
���������
	 ���� 	������������
������� � ��!#"�����$
� 	%!���&����$ 	(')$*��"(��!�&*� �+��" ���!#"-,���.���
���/!��
��!#�.���

021�3416587:9<;=7:>@?BAC9<DFEG?CHJI:K�16587@AL>@7:9JAL>@?MI:N816OP16QR9<SLDJ9JAL>@?TIFQ+1�OU>@VXWFY[Z�SL>=7\9<D]EG?[^
_a`TbdcXefcXgMcihkjmlCnpo�lCqsrtgTcihdnvu<wdeXhm`twxhzy{_Lo]u}|~=lCgM`t�}�CcXe{lC`Uj�lCns�shdb�hx�Cnxwx���L`J���Mhxwa��`JlL��lx�C�����Phm�����Lb�yX~����U�t��|���X� �=�slB���[�[�������Phmn����L� eXlL�soFnxhmciha�.��� �d¡��}�L���[¢£�:� ¤6¤ o@¤
{ ¥§¦B¨d¦a©�ª ¦B¨x«X¬[¨a¦a«xª �¦m®¯¥§¦a«X¬�°dª \± ¥³²�´m¬ } µ<± ¶�°a· ¸�¬�® «³¹L· ©[®

appears in the Proceedings of the 18th IFIP International Information Se-
curity Conference, 2003

Abstract We consider the problem of string matching in Network Intrusion Detection
Systems (NIDSes). String matching computations dominate in the overall cost
of running a NIDS, despite the use of efficient general-purpose string matching
algorithms. Aiming at increasing the efficiency and capacity of NIDSes, we have
designed º�»d¼<½ , a string matching algorithm that is tailored to the specific char-
acteristics of NIDS string matching. We have implemented º » ¼<½ in snort,
a popular open-source NIDS, and present experiments comparing º » ¼<½ with
the current best alternative solution. Our results suggest that for typical traffic
patterns º » ¼<½ improves NIDS performance by 10%-36%, while for certain
ruleset and traffic patterns string matching performance can be improved by as
much as a factor of three.

Keywords: network security, intrusion detection, string matching, network monitoring, net-
work performance

¾p¿ À@ÁzÂFÃ:ÄzÅÇÆÇÈ�ÂFÉ�Ä�Á
Network Intrusion Detection Systems (NIDSes) are receiving considerable

attention as a mechanism for shielding against “attempts to compromise the
confidentiality, integrity, availability, or to bypass the security mechanisms
of a computer network” (Bace and Mell, 2001). The typical function of
a NIDS is based on a set of signatures, each describing one known intrusion
threat. A NIDS examines network traffic and determines whether any signatures
indicating intrusion attempts are matched.

Ê
Author is with the CIS Department, University of Pennsylvania, Email: anagnost@dsl.cis.upenn.eduË
Authors are also with the Computer Science Department, University of Crete

The simplest and most common form of NIDS inspection is to match string
patterns against the payload of packets captured on a network link. The use of
existing efficient string matching algorithms for this purpose, such as (Boyer
and Moore, 1977; Aho and Corasick, 1975), bears a significant cost: recent
measurements of the snort NIDS (Roesch, 1999) on a production network
show that as much as 31% of total processing is due to string-matching (Fisk
and Varghese, 2002). The same study also reports that in the case of Web-
intensive traffic, this cost is increased to as much as 80% of the total processing
time. At the same time, NIDSes need to be highly efficient to keep up with
increasing link speeds, and, as the number of potential threats (and associated
signatures and rules) is expected to grow, the cost of string matching is likely
to increase even further.

These trends motivate the study of new string matching algorithms tailored
to the particular requirements and characteristics of Intrusion Detection, much
like domain-specific algorithms were developed for efficient routing lookups
and packet classification in IP forwarding (Lakshman and Stiliadis, 1998; Gupta
and McKeown, 1999).

