

it appears that this minor, slow form of randomization is unlikely to be effective by

itself.

22

Given the above, we try to estimate the aborted connections caused by more ag-

gressive randomization, by simulating NASR with differentparameters on four

different traces: a one-week contiguous IP header trace collected at Bell Labs re-

search[52], a 5-day trace from the University of Leipzig[53], a 1-day trace from the

University of Crete, and a 20-day trace from a link serving a single Web server at

FORTH-ICS. For the first experiment, we use a refresh timer of1 minute, a soft-

change timer of 2 hours and vary the hard-change timer. The results are shown in

Figure 6. As expected, there is a clear downward trend as the timer increases, con-

sistent among different traces. An observation that initially surprised us was that the

means of our samples did not converge towards a smooth, monotonically decreas-

ing function, despite hundreds of simulations for each value of the hard-timer and

the initial “last-lease” times for each host randomized. The samples we obtained

indicated a behavior that was almost deterministic. Indeed, a closer look revealed

that the address change process for the same value of the hard-change timer is syn-

chronized for each host across different simulations. The first synchronization point

is the first successful soft-change event, which depends only on the timings of the

flows in the trace and the soft-change timer, which both remain constant across

different experiments. Thus, we consider this to be an artifact of our experiment.

We also examine how the failure rate is affected when we keep the hard-change

timer constant, at 4 hours and vary the soft-change timer. The results are shown

in Figure 7. We see very little change as we vary the soft-change timer. There is a

small improvement as soft-change decreases, because we canfind a small number

of additional hosts that have no connections and perform successful randomization

on them.

A closer examination of the raw data reveals that more than 90% of the failures

come from a few highly active hosts. These hosts almost always have some active

23

connections which will always be aborted, regardless of howmuch we relax the

timer. Thus, it might make sense for the DHCP server to also make exceptions

and not strictly enforce the hard-change limit for such hosts that are highly active,

assuming they represent only a small fraction of hosts on thenetwork. We also note

that our analysis overestimates the failure rates because we do not filter out those

applications that are resilient to aborted connections.

Overall, we observe that the failure rates are reasonable when compared to typi-

cal connection failure measurements on network links. Previous studies[54] have

shown that 15%-25% of TCP connections are reset due to network outages, at-

tacks or reconfigurations. Additionally, failure rates of NASR are reasonable when

compared to typical false positive rates of attack detection heuristics [55–58].

5 Impact of NASR on worm infection

It is infeasible to run experiments on the scale of the globalInternet. To evaluate the

effectiveness of our design, we simulated a small-scale (compared to the Internet)

network of 1,000,000 hosts, each of which could be a potential target of worms.

Because of the variety of operating systems used and services provided, we assume

that a fraction of hostsv is vulnerable to the worm. For simplicity, we ignore the

details of the network topology, including the effect of end-to-end delays and traffic

generated by the worm outbreak. We simply consider a flat topology of routers,

each serving a subnet of end-hosts.

A fraction of addresses is allocated in each subnet, which affects the probability

of successful scan attempts within the subnet. This probability is an important pa-

rameter in the case where a host in the hitlist has changed itsaddress, because it

24

 0

 5

 10

 15

 20

 25

 30

 35

1 week1 day6h3h1h30m15m

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address changes (log-scale)

time to build hitlist
1 hour

10 hours
100 hours

Fig. 8. Worm spread time

vs. time between address

changes

 0

 5

 10

 15

 20

 25

 30

1 week1 day6h3h1h30m15m

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address change (log-scale)

iprand nodes
100%
80%
40%
20%

0%

Fig. 9. Effect of NASR

on worm spread time when

partially deployed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 week1 day6h3h1h30m15m

fr
ac

tio
n

of
 n

od
es

 in
fe

ct
ed

mean time between address change (log-scale)

time to build hitlist
1 hour

10 hours
100 hours

Fig. 10. Max. fraction of

infected hosts vs. time be-

tween address changes as-

suming scan-blocking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 week1 day6h3h1h30m15m

fr
ac

tio
n

of
 v

al
id

 h
itl

is
t e

nt
rie

s

mean time between address changes (log-scale)

time to build hitlist
1 hour

10 hours
100 hours

Fig. 11. Effect of NASR on

hitlist decay

 0

 5

 10

 15

 20

 25

 30

 35

1 week1 day6h3h1h30min

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address change (log-scale)

subnet util
 90%
80%
30%
10%

Fig. 12. Effect of NASR vs.

subnet usage density

 0

 5

 10

 15

 20

 25

 30

1 week1 day6h3h1h30m15m

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address change (log-scale)

vuln. hosts
100%

80%
40%
20%

Fig. 13. Effect of NASR vs.

vulnerable population

determines ifanotherlive host would be available at the same address. A separate

parameter is used for random scanning, reflecting the fraction of the overall address

space that is completely unused.

The hitlist is generated at configurable rates, and we assumethat the worm starts

spreading immediately after finishing with generating the hitlist. Because the early

hitlist entries are more likely to have become stale betweentheir discovery and the

start of the attack, the worm starts attacking the freshest addresses in the hitlist first.

