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ABSTRACT
While the use of network intrusion detection systems (nIDS) is be-
coming pervasive, evaluating nIDS performance has been found
to be challenging. The goal of this study is to determine how to
generate realistic workloads for nIDS performance evaluation. We
develop a workload model that appears to provide reasonably ac-
curate estimates compared to real workloads. The model attempts
to emulate a traffic mix of different applications, reflecting char-
acteristics of each application and the way these interact with the
system. We have implemented this model as part of a traffic gener-
ator that can be extended and tuned to reflect the needs of different
scenarios. We also present an approach to measuring the capacity
of a nIDS that does not require the setup of a full network testbed.

Keywords
security, intrusion detection, workload characterization and gener-
ation

1. INTRODUCTION
Intrusion detection is receiving considerable attention as a mech-

anism for keeping administrators informed on potential security
breaches and suspicious network activity. The typical function of
a Network Intrusion Detection System (nIDS) is based on a set of
signatures, each describing one known intrusion threat. A nIDS
examines network traffic and determines whether any signatures
indicating intrusion attempts are matched. The simplest and most
common form of nIDS inspection is to match string patterns against
the payload of packets captured on a network link. This form of de-
tection is often called content matching.

This paper considers the problem of determining efficient and ac-
curate methods for evaluating the performance of a content-matching
nIDS. In such systems, the primary measure of interest is the ca-
pacity of the system. Accurately measuring the capacity of a nIDS
is worth examining because of two main reasons. First, admin-
istrators need to determine if a given configuration (e.g., system
hardware, nIDS software, ruleset, and traffic characteristics) is suit-
able for deployment in terms of being able to cope with the work-
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load without the risk of missing intrusion attempts. Recent work[3,
23] has shown that performance is highly dependent on these pa-
rameters, and thus each configuration needs to be evaluated on a
case-by-case basis. Second, nIDS technology continues to evolve,
and there is significant ongoing effort to improve efficiency[6, 8, 2,
24]. Such engineering efforts require accurate tools for analyzing
existing systems, evaluating new ideas, and comparing different ap-
proaches. Previous work has shown that nIDS evaluation is not as
easy as measuring the capacity of other networking systems (such
as routers, or Web-servers) and simplistic benchmarks can easily
become misleading[3, 16, 24].

The approach proposed in this paper is based on a modular traf-
fic generator that can be tuned to closely resemble different types
of nIDS workloads. The modules create application-specific traffic
for protocols such as DNS, SMTP and HTTP, and can be config-
ured for different levels of detail in the workload model. At the
finest level, modules can emulate different sessions between sets of
clients and servers following the characteristics of each protocol.
At a coarser level, a module can synthesize traffic based on statisti-
cal properties of each protocol, including the fraction of traffic per
protocol as well as packet size and payload characteristics. If nec-
essary and appropriate, these models can be combined with header-
only packet traces, including widely available datasets available for
Internet research [21, 11]. Finally, there are modules for emulating
different types of attacks to the nIDS itself such as those that at-
tempt to overload the nIDS pattern matching engine with the goal
of evading detection.

The proposed approach offers four main advantages. First, it can
be easy to use as it does not require the use of a live testbed or real
traffic. Second, it provides more accurate results when compared
to previously used methodologies. Third, it is extensible, allowing
the introduction of new protocols and models and tunable so that
users can generate different types of workloads for different envi-
ronments.

1.1 Paper organization
The rest of this paper is organized as follows. In Section 2 we

provide a brief overview of how intrusion detection systems work,
with particular emphasis on the pattern matching algorithms used.
We also discuss some of the methods employed in nIDS perfor-
mance evaluation and discuss their problems. In Section 3 we
present an analysis of nIDS workloads and their impact on perfor-
mance and determine the accuracy of different workload models.
Based on this analysis, in Section 4 we present the architecture and
implementation of a nIDS traffic generator, and provide details on
the modules that have been implemented. In Section 5 we summa-
rize the main results and present our conclusions.



2. BACKGROUND
In this Section we describe a - rather simplified model - of how a

content matching nIDS operates and summarize the key character-
istics of pattern matching algorithms that have been recently used
in intrusion detection. We also discuss previous work in nIDS eval-
uation to place our work in context.