In this context, we present ÌÎÍ}Ï\Ð , a string matching algorithm that is de-
signed specifically for the relatively small input size (in the order of packet size)
and small expected matching probability that is common in a NIDS environ-
ment. These assumptions allow string matching to be enhanced by first testing
the input (e.g., the payload of each packet) for missing fixed-size sub-strings
of the original signature string, called elements. The false positives induced
by ÌÎÍ�Ï\Ð , e.g., cases with all fixed-size sub-strings of the signature showing
up in arbitrary positions within the input, can then be separated from actual
matches using standard string matching algorithms, such as the Boyer-Moore
algorithm (Boyer and Moore, 1977). Experiments with Ì Í Ï�Ð implemented
in snort , show that in common cases, ÌÑÍ�Ï\Ð is more efficient than existing
algorithms by up to 36%, while in certain scenarios, Ì Í Ï\Ð can be three times
faster. This improvement is due to an overall reduction in executed instructions
and, in most cases, a smaller memory footprint than existing algorithms.

Ò�¿ ÓÕÔPÈ:Ö�×ØÃ:Ä�ÆÙÁÇÅ
The general problem of designing algorithms for string matching is well-

researched. One of the most widely used algorithms was first proposed in
(Boyer and Moore, 1977). The Boyer-Moore algorithm compares the search
string with the input starting from the rightmost character of the search string.
This allows the use of two heuristics that may reduce the number of comparisons
needed for string matching (compared to the naive algorithm). Both heuristics
are triggered on a mismatch. The first heuristic, called the bad character
heuristic, works as follows: if the mismatching character appears in the search
string, the search string is shifted so that the mismatching character is aligned
with the rightmost position at which the mismatching character appears in the
search string. If the mismatching character does not appear in the search string,

the search string is shifted so that the first character of the pattern is one position
past the mismatching character in the input. The second heuristic, called the
good suffixes heuristic, is also triggered on a mismatch. If the mismatch occurs
in the middle of the search string, then there is a non-empty suffix that matches.
The heuristic then shifts the search string up to the next occurrence of the suffix
in the string. Horspool (1980) improved the Boyer-Moore algorithm with a
simpler and more efficient implementation that uses only the bad-character
heuristic.

Aho and Corasick (1975) provided an algorithm for concurrently matching
multiple strings. The set of strings is used to construct an automaton which is
able to search for all strings concurrently. The automaton consumes the input
one character at-a-time and keeps track of patterns that have (partially) matched
the input.

Fisk and Varghese (2002) were the first to consider the design of NIDS-
specific string matching algorithms. They proposed an algorithm called Set-
wise Boyer-Moore-Horspool, adapting the Boyer-Moore algorithm to simulta-
neously match a set of rules. This algorithm is shown to be faster than both
Aho-Corasick and Boyer-Moore for medium-size pattern sets. Their exper-
iments suggest triggering a different algorithm depending on the number of
rules: Boyer-Moore-Horspool if there is only one rule; Set-wise Boyer-Moore-
Horspool if there are between 2 and 100 rules, and Aho-Corasick for more than
100 rules. This heuristic has been incorporated in snort and provides the
baseline for our comparison in Section 4. Independently of Fisk and Vargh-
ese, Coit et al. (2002) implemented a similar algorithm in snort, adapting
Boyer-Moore for simultaneously matching multiple strings, derived from the
exact set matching algorithm of Gusfield (1977) .

Recently, we have proposed ExB, a precursor of Ì Í Ï�Ð , providing quick
negatives when the search string does not exist in the packet payload (Markatos
et al., 2002). Ì Í Ï�Ð provides several improvements on ExB , the most important
being a faster pre-processing phase, removing much of the overhead associated
with initializing the occurrence map, and a wider set of experiment results,
that also highlight NIDS properties that are interesting beyond the scope of the
specific algorithm.

Úz¿ ÛÝÜJÞ�ß%àâáäã�Èså�ÆÇækÉ�ÄpÁ£çJèÇÔPæké Å(æFÂFÃ:É�ÁÇ×ëê�ÔUÂkÈ:ìÇÉ�ÁÇ×
We present an informal description of Ì Í Ï\Ð , first in its simplest and most

intuitive form and then in its more general form. Ì Í Ï\Ð is based on the
following simple observation:

Suppose that we want to check whether an input string í contains a small stringî . If there exists at least one character of string î that is not contained in í , thenî is not a substring of í .