For simplicity, we ignore the details of how the hitlist is distributed and encoded

in the payload of the worm: we assume that every worm instancecan obtain the

next available entry at zero cost. After finishing with the hitlist, we assume that the

worm may continue trying to infect hosts using random scanning. We assume that

entries of the hitlist are only attacked once. After all hitlist nodes are infected, the

25

attacker will stop attacking them so as not to raise any suspicions. For new worm

outbreaks, it is up to the attacker if she will use previous hitlists or will generate

new ones. We believe that the generation of a new hitlist is more probable.

5.1 Impact of NASR

In the first experiment, we simulate worm outbreaks with different parameters, and

measure the worm spread time, expressed in terms of the time required for the

worm to infect 90% of the vulnerable hosts. We compare the impact of network

address space randomization, varying how fast the hitlist is generated and how fast

the host addresses are changed. The fraction of vulnerable hosts is 20%, the internal

scan success probability is0.3 (based on the subnet utilization measurements of

Section 4.2) and the random scanning success probability is0.05 (based on the

measurements presented in Section 2).

The results are shown in Figure 8. We observe that NASR achieves the goal of

slowing down the worm outbreak, in terms of the time to reach 90% infection,from

5 minutes when no NASR is used to between 24 and 32 minutes whenhosts change

their addresses very frequently. As expected, defending against hitlists that are gen-

erated very fast requires more frequent address changes. Itappears that the mean

time between address changes needs to be 3-5 times less than the time needed to

generate the hitlist for the approach to reach around 80% of its maximum effec-

tiveness, while more frequent address changes give diminishing returns. We define

as maximum effectiveness the slowdown factor we can achievewith NASR when

we perform randomization in very short intervals. From our experiments, the max-

imum effectiveness of NASR is a slowdown factor of 6 for the given simulation

settings. Considering the observations of Section 3, it appears that daily address

26

changes could significantly slow down a worm whose hitlist isgenerated by pas-

sive snooping on a P2P network.

Note that when using NASR, the hitlist worm is not completelyreduced to a random-

scanning worm: knowledge of subnets that have even one host available already

gives the worm some advantage over a purely random-scanningworm. In this par-

ticular experiment, it would take roughly 30 minutes for thehitlist worm to infect

the whole network (under NASR), and 2 hours for a purely scanning worm. This

is the result of performing subnet-level instead of global-level NASR; global-level

NASR would indeed reduce the hitlist worm to random-scanning. We must also

note that although the spread times reported depend on scanning frequency, the

relative improvement when using NASR appears to be constant.

The above experiment assumed that the hitlist worm will fallback to random scan-

ning after exhausting the hitlist. For a pure hitlist worm, the fraction of nodes that

are successfully infected is equal to the fraction of valid hitlist entries. The fraction

of valid hitlist entries for different address change and hitlist generation times is

shown in Figure 11. Again we observe that NASR is quite effective, even for short

hitlist generation times.

We also simulated NASR with average subnet utilization and different fractions of

vulnerable hosts. The results are summarized in Figures 12 and 13 respectively.

The impact of NASR is greater in terms of slowing down the infection for smaller

vulnerable populations. This is expected, as in such cases the failure rate for stale

entries is higher compared to a network where every available host is vulnerable.

The results for the impact of NASR as a function of subnet utilization are similar:

higher subnet utilization results in a higher success rate when hitting stale entries.

However, NASR remains effective even for 90% subnet utilization.

27

5.2 Partial deployment scenario

We have so far assumed that NASR is deployed globally throughout the network. In

reality, it is more likely that only a fraction of subnets will employ the mechanism,

such as dynamic address pools. As we are not aware of any studies estimating the

fraction of DHCP pools in the Internet, we measure the effectiveness of NASR for

different values for the fraction of NASR-enabled subnets.The results are shown

in Figure 9. We observe that NASR continues to be effective inslowing down the

worm, even when deployed in 20% or 40% of the network. The wormstill infects

the non-NASR subnets quite rapidly, with a slowdown in the order of 50% caused

by the worm failing to infect NASR subnets. In other words, NASR has a milder

but still notable impact on non-NASR hosts. However, the worm will have to resort

to random scanning after exhausting the hitlist, and it willtake significantly more

time to infect NASR compared to non-NASR subnets. This observation suggests

that there is a clear incentive for network administrators to deploy NASR, as it may

provide them the critical amount of time needed to react to a worm outbreak. Ten

to twenty-five minutes more time may prove to be valuable for an administrator to

take some fast measures.

5.3 Interaction with scan-blocking

Hitlist worms are generally immune to scan-blocking mechanisms such as [12].