2.1 Basic nIDS model
A nIDS is designed as a passive monitoring system that reads

packets from a network interface through standard system facilities
such as libpcap[15]. After a set of normalization passes (such
as IP fragment reassembly, TCP stream reconstruction, etc.) each
packet is checked against the nIDS ruleset. The ruleset is typi-
cally organized as a two-dimensional data-structure chain, where
each element - often called a chain header - tests the input packet
against a packet header rule. When a packet header rule is matched,
the chain header points to a set of signature tests, including payload
signatures that trigger the execution of the pattern matching algo-
rithm. pattern matching is the single most expensive operation of
a nIDS in terms of processing cost. In order to understand interac-
tion between pattern matching algorithm, ruleset and experimental
workload paper, we briefly present, further on this paper, some of
the pattern matching algorithms that are commonly used in intru-
sion detection systems.

2.2 Pattern matching algorithms
A number of algorithms has been proposed for pattern match-

ing in a nIDS. Performance of each algorithm may vary according
to the case in which it is applied. The multi-pattern approach of
Boyer-Moore is fast for a few rules but does not perform well when
used for a large set. On the contrary, Wu-Manber behaves well on
large sets but its performance is degraded when short patterns ap-
pear in rules. E2xB is based on the idea that in most cases we have
a mismatch and tries to filter out patterns that do not match. How-
ever, E2xB introduces additional preprocessing cost per packet,
which is amortized only after a certain number of rules. In the fol-
lowing subsections a more detailed description for each algorithm
is provided.

2.2.1 The Boyer-Moore algorithm
The most well-known algorithm for matching a single pattern

against an input was proposed by Boyer and Moore[5]. The Boyer-
Moore algorithm compares the search pattern with the input start-
ing from the rightmost character of the search pattern. This al-
lows the use of two heuristics that may reduce the number of com-
parisons needed for pattern matching (compared to the naive al-
gorithm). Both heuristics are triggered on a mismatch. The first
heuristic, called the bad character heuristic, works as follows: if
the mismatching character appears in the search pattern, the search
pattern is shifted so that the mismatching character is aligned with
the rightmost position at which the mismatching character appears
in the search pattern. If the mismatching character does not appear
in the search pattern, the search pattern is shifted so that the first
character of the pattern is one position past the mismatching char-
acter in the input. The second heuristic, called the good suffixes
heuristic, is also triggered on a mismatch. If the mismatch occurs
in the middle of the search pattern, then there is a non-empty suffix
that matches. The heuristic then shifts the search pattern up to the
next occurrence of the suffix in the pattern. Horspool [10] improved
the Boyer-Moore algorithm with a simpler and more efficient im-
plementation that uses only the bad-character heuristic. Fisk and
Varghese[8] recently developed Set-Wise Boyer-Moore (SWBM),
an algorithm based on Boyer-Moore concepts and operating on a

set of patterns. SWBM was integrated in snort and tested using
a single traffic trace from an enterprise Internet connection.

2.2.2 The E2xB algorithm
E2xB is a pattern matching algorithm designed for providing

quick negatives when the search pattern does not exist in the packet
payload, assuming a relatively small input size (in the order of
packet size)[14, 2]. As mismatches are by far more common than
matches, pattern matching can be enhanced by first testing the input
(e.g., the payload of each packet) for missing fixed-size sub-strings
of the original signature pattern, called elements. The false posi-
tives induced by E2xB , e.g., cases with all fixed-size sub-strings
of the signature pattern showing up in arbitrary positions within
the input, can then be separated from actual matches using stan-
dard pattern matching algorithms, such as the Boyer-Moore algo-
rithm [5]. The small input assumption ensures that the rate of false
positives is reasonably small – our experiments demonstrate false
positive rates of 10% in the worst case. In the common case, nega-
tive responses can be obtained without resorting to general-purpose
pattern matching algorithms. The E2xB algorithm was evaluated
on traffic traces from diverse environments, like traces containing
attacks, others with normal web traffic and WAN traffic traces from
a local ISP.

2.2.3 The Wu-Manber algorithm
The most recent implementation of snort uses a simplified

variant of the Wu-Manber multi-pattern matching algorithm [31],
as discussed in [25]. The ”MWM” algorithm is based on the bad
character heuristic similar to Boyer-Moore but uses a one or two-
byte bad shift table constructed by pre-processing all patterns in-
stead of only one. MWM performs a hash on the two-character pre-
fix of the current input to index into a group of patterns, which are
then checked starting from the last character, as in Boyer-Moore.
The performance of MWM was originally measured using text files
and various sets of patterns. The first attempt to measure MWM
as the basic algorithm for pattern matching in a nIDS was per-
formed in [25]. The results of [25] show that snort is much
faster than previous versions that used Set-Wise Boyer-Moore and
Aho-Corasick, although a large part of this improvement is due to
a substantially re-engineered nIDS engine.