The above simple observation can be used to quickly determine several cases
where a given string ï does not appear in the input string ð : if ï contains at least
one character that is not in ð , then ï is not a substring of ð . However, this

observation cannot be used to determine the cases where ï is a substring of ð .
Indeed, if every character of string ï belongs to input string ð , then we should
use a standard string matching algorithms (e.g., Boyer-Moore-Horspool) to
confirm whether ï is actually a substring of ð or not. The cases where every
character of ï is in ð , but ï is not a substring of ð are called false matches, or
false positives.

This method is effective only if there is a fast way of checking whether a
given character ñ belongs in ð or not. We perform this check with the help of
an occurrence map. Specifically, we first pre-process the input string ð , and
for each (8-bit) character ñ that appears in string ð , we mark the corresponding
(i.e. ñ}òGó) cell on the (256-cell) map. Although we could use a binary value to
mark the mentioned cells (i.e. if the ñ�òGó position of the cell map is ô , then the
character ñ appears in ð , otherwise it does not), our experiments in (Markatos
et al., 2002) suggest that the cost of cleaning (i.e. filling with zeros) the cell
map for each new packet can be very high. To reduce this cost, we decided
to mark the cell with the (index) number of the current network packet. Thus,
if the ñ}òGó position of the cell map contains the number of the current network
packet, the character ñ appears in ð , otherwise it does not 1.

In order to reduce the percentage of false matches, the above algorithm can be
generalized for pairs of (8-bit) characters: instead of recording the occurrence
of single characters in string ð , it is possible to record the appearance of each
pair of consecutive characters in string ð . In the matching process, instead
of determining whether each character of ï appears in ð , the algorithm then
checks whether each pair of consecutive characters of ï appears in ð . If a pair
is found that does not appear in ð , Ì Í Ï�Ð knows that ï is not in ð .

Generalizing further, instead of using 8-bit characters, or 16-bit pairs of
characters, Ì Í Ï\Ð can use bit-strings of arbitrary length (hereafter called ele-
ments). That is, Ì Í Ï�Ð records all (byte-aligned) bit-strings of length Ï . The
element size exposes a trade-off: larger elements are likely to result in fewer
false matches, but also increase the size of the occurrence map, which could,
in turn, increase capacity misses and degrade performance.

The pseudo-code for pre-processing input and for matching a string s on
input is presented in Figure 1.

The main difference between Ì Í Ï\Ð and ExB is the use of cells: ExB
assumed an occurence bitmap where each element was marked by setting the
1-bit cell to 1. This required the bitmap to be cleared for each packet, adding
unnecessary overhead. A second difference lies in the way the two bytes
forming an element are hashed together. Ì Í Ï\Ð uses õ�ö while ExB uses÷ õ�ö . Although in theory

÷ õ�ö does provide a better hash than õ�ö , the
difference in the number of collisions was found to be negligible. The value of

1To reduce the number of bits needed to store the cell map, the numbers of network packets are limited to
a predefined number of bits, which we call cell size. If the number of network packets exceed Í�ø§ù�úûú ü�ý¯þdù ,
then the next packet gets the number 0.

pre_process(char *input, int len)
{
pktid=pktno & (1<<cellsize - 1);

for (int idx = 0 ; idx < len-1 ; idx++) {
element = s[idx]<< (elementsize-8) ˆ s[idx+1];
occurence_map [element] = pktid;

}
}
search(char *s, char *input, int len_s, int len)
{
for (int idx = 0 ; idx < len_s-1 ; idx++) {

element= s[idx]<< (elementsize-8) ˆ s[idx+1];
if (occurence_map [element] != pktid)

return DOES_NOT_EXIST ;
}
return boyer_moore(s, len_s, input, len);

} ~�eû�CgMnxhP�[�
Pseudo-code for º » ¼<½ pre-processing and search.

using
÷ õ�ö lies more in that

÷ õ�ö instructions were found to result in slightly
better performance. Finally, an important implementation detail that has been
addressed in Ì Í Ï\Ð is support for case-insensitive matching, as many NIDS
signatures are case-insensitive. This is done by modifying the search procedure
to test for the occurence of all four combinations of upper- and lower-case for
each of the two bytes used to compute the element index.