Even for the natural decay rates measured in Section 4, such worms would still

be under the detection threshold most of the time. Randomization, however, will

cause many infection attempts to fail, as hosts change addresses and their previous

addresses are either unused or used by a different host that may or may not run the

same service, and thus may or may not be vulnerable. To determine the interac-

28

tion between NASR and scan-blocking mechanism we simulate worm outbreaks in

a network where both NASR and scan-blocking are deployed. The scan-blocking

mechanism prevents hosts that cause failed connections over a certain threshold

from further establishing new connections with the protected network. The thresh-

old of failed connections cannot be very strict, e.g. one failed connection, as some

failed connection are expected due to “memory” of some systems, like peer-to-peer

file sharing applications (Gnutella maintains a local cacheof neighbors and tries

to contact them upon program restart). As scan-blockingcontainsthe outbreak, in

this experiment we measure the maximum fraction of hosts that are infected in the

presence of NASR together with scan-blocking. The results are shown in Figure

10. We observe that if NASR is performed according to the rule-of-thumb obser-

vation made previously (e.g., with address changes at a ratethat is 3-5x faster than

hitlist generation), the infection can be contained to under 15% of the vulnerable

population.

6 Practical NASR using Transparent Address Obfuscation

The damage caused by network address space randomization (NASR) in terms of

aborted connections may not be acceptable in some cases. Terminating, for exam-

ple, a large web transfer or an SSH session would be both irritating and frustrating.

Additionally, it would possibly increase network traffic asusers or applications may

repeat the aborted transfer or try to reconnect. To address these issues, we suggest

Transparent Address Obfuscation, an external mechanism for deploy-

ing NASR avoiding connection failures.

The idea behind the mechanism is the existence of an “addressrandomization box”,

called from now on “TAO box”, inside the LAN environment. This box performs

29

the randomization on behalf of the end hosts, without the need of any modifications

to the DHCP behavior. TAO box controls all traffic passing by the subnet(s) it is

responsible for, analogous to the firewall or NAT concept. The address used for

communication between the host and the box remains the same.We should note

that there is no need for private addresses, unlike the case of NAT, as end hosts can

obtain any address from the organization they belong. The public address of the end

host – that is the IP that outside world sees – changes periodically according to soft

and hard timers, similar to the procedure described in Section 3. Old connections

continue to operate over the old address, the one that host had before the change,

until they are terminated.

The TAO box may look like similar to symmetric NAT but has one fundamental

difference. With symmetric NAT all requests from the same internal IP address and

port to a specific destination IP address and port are mapped to a unique external

source IP address and port. If the same internal host sends a packet with the same

source address and port to a different destination, a different mapping is used. In our

approach, the mapping does not change per destination host but in predefined time

intervals. To the best of our knowledge, symmetric NAT is nowadays abandoned as

port preservation schemes are mostly supported.

The TAO box is responsible for two things. First, to prevent new connections on the

old addresses (before randomization) reaching the host. Second, to perform address

translation to the packets based on which connection they belong to, similar to the

NAT case. Until all old connections are terminated, a host would require multiple

addresses to be allocated.

An example of how the TAO box works is illustrated in Figure 14. The box is re-

sponsible for address randomization on the 11.22.70.0/24 subnet, that is it can pick

30

`

11.22.70.40

`

Host A

Behind-the-box address Public address

11.22.70.40

11.22.70.40

11.22.70.60

11.22.70.50

11.22.70.50 2000

Host A 22

State

Src IP Src Port Dst IP Dst Port Public IP

11.22.70.40 2000 Host A 22 11.22.70.50

TAO Box

`

Host B

11.22.70.60 3000

Host B 80

11.22.70.40 3000 Host B 80 11.22.70.60

Intranet

Internet

`

11.22.70.41

11.22.70.40 2000

Host A 22

`

11.22.70.40 3000

Host B 80

11.22.70.60

Fig. 14. An advanced example of NASR using the TAO box. Host has two public

IP addresses, one (11.22.70.50) devoted for the SSH sessionto Host A and the other

(11.22.70.60) for new connections, such as a HTTP connection to Host B

up addresses only from this subnet. Initially the host has the IP address 11.22.70.40

and TAO box sets the public IP address of this host to 11.22.70.50. The host

starts a new SSH connection to Host A and sends packets with its own IP address

(11.22.70.40). The box translates the source IP address andreplaces it with the

public one, setting it to 11.22.70.50. Simultaneously, thebox keeps state that the

connection from port 2000 to Host A on port 22 belongs to the host with behind-

the-box address 11.22.70.40 and public address 11.22.70.50. Thus, on the Host

A side we see packets coming from 11.22.70.50. When Host A responds back to

11.22.70.50, box has to perform the reverse translation. Consulting its state, it sees

that this connection was initiated by host 11.22.70.40 so itrewrites the destination

IP address.