2.3 Previous work in nIDS evaluation
One of the first and most well-known efforts at developing a

methodology for nIDS evaluation is presented in [12]. The study
combined a synthesized stream that includes both normal traffic
and a number of attacks. The principal goal of this work was to
measure the ability of systems to identify new attacks without any
knowledge of prior attacks, and estimate detection and false alarm
rates. The study also determines the receiver operating character-
istic (ROC) curves, comparing the percentage of detected attacks
against the false alarm rate. A similar approach is described in
[22], with the development of a testbed simulating the behavior of
a large network, tracing the traffic on the testbed, and using that as
input to the nIDS for evaluation.

The NSS Group[27] evaluated 15 commercial nIDS and open-
source Snort. The testbed used was a 100 Mbit/s network with
no real traffic. The primary metrics of interest were attack detec-
tion rate and correct labeling of attacks. The attacks were 66 com-
monly available exploits like portscans, web, FTP and finger at-
tacks and were generated with specialized tools like snot[29] and
stick[26]. Besides attacks, background traffic was also generated
in order to test nIDS under different network loads. Background
traffic was consisted of small (64 byte) and large (1514 byte) pack-



ets that consumed variable percentage of the network bandwidth
(between zero and 100%). Other approaches like [19] tested the
nIDS by injecting attacks into a stream of real background traffic
and measuring the fraction of attacks that could be detected by the
nIDS.

Mell et al. [17] studied past evaluation efforts and listed a num-
ber of problems related to nIDS evaluation. The use of sanitized
traffic, the effect of background traffic and the difficulties in gener-
ating traffic on a testbed network are some of the problems spotted.
Furthermore, they presented a set of recommendations for nIDS
testing. These recommendations included shared datasets between
multiple organizations, like widely available traffic traces, the use
of traces containing attacks instead of real attacks and finally real
data cleansing, that is the removal of confidential data from traffic
logs in order to overcome privacy issues. Athanasiades et al. in
[4] also provided a study of past evaluation efforts and proposed an
environment suitable for nIDS evaluation. This environment uses
synthetic background traffic and controlled injection of attacks in
order to emulate a real network. Furthermore, it is equipped with
the ability to respond to traffic in real time and generate traffic at
gigabit speed so as to provide more realistic traffic scenarios.

Hall et al. [9] spotted a number of limitations applying to nIDS.
Fixed resources, such as memory size and memory bandwidth, set
an upper bound to performance of packet capture and packet flow
architecture. Difficulties are also presented in generation of real
traffic at high peak rates. Finally, packet analysis and state track-
ing may infer performance penalties. They proposed a test suite
for nIDS evaluation, each component of which is used to measure
different portion of a nIDS. This test suite included testing the max-
imum bandwidth a nIDS can inspect without packet loss, testing the
alarm capabilities, stressing the state tracking engine and finally a
set of tests with configurable metrics, based mainly on HTTP traf-
fic.

Schaelicke et al. [23] studied the performance bottlenecks on
snort and the impact of different architectures and operating sys-
tems. In their testbed, they used the ttcp utility to generate traffic
between a pair of hosts. Measurements were performed for four
fixed payload sizes and for two types of rules: rules that check only
headers and rules that perform pattern matching. In their experi-
ments, the basic metric of interest was the number of rules that can
be processed without packet loss. An extended set of six machines
with different architecture was examined. They also studied the im-
pact of different operating systems on nIDS operation, specifically
Linux and OpenBSD, and the effect of multiprocessor systems to
the performance of packet capturing.

A recent study[3] illustrates some of the difficulties in evaluating
nIDS performance. First, it shows that nIDS performance is sen-
sitive to packet and ruleset content. Adding random content to the
widely-available traffic header traces is thus, at least on first sight,
questionable as a method for nIDS evaluation. However, our anal-
ysis shows that the sensitivity exhibits certain patterns in over- or
under-estimating performance, depending on the pattern matching
algorithm and the characteristics of the traffic. Regarding ruleset
content, using random rule patterns for determining nIDS perfor-
mance and scalability also requires extreme care: our results sug-
gest that a more accurate way of creating synthetic rulesets is to use
permutations of existing patterns. As with packet content, the sen-
sitivity follows some predictable pattern depending on algorithm
and traffic.