ÿ£¿ áäã��Îé.Ã:É�ê�é.Á�ÂFÔPå é��UÔPå�ÆÇÔUÂFÉ�Ä�Á
Using trace-driven execution, we evaluate the performance of Ì Í Ï�Ð against

the heuristic of (Fisk and Varghese, 2002) (denoted as FVh in the rest of this
paper) and the implementation of (Boyer and Moore, 1977) in snort .

ÿ£¿�¾ á Á���ÉBÃ:ÄpÁÇê�é.Á�Â
For all the experiments we used a PC with a Pentium 4 processor running at

1.7 GHz, with a L1 cache of 8 KB and L2 cache of 256 KB, and 512 Mbytes of
main memory. The measured memory latency is 1 ns for the L1 cache, 10.9 ns
for the L2 cache and 170.4 ns for the main memory , measured using lmbench
(McVoy and Staelin, 1996). The host operating system is Linux (kernel version
2.4.14, RedHat 7.3). We use snort version 1.9.0 (build 205) compiled with
gcc version 2.96.

Each packet is checked against the “default” rule-set of the snort distribu-
tion. The ruleset is organized as a two-dimensional chain data-structure, where
each element - called a chain header - tests the input packet against a packet
header rule. When a packet header rule is matched, the chain header points to
a set of signature tests, including payload signatures that trigger the execution

0

20

40

60

80

100

8 9 10 11 12 13 14 15 16

fr
ac

tio
n

of
 fa

ls
e

po
si

tiv
es

element size (bits)

~6e��CgMnxh����
Effect of element and cell size

parameters on the fraction of false positives

0

10

20

30

40

50

60

70

80

8 9 10 11 12 13 14 15 16

ru
nn

in
g

tim
e

(s
ec

)

element size (bits)

cell=32 bits
cell=16 bits

cell=8 bits

~�e��LgTn�hÇ���
Effect of element and cell size

parameters on running time

of the string matching algorithm. The default rule-set consists of 187 chain
headers with a total of 1661 rules, 1575 of which are string matching rules.

We use packet traces from four different sources:

A set of full-packet traces from the DEFCON “capture the flag” data-set. 2

These traces contain numerous intrusion attempts.

A full packet trace containing Web traffic, generated by concurrently
running a number of recursive wget requests on popular portal sites.

Three header-only traces from the NLANR archive. These packet traces
were taken on backbone links. Because these are header-only traces,
for our experiments we added random payloads. We argue that the
results are representative after determining that random payloads do not
significantly alter NIDS performance.

A set of header-only traces collected on the OC3 link connecting the
University of Crete campus network (UCNET) to the Greek academic
network (GRNET)(Courcoubetis and Siris, 1999), with random pay-
loads.

For the experiments of Sections 4.2 and 4.3, we use the DEFCONeth0.dump2
trace containing 1,035,736 packets. For simplicity, traces are read from a local
file by using the appropriate snort option, which is passed to the underly-
ing pcap(3) library. (Replaying traces from a remote host provided similar
results.)

ÿ£¿mÒ á å�é ê�é.ÁzÂÕÔPÁÙÅ Èsé.å�å4ækÉ��sé
We first determine the optimal size for ÌÑÍ�Ï\Ð elements and cells. In Figure

2 we show the fraction of false positives for different element and cell sizes,

2Available at http://www.shmoo.com/cctf/

and in Figure 3 the corresponding running time of snort , obtained using the
time(1) facility of the host operating system. We observe that the fraction
of false positives is well below 2% when using elements 13 bits or more.
Completion time decreases with increasing element size, as the fraction of false
positives that have to be searched using Boyer-Moore is reduced. However, it
is not strictly decreasing: it is minimized at 13 bits but exhibits a slight increase
for more than 13 bits, apparently because of the effect of data-structure size (8
KB for 13-bit elements, 64 KB for 16 bits, for a cell size of 8 bits) on cache
performance. For our specific configuration, 13-bit elements and 8-bit cells
appear to offer the best performance.