After an interval, the public address of host 11.22.70.40 changes. TAO box now

sets its public address to 11.22.70.60. Any connections initiated by external hosts

31

hard limit (hours)
0 4 8 12 16 20 24

%
 o

f I
P

 a
dd

re
ss

 s
pa

ce

.001

.01

.1

1

10

CAMPUS BELL WEBICS CAMPUS(2)

Fig. 15. Extra IP space needed for TAO

hard limit (hours)
0 4 8 12 16 20 24

%
 o

f w
as

te
d

IP
 a

dd
re

ss
 s

pa
ce

1

10

100

400
CAMPUS BELL WEBICS CAMPUS(2)

Fig. 16. The percentage of extra IP space

needed relative to the load of subnets

can reach the host through this new public IP address. As it can be seen in Figure

14 the new connection to Host B website has the new public IP assource. Note that

in the behind-the-box and public address mapping table hostnow has two entries,

with the top being chosen for new connections. The only connection permitted to

communicate with the host at 11.22.70.50 address is the SSH connection from Host

A. For each incoming packet, the box checks its state to find anentry. If no entry

is found, then packet is not forwarded to the internal hosts,else the “src IP” field

of the state is used to forward the packet. As long as the SSH connection lasts, the

11.22.70.50 IP will be bound to the particular host and cannot be assigned to any

other internal host. When SSH session finishes, the address will be released. For

stateless transport protocols, like UDP or ICMP, only the latest mapping between

public and behind-the-box IP address is used.

6.1 Evaluation

The drawback of the TAO box is the extra address space required for keeping alive

old connections. An excessive requirement of address spacewould empty the ad-

dress pool, making the box abort connections. We tried to quantify the amount of

extra space needed by simulating the TAO box on top of four traffic traces. The first

32

two traces,CAMPUS andCAMPUS(2), come from the UoC campus and include

traffic from 760 and 1675 hosts respectively. All hosts of this trace belong to the

same /16 subnet. The second trace,BELL, is a one-week contiguous IP header trace

collected at Bell Labs research with 395 hosts located in a /16 subnet. Finally, the

WEBICS trace is a 20-day trace from a link serving a single Web serverat FORTH.

In this trace, we have only one host and we assume it is the onlyhost in a /24 sub-

net. In our simulation, the soft timer had a constant value of90 seconds, while the

hard timer varied from 15 minutes to 24 hours.

The results of the simulation are presented in Figure 15. In almost all cases, we

need at most 1% more address space in order to keep alive the old connections.

We measured the number of hosts that are alive in several subnets. We used full

TCP scans to identify the number of hosts that were alive in 5 subnets: FORTH, the

University of Crete campus and three subnets of a local ISP. Our results, as shown

at Figure 4, indicate that 95% of the subnets are less than half-loaded and thus we

can safely assume that this 1% of extra space is not an obstacle in the operation

of the TAO box. However, the little extra address space needed derives from the

fact that subnets are lightly loaded. For example, the 760 hosts of theCAMPUS

trace correspond to the 1.15% of the /16 address space. In Figure 16, the relative

results of the previous simulation are shown, that is how many addresses we need

more in relation with used addresses and not the total numberof addresses in the

subnet as plotted in Figure 15. On average, 10% more address space for hard timer

over one hour is needed, which seems a reasonable overhead. In the case of the

WEBICS trace the percentage is in most cases 100%, while maximum percentage

observed is 400%. This is expected as we have only one host in the subnet and in

some exceptional cases up to four additional addresses are needed.

33

7 Discussion

Our experiments suggest that network address space randomization is likely to be

useful. However, these results should only be treated as preliminary, as there are

several issues that need to be examined more closely before reaching any definite

conclusions.

First, the interaction between NASR and other defense mechanisms needs to be

studied in more depth. Our simulation results show that NASRenables scan-blocking

mechanisms to contain the worm to under 15% infection. However, scan-blocking

is not entirely foolproof, at least in its current form. For example, a list ofknown

repliers can be used to defeat the failed-connection test used by these mecha-

nisms, by padding infection attempts with successful probes to the known repli-

ers. Whether it is possible to design better mechanisms for detecting and con-

taining scanning worms is thus still an open question. Therefore, we should also

consider other possibilities, including reactive defenses and distributed detection

mechanisms. As NASR is likely to at least slow down worms, itmayprovide the

critical amount of time needed for distributed detectors such as DOMINO[13] to

kick in, and for reactive approaches to deploy patches[59] or short-term filters[60].

Determining whether this is indeed a possibility requires further experimentation

and analysis.

Second, we have so far focused entirely on IP-level address randomization, as IP

hitlist worms seem to have the most efficient propagation properties. On the one

hand, we have only considered IPv4 as deployed today. In an IPv6 Internet, the

address space is so much bigger that randomization could be even more effective.

On the other hand, we need to also consider worms that use higher-level addressing

schemes, such as DNS or DHT identifiers. DNS hitlist worms will defeat NASR,

34

assuming that hosts also update their DNS records. This would be true for Web

servers, but when the DNS name is only a descriptor (such as a string containing

the IP address), which is typical for DHCP and broadband address pools, a DNS-

based hitlist worm would not be successful. DNS hitlist worms would also suffer

the additional lookup latency, a slightly larger payload3 and the added risk of being

detected. While we are not aware of any such detection mechanism in place today,

it could be deployed, for example, on DNS servers.