Second, it demonstrates large differences in measured perfor-
mance depending on traffic characteristics: the highest measured
mean cost per-packet is up to four times as much as the lowest cost
in the traces we examined, mostly due to differences in the distri-

bution of packets to the different subsets of the nIDS ruleset.
Third, it is shown that the choice of processor architecture has

a dramatic effect, both on overall system performance as well as
the relative performance of different pattern matching algorithms.
There are cases where one pattern matching algorithm is faster than
another algorithm on one processor but slower on another proces-
sor. As no single algorithm performs best in all cases a hybrid
pattern matching engine triggering different algorithms depending
on ruleset and packet size appears to be the best approach, but the
parameters may also vary depending on the processor architecture.

3. ANALYSIS

3.1 Metrics
There are two basic metrics in evaluating a nIDS: attack detec-

tion rate, and false alarm rate. The attack detection rate can be de-
fined as the fraction of attacks successfully detected by the nIDS,
while the false alarm rate is the fraction of alarms that did not indi-
cate a real intrusion over the total number of alarms produced by the
nIDS. For a nIDS that uses statistical anomaly detection methods,
both metrics reflect the quality of the algorithm, although the attack
detection rate is also affected by the ability of the system to process
the input stream without sustaining packet loss. For content match-
ing systems such as snort, the detection process is more exact
than in statistical methods. Therefore, the attack detection rate is
more closely related to the capacity of the system: if all packets are
processed then all attacks specified in the ruleset will be detected.
For content matching systems the false alarm rate is dependent on
ruleset configuration and alarm filtering that is usually done out-
side the critical path. We therefore focus on capacity or maximum
loss-free rate (MLFR) as the basic metric of interest in this study.

The capacity of a nIDS also relates to the processing time as
reflected in the measured number of instructions and processor cy-
cles devoted to the operation of the nIDS. Running time can pro-
vide a reasonable estimate of nIDS capacity in many cases, and can
be easily measured without setting up a full testbed (e.g., through
trace-driven execution). However, burstiness in packet arrival rates
and variable processing needs on the nIDS may cause transient
overload and packet loss that may not be reflected in processing
time. Capacity, in terms of MLFR, is more accurate, but normally
requires a testbed which makes experimentation and measurement
more time-consuming. We discuss a method for approximating the
capacity of a nIDS without the complexities of setting up and using
a testbed in Section 4.

3.2 Single-stream, trace-based and synthetic
workload models

A straightforward approach for measuring nIDS performance is
to use a simple packet generator like ttcp[20] or iperf[1]. Such
generators create a stream of packets with certain characteristics
(e.g., UDP or TCP protocols, different packet sizes, etc. ). This ap-
proach is acceptable for evaluating systems such as routers where
the processing involved is rather simple. A content matching nIDS
is more complex as it needs to check every packet against hundreds
of rules, and almost all of them involve deep payload inspection
with variable cost per packet depending on the type and content
of the packet. Figure 1 presents the fraction of nIDS processing
time spent on pattern matching for three traces containing real pay-
loads. For this experiment, pattern matching accounts for 40-70%
of the total processing time, and 60-85% if we consider the number
of processor instructions issued. Most of the rest of the process-
ing time is spent on header checking except for packet decoding
which is approximately 2-3%. Because of the complexity of pattern
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Figure 1: The cost of nIDS pattern matching in terms of pro-
cessing time and instructions

.

matching it is unlikely that a single-stream model would produce
accurate performance estimates.

To determine the sensitivity of nIDS performance to traffic char-
acteristics we analyzed the behavior of snort using a variety of
network traces from different environments. In Figure 3 we present
the processing time per packet and per byte for different traces.
Traces NLANR.IND,NLANR.MRA and NLANR.AIX contain wide-
area network traffic captured on a set of peering points. The DE-
FCON traces were collected on a small LAN during a hack festi-
val[28]. FORTH.web is a trace containing a number of concurrent
Web browsing sessions captured at FORTH and UCNET are traces
from the ATM link between the University of Crete and GRNET[7].
We observe that the highest measured cost appears to be 3 to 4 times
more than the lowest measured cost. To investigate the causes for
this variability we instrumented snort to record the subset of the
nIDS ruleset (e.g., the “chain header” in snort) triggered for each
packet in the trace. The results are shown in Figure 2. We see that
the use of different subsets of the nIDS ruleset varies significantly:
roughly 42% of packets in the FORTH.web trace trigger a set of
956 rules while the same set is only triggered by 1-5% of the pack-
ets for all other traces. For the NLANR traces, a large fraction of
packets (77-93%) trigger at most 87 rules. Although such differ-
ences should be expected given that the traces represent traffic in
different settings (wide-area, hacker contest and a web-only envi-
ronment) there are visible differences even between traces of the
same type. Thus, simplified single-stream workloads or the use of
a single traffic trace does not seem to be sufficient for evaluating
“overall” nIDS performance.