ÿ£¿dÚ áäã��Ñé Ã:É�ê�é ÁzÂkæ
	 ÉBÂkì ÂFìÇé�ÅÇé��}ÔPÆÙåBÂ+Ã:ÆÇå�ésçJæké Â
We determine if Ì Í Ï\Ð offers any overall improvement compared to FVh

and BM using the eth0.sump2 trace. The completion time for Ì Í�Ï\Ð , BM
and FVh are 30.20, 47.31 and 47.36 seconds, respectively. We observe that
using ÌÎÍ�Ï\Ð , snort is 36% faster than both known algorithms. Ì Í}Ï\Ð is
faster because, in the common case, it can quickly decide that a given set of
strings is not contained in a packet. More specifically, in this experiment, the
string matching function was invoked 22,716,676 times. Out of those, Ì Í Ï�Ð
was able to quickly state that the considered string was not a substring of the
input packet in 22,395,210 of the invocations (or 98.4%). Thus, in 98.4% of
all invocations, ÌÑÍ�Ï\Ð was able to deliver the correct answer without actually
searching for the pattern in the packet. In the remaining 1.6%, Ì Í Ï\Ð used the
Boyer-Moore string searching algorithm to find whether the string is really in
the packet.

ÿ£¿xÿ ÂFìÇé.Ã���ÔPÈ�Ö�é.Â�Â]Ã\ÔPÈsé.æ
We repeated the experiments with the three algorithms on the full set of

traces. The results are summarized in Table 1. We first confirm that random
payloads behave similarly to real payloads for the DEFCON eth0.dump2
trace: the difference in performance between the original trace and the trace
with the payload replaced with random data is negligible for all three algorithms.
Based on this observation, we can argue that using random payloads on the
NLANR and UCNET traces provides a reasonably accurate estimate on how
the algorithms would perform with real payloads.

Comparing the performance of the string matching algorithms, we observe
that Ì Í Ï\Ð performs better than FVh and BM on all traces except for one and
that the relative improvement varies. It is also interesting to see that FVh,
reported in (Fisk and Varghese, 2002) to perform better than BM, sometimes
performs worse for the traces examined. Although the improvement of Ì Í�Ï�Ð
is typically between 25% and 35%, and can be as high as 36.17%, there are
cases where the gain is only around 8% or, even in the case of the NLANR
AIX trace, worse than BM by 8%. This appears to relate, at least in part,

Trace characteristics Running time
trace name ID nr. of avg.pkt BM FVh º » ¼<½ %

packets (bytes) (sec) (sec) (sec)

eth0.dump2 D.02 1035736 835 47.31 47.36 30.20 +36.17
eth0.dump2.r D.02.R 46.35 46.60 29.77 +35.77
eth0.dump4 D.04 595267 1481 14.11 56.24 9.81 +30.47
eth0.dump8 D.08 497302 1111 9.79 41.51 6.74 +31.15

webtrace W.0 1188660 761 345.60 300.86 274.51 +8.76
NLANR IND N.IND 2254931 703 93.53 83.8 62.04 +25.97
NLANR MRA N.MRA 2760531 760 137.39 122.40 89.07 +27.23
NLANR AIX N.AIX 1624223 364 13.17 14.00 14.26 -8.28
UCNET 0000 UC.00 1564131 422 103.93 82.35 66.84 +18.83
UCNET 0100 UC.01 2245938 413 108.69 84.20 62.54 +25.72�M���d��h��[�

Completion time of snort with different string matching algorithms – all traces

% % avg
trace rules pkts bytes pkt
D.02 60 21.13 35.53 1336

62 21.18 36.20 1358
66 54.09 26.45 388

D.04 13 24.71 24.90 1472
32 73.98 74.60 1473

D.08 13 24.82 24.84 1093
32 74.83 74.91 1092

N.AIX 28 87.63 92.20 330
36 5.56 2.84 160

N.IND 36 4.98 5.25 692
38 40.07 30.31 495
60 30.82 36.90 785
62 8.38 9.22 721

N.MRA 60 43.72 44.04 713
61 9.82 9.96 718
62 13.89 14.17 722
63 14.04 13.90 701

101 6.16 5.80 667

% % avg
trace rules pkts bytes pkt
W.0 103 56.47 33.41 419

107 0.53 0.31 410
820 42.99 66.28 1092

UC.00 36 15.81 13.52 316
38 7.44 6.42 320
60 18.85 16.63 326
62 5.35 6.58 456
68 12.71 10.13 295

101 16.89 24.86 545
102 9.62 10.47 402
820 4.79 3.76 290

UC.01 36 11.54 9.51 296
38 5.75 4.78 299
60 42.71 39.91 336
61 5.35 4.76 320
68 7.35 5.70 279

101 10.42 17.33 599
102 7.68 10.09 473

�M���d��h����
Analysis of rule-set invocations (rules rarely triggered are not presented)

to differences in the packet size distribution: the average packet size is 835
bytes for the DEFCON eth0.dump2 trace and 364 bytes for the NLANR
AIX trace. For larger packets, snort spends more time in string matching,
and Ì Í Ï\Ð offers significant benefits, while for smaller packets, snort spends
less time in string matching, and Ì Í Ï�Ð is less useful. On the other hand,
results can be very different for traces with similar packet size statistics. For
example, the average packet size for webtrace and MRA are 761 and 760 bytes,
respectively, but the gain of Ì Í Ï\Ð is 8.76% and 27.23%, respectively. More
detailed analysis is therefore needed to understand the benefits of our approach.

D.02 D.02.R D.04 D.08 W.0 N.IND N.MRA N.AIX UC.00 UC.01
trace file

0

10
20

30
40

50
60

70
80

90
100

110
120

130
140

150

160
170

180

N
um

be
r

of
 In

st
ru

ct
io

ns
 (

bi
lli

on
s)

BM

FVh

E2xB

~6e��CgMnxh�� �
Executed instructions.

D.02 D.02.R D.04 D.08 W.0 N.IND N.MRA N.AIX UC.00 UC.01
trace file

0

200
400

600
800

1000
1200

1400
1600

1800
2000

2200
2400

2600
2800

3000

3200
3400

3600

N
um

be
r

of
 L

2
C

ac
he

 m
is

se
s

(m
ill

io
ns

)

BM

FVh

E2xB

~�e��CgMn�hP�}�
L2 data cache misses.

We obtain processor-level statistics of executed instructions and L2 data
cache misses for each trace using the brink/abyss toolkit which collects
data from the Pentium performance counters (Sprunt, 2002). The results are
presented in Figures 4 and 5. We observe that the number of instructions
for Ì Í Ï\Ð is significantly smaller in all cases except for the AIX trace. The
reduction in L2 data cache misses is relatively small compared to the reduction
in executed instructions. For example, for the ����� trace (Web-traffic) Ì Í Ï�Ð
has 30% less instructions but a slighly higher number of cache misses. This
explains the relatively small overall performance gain (rougly 8%) for Ì Í Ï�Ð
on this trace.

To further understand the differences in the results, we instrumented snort
to provide a trace of the chain headers and content rules invoked for each packet.
The results for all packet traces are presented in Table 2. We observe that the
string matching workload for different traces varies significantly. For instance,
for the AIX trace 87.6% of the packets are checked against only 28 rules, while
for the Web trace 56.4% of the packets are checked against 103 rules, and 43%
against 820 rules. Considering these statistics, it appears that Ì Í Ï\Ð offers
larger improvements in cases where a large fraction of packets are checked
against 30 to 100 content rules (as in the IND, MRA and all DEFCON traces).
This also indicates that it may be necessary to consider hybrid algorithms,
especially in cases where there is either a very small or very large number of
rules applying to a significant fraction of packets. In such cases, Ì Í Ï\Ð may
not perform as well as BM when the number of content rules in a chain header
is very small or the Aho-Corasick algorithm used in FVh when the number of
content rules per chain header is large.