Third, we have not considered how worm creators would react to the widespread

deployment of NASR. One option would be for the attacker to perform a second

round of (stealthy) probing, and retain only entries that seem to be stable over time.

If NASR is partially deployed, then the worm could infect thenon-NASR part of

the Internet, without being throttled by stale entries or generating too many failed

connections. Interestingly, in this scenario all networksthat employ NASR will be

worm-free, unless the worm switches to random scanning after finishing with the

hitlist. Even if this happens, NASR-enabled networks will still get infected much

later than the nodes in the hitlist. Although we are not awareof any other possible

reactions to the deployment of NASR, we cannot safely dismiss the possibility that

worm creators could come up with other measures to counter this defense. Thus,

this question deserves further debate and analysis.

3 We measured the length of the fully qualified domain name (FQDN) for several thousand

entries obtained from a search engine. The average length was 16 bytes. Servers that hold

web content tend to have shorter, more memorable names, so weexpect that this is a con-

servative estimate. We measured a 46% compression ratio forthese strings, and therefore

on average each entry will take up 7.5 bytes in the hitlist. IPaddresses take up 4 bytes, so

storing DNS names causes almost a doubling of the hitlist size.

35

8 Related Work

Our work on network address space randomization was inspired by similar tech-

niques for randomization performed at the OS level [17–23].The general principle

in randomization schemes is that attacks can be disrupted byreducing the knowl-

edge that the attacker has about the system. For instance, instruction set randomiza-

tion[22] changes the instruction set opcodes used on each host, so that an attacker

cannot inject compiled code using the standard instructionset opcodes. Similarly,

address obfuscation[20] changes the locations of functions in a host’s address space

so that buffer-overflow exploits cannot predict the addresses of the functions they

would like to utilize for hijacking control of the system. Our work at the network

level is similar, as it reduces the ability of the attacker tobuild accurate hitlists of

vulnerable hosts.

The use of IP address changes as a mechanism to defend againstattacks was pro-

posed independently in [24], [25] and [26]. Although these mechanisms are similar

to ours, there are several important differences in the threat model as well as the

way they are implemented. The main difference is that they focus on targeted at-

tacks, performing address changes to confuse attackers during reconnaissance and

planning. Neither project discusses or analyzes the use of such a mechanism for

defending against worm attacks.

More specifically, the BBN DYNAT system[25] was developed aspart of the DARPA

Information Assurance Program exploring the area of dynamic network defense,

with the hypothesis that dynamic network reconfiguration would inhibit an adver-

sary’s ability to gather intelligence, and thus degrade theability to successfully

launch an attack. BBN’s DYNAT operates by obfuscating host identity information

in TCP/IP headers when packets enter public parts of the network. The obfuscation

36

algorithm depends on a pre-established keying parameter that varies with time. The

evaluation shows that the adversary was a) severely time limited by the dynamic na-

ture of the network, and b) forced into more vulnerable and detectable behavior. We

raise the same arguments for defending typical LANs againsthitlist worm attacks,

the main difference being that in our case the clients are loosely coupled to the

servers and therefore pre-established keying parameters were undesirable. In par-

ticular, the BBN approach requires a “shim” module to be installed on the client

to coordinate address changes with the (modified) server, while in our approach

we consider a DHCP-based implementation that is easier to deploy as it does not

require any changes to the client. However, client-side modifications make it easier

for DYNAT to manage address changes without affecting applications, unlike the

DHCP-based approach that requires additional care to minimize application disrup-

tion. The reason behind this difference in the two designs isthat DYNAT assumes

an adversary that can passively listen to client-server communication. In contrast,

our work focuses on attackers performing scans and other active harvesting activi-

ties to build a worm hitlist.

The APOD (Applications That Participate in Their Own Defense) project [24] set

out to develop technologies that increase an application’sresilience against attacks.

One of the mechanisms they describe, called Port and AddressHopping, is rele-

vant to our work as it is designed to evade attacks against a service by constantly

changing its IP address and TCP port using random numbers. The intention is both

to hide the service’s real identity and confuse the attackerduring reconnaissance.

Packets intercepted by attackers will reveal random addresses and ports, which are

valid only for a small period of time, e.g., 1 minute. For an attack to be successful,

the attacker must discover the current addresses and ports and execute the attack all

within one refresh cycle. A stated additional benefit is the increased likelihood of an

37

attacker being detected. This mechanism too relies on synchronization of random

number generators and time synchronization between the twocomponents. Port

hopping, as opposed to address hopping, was not an option in our design due to

the loose coupling between clients and servers. APOD also provides hopping func-

tionality on protocol layers above TCP, such as distributedCORBA calls, which

requires additional modification of TCP/IP data in the IIOP protocol. This feature

would be a reasonable addition to our proposal.

Sandia’s Dynamic Network Address Translation for network protection is a similar

proposal [26]. The authors discuss several types of dynamicaddress translation and

point out that the use of this approach is dependent on many different factors which

can influence overall effectiveness. With this in mind, theyprovide a detailed deci-

sion tree which allows the designer to determine which type of address translation

is suitable for a particular environment.