Given that using a single traffic trace is not sufficient, a reason-
able strategy would be to use a carefully selected set of traces as
a benchmark. There are, however, three main problems with such
an approach. First, there are very few full-packet traces available,
mainly because of privacy issues. In most publicly available traces,
packet payloads are removed and IP addresses are sanitized. Sec-
ond, traces require significant storage requirements and cannot be
easily distributed. For example, a 60-second trace of a fully-utilized
gigabit link requires around 7.5 GB of storage. Furthermore, traces
offer little flexibility in experimentation: a simple modification in
traffic characteristics, such as for instance using different packet
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sizes, would require the existence or creation of a new trace. Fi-
nally, replaying stored trace is expensive and limits the maximum
sending rate of the generator (because of storage and bus perfor-
mance limits) even when using high-performance tools like tcp-
fire [18]. This can be addressed using multiple senders but adds
cost and complexity to the testbed and experiment setup.

To make nIDS evaluation easier, it would be desirable to design
synthetic workloads based on statistical properties of network traf-
fic. Synthetic workloads can be used to generate traffic similar
to real traffic. Modeling packet headers can be achieved by us-
ing statistical information collected from available traces [30] or
coarse time-scale aggregate measurements[13]. However, the issue
of payload modeling still remains open.

3.3 Modeling packet payloads
In our effort to find the most suitable approach to model payload

generation we used only traffic traces that contained packets with
real payload: FORTH.web, IDEVAL2 and IDEVAL3. We evalu-
ated three approaches in order to find a way for generating payload



that gives results similar to the real ones. In each approach, packet
headers were left unchanged and only payloads were altered.

A first approach for modeling payloads is the use of uniformly
random payloads. Usually, a payload would contain exclusively
either printable characters (like HTTP requests and FTP command)
or binary content (images, compressed files, etc.). We evaluated
the performance of snort , using either E2xB or MWM as the
main pattern matching algorithm. In our experiments we used two
rulesets: 2.0.1 was the latest available ruleset at the time of the
experiments and 2.0.0 was the ruleset coming with the latest official
release of snort .

Figure 4 shows that uniformly random content introduces an er-
ror of 14% - 38% in the measured processing time of the nIDS, and
the error depends on both the algorithm and the ruleset used. Con-
sidering the E2xB algorithm, patterns consisting of sequences of
the same character are the main reason behind this difference. One
such pattern is “0000” (four adjacent zeros) which is part of 14
rules in ruleset version 2.0.1. While in real payloads the sequences
“00” appears in about 10% of packets (because many protocols,
such as GIF headers, use null data), in uniformly random payloads
its occurrence is more rare (e.g., at a rate of 1 in 65536) When
E2xB sees the pair “00” inside the payload cannot decide for ex-
clusion of pattern “0000” and fall-back pattern matching routine is
invoked. In case of uniformly random payloads, the number of fall-
back routine invocations is significantly smaller than the equivalent
number for real payloads. Table 1 shows the times these repetitive
patterns fall-back routine was invoked for actual searching. We no-
tice that searches for FORTH.web containing uniformly random
payloads are nearly the 40% of searches triggered real payloads,
while in IDEVAL traces the reduction rate of searches reaches 94%.

E2xB MWM
uniform real uniform real

FORTH.web 4,574,786 7,712,983 315,763 12,001,484
IDEVAL2 964,033 16,074,186 140,658 6,730,802
IDEVAL3 1,066,654 19,004,703 363,014 7,163,140

Table 1: Number of searches for E2xB and MWM

On the other hand, the difference in processing time between
uniformly random and real payloads for MWM is caused by the
algorithm itself. MWM searches first for a two-byte prefix in the
payload that is common prefix to patterns. For example, patterns
“http://” and “http://cgi-bin?..” have the common pre-
fix “ht”. MWM searches for such common prefixes and when-
ever they are found the suffix is checked (the algorithm is con-
strained by the minimum pattern length for the determination of
the suffix). If there is also a match in the suffix then the text be-
tween suffix and prefix is checked. In real payloads such com-
mon prefixes are often found as for example the prefix “CO”. This
prefix is located in several patterns like “COMMAND=REGISTER”
or “CONF/HTTPD.CONF” and its occurrence in a payload would
trigger many checks. However, in uniformly random payloads, its
occurrence is less likely, thus leading to less checks and conse-
quently diverging from the real case. Table 1 shows the number
of patterns checked for each trace. When uniformly random pay-
load is used, MWM performs approximately 96% less checks in
comparison to the case of traces with real payload.