0

100

200

300

1 10 100 1000 10000

cy
cl

es
 c

on
su

m
ed

 p
er

 p
ac

ke
t (

x1
00

0)

number of signatures (log-scale)

E2xB
FVh

0

0.5

1

1.5

2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

co
st

 r
at

io
: E

2x
B

 /
F

V
h

number of signatures

64 bytes 512 bytes 1500 bytes

~�eû�CgMnxh��[�
Off-line performance measurements of º�»m¼J½ and FVh.

Although the details of such a hybrid algorithm are beyond the scope of this
paper, we run a simple experiment to confirm that the cost of Ì Í}Ï\Ð is higher
than BM for small sets of content rules and higher than Aho-Corasick for large
sets of content rules. For this, we measure algorithm performance off-line e.g.,
as an isolated standalone program, with random inputs checked against a set
of random rules. We fix the input size at 1500 bytes and obtain the average
number of cycles for each input “packet” for different numbers of rules. Each
rule is assumed to be a 20-bytes string. The results are presented in Figure
6 (left). We see that Ì Í Ï\Ð is indeed more expensive than FVh for less than
20 rules, and that the relative performance benefits are maximized at around
700-1000 rules. After a certain point, the cost of Ì Í Ï�Ð rises sharply, possibly
due to the joint effect of increasing false-match rates per-packet and capacity
misses (due to the size of the rule-set). We also run the same experiment with
the input size set to 64 and 512 bytes, and compute the ratio of the average
number of cycles consumed per-packet of Ì Í Ï�Ð over FVh. These results
are presented in Figure 6 (right). As expected, the relative benefits of the
two algorithms and the ranges in which they perform better depend a lot on
packet size. Experimentation with the actual NIDS and a more realistic traffic
model and rule-set (or rule-set model) is, therefore, required to obtain the right
thresholds for such a hybrid algorithm. Beyond the hybrid algorithm, these
results also provide some insights on the scalability of different algorithms:
Ì Í Ï\Ð appears to cover a reasonable range of rule-set sizes that is likely to be
sufficient as NIDS rulesets continue to increase in size.

ÿ£¿�� �/É�� é Ã:é ÁzÂ)ÔUÃ\È:ìÇÉBÂFé È�ÂFÆÙÃ:é æ
We repeat the experiments on a system with a 1 GHz Pentium 3 processor

and a 512 KB L2 cache. The results for the Pentium 3 are presented in Figure
7. We see that the gain for Ì Í Ï�Ð is slighly higher on the Pentium 3 compared
to the Pentium 4, with the proportion of the gain roughly consistent for the
different traces. When comparing the performance of the P3 vs. the P4 system,
the results may appear somewhat surprising: the P3 is almost always faster

D.02 D.02R D.04 D.08 W.0 N.IND N.MRA N.AIX UC.00 UC.01
trace file

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

C
om

pl
et

io
n

tim
e

(s
ec

s)

BM

FvH

E2xB

~6e��CgMnxh�¡��
Performance on P3 processor.

D.02 D.02R D.04 D.08 W.0 N.IND N.MRA N.AIX UC.00 UC.01
trace file

0

50

100

150

200

250

C
om

pl
et

io
n

tim
e

(s
ec

s)

Pentium IV

Pentium III

~�eû�CgMnxhU���
Performance on P3 vs P4.

than the P4, as shown in Figure 8. This happens because the P3 has a 512
KB cache and the P4 we used has a 256 KB cache. For the Webtrace which
has the highest memory usage among all traces, the P3 is almost 4 times faster
than the P4. Besides highlighting the importance of considering the underlying
system architecture when designing (and deploying) NIDSes, this experiment
also demonstrates the great care needed in evaluating NIDS performance, as
the results can be very sensitive to the environment.