9 Summary

We have explored the design and effectiveness ofnetwork address space random-

ization(NASR), a technique that hardens networks against IP hitlist worms. NASR

forces hosts to frequently change their network address, with the goal of making

hitlists stale. The approach is appealing in several ways. First, it is effective in

limiting the infection for pure IP hitlist worms, or slowingdown the infection for

hybrid hitlist-scanning worms. Second, it forces both types of worms to exhibit

scan-like behavior that exposes them to scan detection mechanisms. Third, it is

relatively easy to implement. Unlike network-level detection mechanisms, NASR

does not add any additional packet-level processing on network elements. Unlike

host-based detection or other proactive mechanisms, it does not require any changes

38

to the end-points.

We have discussed various constraints that limit the applicability of NASR, such

as the administrative overhead for managing address changes, services that re-

quire static addresses, and applications that do not tolerate address changes. Our

experiments indicate that the connection failure rates dueto NASR are comparable

to typical connection failure rates on modern networks and typical false positive

rates of attack detection heuristics. We have also presented an alternative approach,

called Transparent Address Obfuscation, that implements address changes with-

out causing connection failures. This approach comes at theexpense of requiring

edge-router (or NAT) modification, and also requires some spare address space to

facilitate address changes. We have found that the additional address space required

is reasonable, at under 1%, even for very aggressive addresschange policies.

Our investigation into the trade-offs of NASR suggests thatnetwork segments that

alreadyperform dynamic address allocation, such as DHCP pools for broadband,

wireless networks, etc., are a suitable environment for deploying NASR without

significantly impairing functionality or adding administrative overhead. Assuming

that broadband users are less likely to be vigilant and keep their systems secure,

NASR appears promising. However, given that most worms so far have targeted

servers, and until better defenses are put in place, we believe that the administra-

tive overhead for implementing NASR may be worth it even for servers, as NASR

effectively allows administrators to “opt-out” from IP hitlists.

39

Acknowledgments

This work was supported in part by the IST project LOBSTER funded by the Euro-

pean Union under Contract No. 004336, the GSRT project EAR (USA-022) funded

by the Greek Secretariat for Research and Technology, the GSRT project MILTI-

ADES funded by the Greek Secretariat for Research and Technology under con-

tract number 05NON-EU-109 and by the project CyberScope funded by the Greek

General Secretariat for Research and Technology under contract number PENED

03ED440. S. Antonatos, P. Akritidis and E. P. Markatos are also with the University

of Crete. We are indebted to Elias Athanasopoulos for his gnutella crawler as well

as the network administrators at FORTH-ICS, UoC and the anonymous ISP for tol-

erating our intensive network scans. We also thank Sotiris Ioannidis, the members

of the I2R Security Department, the members of the DCS group at FORTH-ICS,

and the anonymous reviewers for providing valuable feedback on earlier versions

of this paper.

References

[1] CERT Advisory CA-2001-19: ‘Code Red’ Worm Exploiting Buffer Overflow in IIS
Indexing Service DLL, http://www.cert.org/advisories/CA-2001-19.html (Jul. 2001).

[2] D. Moore, C. Shannon, J. Brown, Code-Red: a case study on the spread and victims of
an Internet worm, in: Proceedings of the 2nd Internet Measurement Workshop (IMW),
2002, pp. 273–284.

[3] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,N. Weaver, Inside the
slammer worm, IEEE Security & Privacy (2003) 33–39.

[4] S. Staniford, D. Moore, V. Paxson, N. Weaver, The top speed of flash worms, in: Proc.
ACM CCS WORM, 2004.

[5] S. Staniford, V. Paxson, N. Weaver, How to Own the Internet in Your Spare Time, in:
Proceedings of the 11th USENIX Security Symposium, 2002, pp. 149–167.

[6] N. Weaver, V. Paxson, A worst-case worm, in: Proc. Third Annual Workshop on
Economics and Information Security (WEIS’04), 2004.

40

[7] J. Wu, S. Vangala, L. Gao, K. Kwiat, An Effective Architecture and Algorithm for
Detecting Worms with Various Scan Techniques, in: Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2004, pp. 143–156.

[8] J. Jung, V. Paxson, A. W. Berger, H. Balakrishnan, Fast Portscan Detection Using
Sequential Hypothesis Testing, in: Proceedings of the IEEESymposium on Security
and Privacy, 2004.

[9] M. Williamson, Throttling Viruses: Restricting Propagation to Defeat Malicious
Mobile Code, Tech. Rep. HPL-2002-172, HP Laboratories Bristol (2002).

[10] S. E. Schechter, J. Jung, A. W. Berger, Fast Detection ofScanning Worm Infections,
in: Proceedings of the7th International Symposium on Recent Advances in Intrusion
Detection (RAID), 2004, pp. 59–81.