The difference in performance between real and uniformly ran-
dom payloads also depends on the ruleset used. In snort 2.0.0
ruleset some rules of 2.0.1 that added overhead to the detection en-
gine, e.g for E2xB rules searching for pattern “0000”, are absent.
Figure 4 summarizes the results for ruleset 2.0.0. The difference

between real and uniformly random payloads varies from 3% up to
26%, still remaining algorithm-dependent. Although in some cases
error seems small, results are not consistent throughout different
rulesets.

Some studies such as [23] use ttcp for generating a simple traf-
fic stream in order to evaluate nIDS systems. The default behavior
of ttcp is to fill packets with the following pattern:

˜!’()*+,-./0123456789@ABCDEFGHIJKLMNOP
QRSTUVWXYZ‘abcdefghijklmnopqrstuvwxyz|

To determine the accuracy of this payload model we replaced the
payloads in our traces with the string used by ttcp. In Figure 4,
we see that for this type of payload the nIDS behaves substantially
different compared to the original traces. For the IDEVAL traces,
ttcp-like payloads introduce errors between 10% and 40% while
for FORTH.web the error is between 22% and 30%. The reason
for this error is that the pattern used by ttcp consists of a limited
set of characters and its content is fixed, so that only a few rules
are triggered, and the data-structures used for pattern matching are
repeatedly accessed in the same way, resulting in better cache per-
formance and less stress on the detection engine.

In our approach, we try to generate synthetic payloads using a
statistical model based on analysis of traces with real payloads.
The basic idea in our method is to cluster packets based on protocol
and message type. For example UDP packets to port 53 belong to
the DNS cluster. We consider the following set of clusters: HTTP
packets containing text, HTTP packets containing images, HTTP
packets with application data (like PDF, sounds and videos), HTTP
requests, DNS queries, FTP data, SSH, Telnet, mail, netbios and
“other” (traffic not belonging to previous clusters). The choice of
clustering was made considering by the popularity of the protocols.
Figure 5 shows the fraction of packets in each cluster for two of
the traces with real payloads. As FORTH.web is a trace contain-
ing web traffic, the percentage of HTTP packets is around 92%.
We observe that most traffic originating from web servers belongs
to the application data cluster. This is natural considering the size
of multimedia elements (like a video) which is usually larger than
HTML pages. The remaining 8% is TCP control traffic (mostly
ACKs). As IDEVAL traces contain WAN traffic, we can identify
several clusters, like SSH, FTP, mail and telnet. A large portion
of traffic (nearly 30%) belongs to the telnet cluster, while a sig-
nificant portion of packets (20%) belongs to the DNS cluster. We
consider several distinct clusters for Web traffic given that packets
containing HTTP requests have different impact on the nIDS detec-
tion engine compared to packets carrying HTML pages or a PDF
file, in terms of the rules being examined and the amount of work
done by the pattern matching engine.

For each cluster we maintain a set of empirical distributions,
one distribution for each offset from the beginning of the packet.
The empirical distributions are obtained from the payload traces,
by recording for each character the probability of appearance at a
given offset. We used the FORTH.web trace to extract information
for clusters concerning web traffic (HTTP text, images, application
data and requests) and IDEVAL2 trace for all other clusters. To
illustrate how our model captures the behavior of different payload
types we examine the cluster of HTTP requests. For this cluster
we maintain 1500 distributions (as an Ethernet packet cannot ex-
ceed 1500 bytes), each one containing 256 values (one value for
each character). Given that all HTTP requests begin with the string
“GET /”, the first distribution would contain a single value “G
100%”, the second would contain “E 100%”, the third would con-
tain “T 100%”, etc. The distribution for offset=6, however, would
contain several characters given that it is the name of the requested
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object that begins at this offset. The model would capture the high
frequency of “ ” as the first character and the fact that only printable
characters are allowed in HTTP requests. This, in turn, triggering
pattern matching algorithm behavior that closely resembles behav-
ior with real HTTP requests. Another example is the GIF header
format that puts null data in its first bytes. Furthermore, as common
pairs of characters are generated (for example “GE”) the number of
rules triggered reaches the one of real case.