��¿ ��ÆÇê�ê�ÔUÃ! �ÔPÁÇÅ�ÈsÄpÁÇÈså�ÆÇÅÇÉ�ÁÇ×�Ã:é ê�ÔUÃ�Ö�æ
We have studied the performance of NIDS string matching algorithms, and

presented the design Ì Í Ï�Ð , a new algorithm for NIDS string matching. Using
an extensive set of packet traces, we have evaluated ÌÑÍ�Ï�Ð against existing
algorithms. Our results show that in most cases Ì Í Ï\Ð offers significant overall
improvement in NIDS performance. We have shown realistic cases in which
our approach improves performance by as much as 37%. The impact of
Ì Í Ï\Ð appears to relate to the packet size distribution and the number of string
matching rules invoked per packet: small packets and very small or very large
sets of rules per packet reduce the effectiveness of Ì Í Ï\Ð . For medium-size
rule-sets, Ì Í Ï�Ð appears to be much faster than existing algorithms. These
results point to the need for a hybrid algorithm, with Ì Í Ï\Ð covering a range
of medium-size rulesets. Determining the details of such a hybrid algorithm,
including exact thresholds will be the subject of future work.

Our results also allow for some more general observations to be made on
the performance as well as modelling, analysis and benchmarking of NIDSes:
we have found that results are very sensitive to traffic and NIDS host processor
and that random payloads behave similarly to real payloads. We expect these
results to be useful towards more effective NIDS benchmarking and design.

" È:Ö�ÁÇÄ#	 å�é ÅÇ×pê�é.Á�ÂFæ
This work was supported in part by the IST project SCAMPI (IST-2001-

32404) funded by the European Union. Work of the first author was also
supported in part by the DoD University Research Initiative (URI) program
administered by the Office of Naval Research under Grant N00014-01-1-0795,
and by the USENIX/NLnet Research Exchange Program (ReX). We would
also like to thank Dionisis Pnevmatikatos for his constructive comments, and
Vasilis Siris for providing the UCnet traces.

$ é#�[é.Ã:é.ÁÇÈsé æ
Aho, A. and Corasick, M. (1975). Fast pattern matching: an aid to bibliographic search. Com-

munications of the ACM, 18(6):333–340.
Bace, R. and Mell, P. (2001). Intrusion Detection Systems. National Institute of Standards and

Technology (NIST), Special Publication 800-31.
Boyer, R. and Moore, J. (1977). A fast string searching algorithm. Communications of the ACM,

20(10):762–772.
Coit, C. J., Staniford, S., and McAlerney, J. (2002). Towards faster pattern matching for intrusion

detection, or exceeding the speed of snort. In Proceedings of the 2nd DARPA Information
Survivability Conference and Exposition (DISCEX II).

Courcoubetis, C. and Siris, V. A. (1999). Measurement and analysis of real network traffic. In
Proceedings of the 7th Hellenic Conference on Informatics (HCI’99).

Fisk, M. and Varghese, G. (2002). An analysis of fast string matching applied to content-
based forwarding and intrusion detection. Technical Report CS2001-0670 (updated version),
University of California - San Diego.

Gupta, P. and McKeown, N. (1999). Packet classification on multiple fields. In Proceedings
of the conference on Applications, technologies, architectures, and protocols for computer
communication, pages 147–160. ACM Press.

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. University of California Press.

Horspool, R. (1980). Practical fast searching in strings. Software - Practice and Experience,
10(6):501–506.

Lakshman, T. V. and Stiliadis, D. (1998). High-speed policy-based packet forwarding using
efficient multi-dimensional range matching. In Proceedings of the ACM SIGCOMM ’98
conference on Applications, technologies, architectures, and protocols for computer commu-
nication, pages 203–214. ACM Press.

Markatos, E. P., Antonatos, S., Polychronakis, M., and Anagnostakis, K. G. (2002). ExB:
Exclusion-based signature matching for intrusion detection. In Proceedings of the IASTED
International Conference on Communications and Computer Networks (CCN), pages 146–
152.

McVoy, L. and Staelin, C. (1996). lmbench: Portable tools for performance analysis. In Proc. of
the 1996 Usenix Technical Conference, pages 279–294.

Roesch, M. (1999). Snort: Lightweight intrusion detection for networks. In Proceedings of the
1999 USENIX LISA Systems Administration Conference. (available from http://www.snort.org/).

Sprunt, B. (2002). Brink and abyss: Pentium 4 performance counter tools for linux. Available
from http://www.eg.bucknell.edu/˜ bsprunt/.