[11] S. Staniford, Containment of Scanning Worms in Enterprise Networks, Journal of
Computer Security .

[12] N. Weaver, S. Staniford, V. Paxson, Very Fast Containment of Scanning Worms, in:
Proceedings of the13th USENIX Security Symposium, 2004, pp. 29–44.

[13] V. Yegneswaran, P. Barford, S. Jha, Global Intrusion Detection in the DOMINO
Overlay System, in: Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2004.

[14] D. Nojiri, J. Rowe, K. Levitt, Cooperative response strategies for large scale attack
mitigation, in: Proceedings of the 3rd DARPA Information Survivability Conference
and Exposition (DISCEX), 2003.

[15] C. C. Zou, L. Gao, W. Gong, D. Towsley, Monitoring and Early Warning for Internet
Worms, in: Proceedings of the10th ACM International Conference on Computer and
Communications Security (CCS), 2003, pp. 190–199.

[16] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D.Keromytis, D. Li, A
Cooperative Immunization System for an Untrusting Internet, in: Proceedings of the
11th IEEE International Conference on Networking (ICON), 2003, pp. 403–408.

[17] J. Xu, Z. Kalbarczyk, R. Iyer, Transparent runtime randomization for security, in: A.
Fantechi, editor, Proc. 22nd Symp. on Reliable DistributedSystems –SRDS 2003,
2003, pp. 260–269.

[18] J. S. Chase, H. M. Levy, M. J. Feeley, E. D. Lazowska, Sharing and protection in
a single-address-space operating system, ACM Transactions on Computer Systems
12 (4) (1994) 271–307.
URL citeseer.ist.psu.edu/chase94sharing.html

[19] C. Yarvin, R. Bukowski, T. Anderson, Anonymous RPC: Low-latency protection in a
64-bit address space, in: In Proc. USENIX Summer 1993 Technical Conference, 1993,
pp. 175–186.

[20] S. Bhatkar, D. DuVarney, R. Sekar, Address obfuscation: An efficient approach to
combat a broad range of memory error exploits, in: In Proceedings of the 12th
USENIX Security Symposium, 2003, pp. 105–120.

41

[21] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, D.Boneh, On the
effectiveness of address-space randomization, in: CCS ’04: Proceedings of the 11th
ACM Conference on Computer and Communications Security, ACM Press, New York,
NY, USA, 2004, pp. 298–307.

[22] G. S. Kc, A. D. Keromytis, V. Prevelakis, Countering Code-Injection Attacks
With Instruction-Set Randomization , in: Proceedings of the ACM Computer and
Communications Security Conference (CCS), 2003, pp. 272–280.

[23] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, D. D. Zovi, Randomized
instruction set emulation to disrupt binary code injectionattacks, in: Proceedings of
the 10th ACM Conference on Computer and Communications Security, 2003.

[24] M. Atighetchi, P. Pal, F. Webber, R. Schantz, C. Jones, Adaptive use of network-
centric mechanisms in cyber-defense, in: Proceedings of the 6th IEEE International
Symposium on Object-oriented Real-time Distributed Computing, 2003.

[25] D. Kewley, J. Lowry, R. Fink, M. Dean, Dynamic approaches to thwart adversary
intelligence gathering, in: Proceedings of the DARPA Information Survivability
Conference and Exposition (DISCEX), 2001.

[26] J. Michalski, C. Price, E. Stanton, E. L. Chua, K. Seah, W. Y. Heng, T. C.
Pheng, Final Report for the Network Security Mechanisms Utilizing Network
Address Translation LDRD Project, Tech. Rep. SAND2002-3613, Sandia National
Laboratories (November 2002).

[27] R. Droms, Dynamic Host Configuration Protocol, RFC 2131, http://www.rfc-
editor.org/ (Mar. 1997).

[28] B. Croft, J. Gilmore, Bootstrap Protocol (BOOTP), RFC 951, http://www.rfc-
editor.org/ (Sep. 1985).

[29] F. Cohen, Computer Viruses: Theory and Practice, Computers & Security 6 (1987)
22–35.

[30] J. O. Kephart, A Biologically Inspired Immune System for Computers, in: Artificial
Life IV: Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems, MIT Press, 1994, pp. 130–139.

[31] C. C. Zou, W. Gong, D. Towsley, Code Red Worm PropagationModeling
and Analysis, in: Proceedings of the 9th ACM Conference on Computer and
Communications Security (CCS), 2002, pp. 138–147.

[32] Cert Advisory CA-2003-04: MS-SQL Server Worm,
http://www.cert.org/advisories/CA-2003-04.html (Jan.2003).

[33] The Spread of the Sapphire/Slammer Worm,
http://www.silicondefense.com/research/worms/slammer.php (Feb. 2003).

[34] C. Shannon, D. Moore, The spread of the witty worm,
http://www.caida.org/analysis/security/witty/ (2004).

42

[35] J. Jung, E. Sit, H. Balakrishnan, R. Morris, DNS performance and the effectiveness of
caching, in: Proceedings of the 1st ACM SIGCOMM Internet Measurement Workshop
(IMW), 2001.