The advantage of this statistical approach is that it efficiently
generates payloads that have some basic similarities to real traf-
fic payloads. Although less powerful than full protocol emula-
tion, it preserves some protocol characteristics. In contrast, other
approaches such as using uniformly random payloads ignore the
structure of a packet Experiments demonstrating the accuracy of
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Figure 6: Error breakdown of payload model

our method are presented in Figure 4. The difference between real
and modeled payloads is smaller than with previous approaches and
appears to be consistent between different rulesets. Consistency is
important as the evolution of rulesets is unpredictable. While in
the case of uniformly random payloads we notice an increase of
30% for FORTH.web from ruleset 2.0.0 to 2.0.1, in our approach
the difference was only around 1%. For IDEVAL2 and IDEVAL3
the difference between rulesets never exceeded 7% in our approach
while in the case of uniformly random and ttcp-like approaches
the difference varied between 6 and 32%.

To understand the observed errors we measured the difference
between real and synthetic payloads for each payload cluster sepa-
rately (Figure 6). We see that although the errors are small on av-
erage some of the clusters appear to be modeled rather poorly. For
example, the error is 25% for the “HTTP text” cluster when E2xB
is used and 30% for the “HTTP APPS” cluster when MWM is
used. This highlights both the imperfect nature of the particular
model as well as the variability between different payload clusters.
Although more work is needed if more accurate nIDS performance
estimates are desirable, the average error appears to be acceptable
for most practical purposes and substantially better than previously
used models.

4. METHODOLOGY

4.1 Architecture
In our efforts to develop a system that integrates our experimen-

tal results, we implemented a modular and extensible traffic gener-
ator called NextGen. Figure 7 shows the architecture of the gen-
erator. The use of modules allows us to emulate a mix of different
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protocols as part of a synthetic workload. The level of detail in the
workload can be configured: from single flow traffic to fully- speci-
fied protocols. Each module is responsible for generating a specific
protocol, as for example HTTP or DNS queries. A module consists
of two parts: its initialization function where all the initialization is
performed, and the traffic function where the actual traffic is gen-
erated and injected into the network. The traffic function may use
other modules to shape a packet, such as payload generation mod-
ules to construct payloads or modules that reproduce certain types
of attacks against the nIDS.

We have implemented four modules for the following types of
traffic: HTTP, DNS queries, Telnet and random background traffic.
The HTTP module reproduces web traffic, the DNS module emu-
lates queries performed by the Domain Name Service, the Telnet
module emulates the telnet protocol and the random module gener-
ates traffic with random source and destination ports and addresses.
The choice of HTTP, DNS and Telnet protocol for building prede-
fined modules was based on their popularity as seen in Figure 5.
Except from normal traffic modules, we have developed a module
for replaying traffic based on a trace. NextGen can be extended
to reproduce more protocols as individual traffic modules can be
developed and plugged in. For example, one can develop a module
for sending SMTP traffic. The module itself can use its own set
of options allowing customized configuration. The development
of a module is simple and requires the implementation of the ini-
tialization and the traffic function. The registration of the module
into the generator is committed in a way similar to preprocessors
of snort.

4.2 nIDS workload modules
Based on the analysis performed in Section 3, emphasis has been

given to the issue of payload generation. The generator comes
with three predefined modules for generating payloads: uniformly

random, ttcp-like and the statistical model presented in Section
3. The modularity of NextGen allows the development of cus-
tom payload generation modules if the predefined modules are not
suitable. For example, one can develop a module that generates
protocol-specific payloads following a specific format and initialize
modules to use that module. This characteristic can turn NextGen
into a fully-fledged protocol emulation tool. Each module also has
the ability to generate attack traffic. This is valuable given that
certain types of attacks may affect the performance of detection en-
gine. For example, the HTTP module sends packets emulating an
attack from a client to a Web server, and there are certain types of
algorithmic attacks against the nIDS.

We must note that generator modules need to be developed with
care, as they can easily introduce performance bottlenecks. A rea-
sonable strategy for avoiding such bottlenecks is to generate a pool
of different packets and buffers during initialization and simply
pick a packet (or a buffer offset) in the packet generation loop.

4.3 Capacity estimation
Estimating the capacity of the nIDS in terms of the maximum

loss-free rate (MLFR) is difficult, as it requires the setup of a net-
work testbed with traffic generators capable of producing traffic fast
enough to reach the nIDS limits. We present a shrink-wrapped ca-
pacity estimation method that can be performed locally on a single
system.

The basic idea is to emulate the operation of the nIDS in vir-
tual time, with a virtual network interface and packet queue. The
system maintains a virtual clock which tracks packet arrival events
(as produced by the model or trace-based workload), emulates en-
queue/dequeue actions and measures the amount of time needed by
the nIDS to process the packet. The measured processing time for
each packet determines when processing of the next packet can be-
gin, and therefore how many packets are waiting in the queue at
each point in (virtual) time. When a packet is received, it is pos-
sible to determine whether the packet can be processed, enqueued
or dropped. The measured loss rate for an experiment can then be
used to tune the experiment until it reaches zero loss, which is the
desired capacity estimate for the system.

This method is implemented as part of a modified libpcap
library that communicates with the traffic generator through stan-
dard UNIX IPC mechanisms. To minimize interference between
the generator and the nIDS the modified library uses a large amount
of buffer space for the generator to write packets. Buffer manage-
ment is properly memory-aligned to reflect the buffering strategies
of modern network interfaces.

4.4 Example Applications

4.4.1 Measuring sensor capacity
We measured the capacity of a snort-based sensor by generat-

ing a synthetic workload based on the data from the FORTH.web
trace, with snort running with all 1923 available rules activated.
The capacity of the sensor was measured for both MWM and E2xB
on a gigabit testbed. Our measurements show that for both E2xB
and MWM capacity reached around 210 Mbit/s. These values to
agree with the measured processing time (36.47 for E2xB and
37.12 for MWM, giving 206 and 205 Mbit/s respectively for one
GB of traffic). Although capacity and processing time seem to
agree in this case, we must note that this is coincidental, as this
particular workload did not contain bursty traffic.

4.4.2 Measuring robustness against overload attacks
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We perform a simple experiment in determining sensor robust-
ness against overload attacks. We feed regular (attack-free) packet
traces through the attack module that transforms regular payloads
to payloads containing attack strings that overload the sensor. Fig-
ure 8 shows the difference in the load of a nIDS between the orig-
inal trace (representing average-case behavior) and the modified
trace (representing the overload attack). We observe that this type
of attack increases the load by more than 100% in the case of Web-
dominated traffic (FORTH.web) and between 30% and 100% for
the other two traces.

A different type of attack is to create payloads that result in
worst-case behavior by the pattern matching engine. For example,
a packet containing only zeroes results in very poor behavior of the
MWM algorithm as one of the rules happens to be “00 00” and
the implementation in snort tries to find all occurrences of pat-
terns in the payload. For a 1500-byte packet, MWM would finds
1500 occurrences. A similar attack can be constructed for E2xB,
by creating payloads containing the maximum number of unique
pairs of sequential characters found in the ruleset that fits in the
packet.1

1We have reported this particular problem to the developers of
snort and the most recent release of the software appears to have
removed this flaw.

The effect of algorithmic attacks on nIDS performance is pre-
sented in Figure 9. We instrumented the attack modules to replace
the payloads of a trace containing normal web traffic with payloads
that contained algorithmic attacks. We evaluated the performance
for both MWM and E2xB against these attacks by changing the
percentage of packets containing them. The increase in process-
ing time is linear to the percentage of attacks for both algorithms.
We notice that for MWM, performance is degraded by a factor of
25 while in the case of E2xB the degradation was less (but still
significant) at a factor of 7.

5. SUMMARY
We have studied the problem of modeling nIDS workloads and

developing a methodology for evaluating content-matching intru-
sion detection systems.

There are three main results from this study. First, we have
shown that nIDS performance is highly sensitive to the underlying
traffic and that simple stream-based analysis (e.g., performed with
tools like ttcp) as well as trace-based analysis can easily be mis-
leading. Considering this observation, we argue that a nIDS work-
load model needs to accurately reproduce application-level charac-
teristics of network traffic.

Second, we have examined how to accurately emulate the in-
teraction between packet payloads and the nIDS content matching
component. We have presented a payload model that is based on
empirical distributions of single-byte patterns at a given offset from
the beginning of the packet, with different sets of distributions for
each protocol and message type. We have compared model-based
payloads to real traffic traces, showing that the model error is in
most cases insignificant. This is essential, as it enables the creation
of the necessary statistical workload models while also allowing
the use of widely-available header-only traffic traces as part of a
comprehensive, multi-trace nIDS benchmark.

Third, we have proposed a method for measuring nIDS capacity
that accurately emulates the operation of the nIDS without requir-
ing the use of a fully-fledged network testbed or high-performance
traffic generators. The basic idea is to use a virtual clock to emulate
packet arrivals and queuing behavior based on real measurements
of the required processing time for each packet.

The proposed methods have been implemented as part of a traffic
generator tool that is modular and extensible so users can adapt it
to the needs of different environments. We believe that this work
offers important insights on the problem of nIDS performance eval-
uation.

6. AVAILABILITY
Source code for the workload generation tools discussed in this

paper as well as a patch for snort containing the E2xB algorithm
can be found through the following URL:
http://www.ics.forth.gr/carv/ids.html
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