[36] J. Ioannidis and G. Q. Maguire Jr., The design and implementation of a mobile
internetworking architecture, in: USENIX Winter, 1993, pp. 489–502.
URL citeseer.ist.psu.edu/ioannidis93design.html

[37] A. C. Snoeren, H. Balakrishnan, An end-to-end approachto host mobility, in:
MobiCom ’00: Proceedings of the 6th annual international conference on Mobile
computing and networking, ACM Press, New York, NY, USA, 2000, pp. 155–166.

[38] R. A. Baratto, S. Potter, G. Su, J. Nieh, Mobidesk: mobile virtual desktop computing,
in: Proceedings of the 10th Annual International Conference on Mobile Computing
and Networking (MOBICOM), ACM Press, 2004, pp. 1–15.

[39] M. Kaminsky, E. Peterson, D. B. Giffin, K. Fu, D. Mazires,M. F. Kaashoek,
REX: Secure, extensible remote execution, in: In Proceedings of the 2004 USENIX
Technical Conference, 2004, pp. 199–212.

[40] Internet Systems Consortium Inc., Dynamic host configuration protocol (DHCP)
reference implementation, http://www.isc.org/sw/dhcp/.

[41] T. Karagiannis, A. Broido, M. Faloutsos, K. claffy, Transport layer identification of
P2P traffic, in: IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement, ACM Press, New York, NY, USA, 2004, pp. 121–134.

[42] S. Sen, O. Spatscheck, D. Wang, Accurate, scalable in-network identification of
P2P traffic using application signatures, in: WWW ’04: Proceedings of the 13th
international conference on World Wide Web, ACM Press, New York, NY, USA, 2004,
pp. 512–521.

[43] THC-Amap, http://thc.org/releases.php (2004).

[44] Fingerprinting: The complete toolsbox,
http://www.l0t3k.org/security/tools/fingerprinting/ (2004).

[45] Fingerprinting: The complete documentation,
http://www.l0t3k.org/security/docs/fingerprinting/ (2004).

[46] DISCO: The Passive IP Discovery Tool, http://www.altmode.com/disco/ (2004).

[47] T. Narten, R. Draves, Privacy Extensions for StatelessAddress Autoconfiguration in
IPv6, RFC 3041, http://www.faqs.org/rfcs/rfc3041.html (Jan. 2001).

[48] DShield: Distributed Intrusion Detection System, http://www.dshield.org.

[49] Net Worm Uses Google to Spread, http://it.slashdot.org/it/04/12/21/2135235.shtml
(Dec. 2004).

[50] W. Chen, Y. Huang, B. F. Ribeiro, K. Suh, H. Zhang, E. de Souza e Silva,
J. Kurose, D. Towsley, Exploiting the IPID field to infer network path and end-system
characteristics, in: Proceedings of the 6th Passive and Active Measurement Workshop
(PAM 2005), 2005.

43

[51] T. Kohno, A. Broido, kc Claffy, Remote physical device fingerprinting, in: IEEE
Symposium on Security and Privacy, 2005.

[52] NLANR-PMA Traffic Archive: Bell Labs-I trace,
http://pma.nlanr.net/Traces/Traces/long/bell/1 (2002).

[53] NLANR-
PMA Traffic Archive: Leipzig-I trace, http://pma.nlanr.net/Traces/Traces/long/leip/1
(2002).

[54] M. Arlitt, C. Williamson, An Analysis of TCP Reset Behaviour on the Internet, ACM
SIGCOMM Computer Communication Review 35 (1) (2005) 37–44.

[55] T. Toth, C. Krügel, Accurate buffer overflow detectionvia abstract payload execution,
in: Proceedings of the 5th International Symposium on Recent Advances in Intrusion
Detection (RAID), 2002.

[56] K. Wang, S. J. Stolfo, Anomalous Payload-based NetworkIntrusion Detection, in:
Proceedings of the7th International Symposium on Recent Advanced in Intrusion
Detection (RAID), 2004, pp. 201–222.

[57] S. Singh, C. Estan, G. Varghese, S. Savage, Automated worm fingerprinting, in:
Proceedings of the6th Symposium on Operating Systems Design & Implementation
(OSDI), 2004.

[58] A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. H. Li, J. C.Kuo, K. P. Fan, Buttercup:
On Network-based Detection of Polymorphic Buffer Overflow Vulnerabilities, in:
Proceedings of the Network Operations and Management Symposium (NOMS), 2004,
pp. 235–248, vol. 1.

[59] S. Sidiroglou, A. D. Keromytis, A network worm vaccine architecture, in: Proceedings
of the IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Workshop on Enterprise Security, 2003.

[60] H. J. Wang, C. Guo, D. R. Simon, A. Zugenmaier, Shield: vulnerability-driven
network filters for preventing known vulnerability exploits, in: Proceedings of ACM
SIGCOMM’04, 2004, pp. 193–204.

44

